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Abstract

Sledgehammer integrates third-party automatic theorem provers in the proof assistant Isabelle/HOL.
In the seven years since its first release in 2007, it has grown to become an essential part of most
Isabelle users’ workflow. Although a lot of effort has gone into tuning the system, the main reason for
Sledgehammer’s success is the impressive power of the external provers, especially E, SPASS, Vampire,
and Z3. In this paper, I review Vampire’s strengths and weaknesses in this context and propose a few
directions for future work.
Isabelle/HOL [27] is a proof assistant based on polymorphic higher-order logic extended with
axiomatic type classes. Its tool Sledgehammer [5,28] integrates third-party automatic theorem
provers to increase the level of automation. It consists of three main components:

• The relevance filter [23,26] heuristically selects a few hundred facts (lemmas, definitions,
axioms) from the thousands available to Isabelle users.
• The translation module [6,25] encodes polymorphic higher-order propositions in the tar-

get prover’s logic (e.g., untyped or monomorphic first-order logic).
• The reconstruction module [29, 33] produces a textual proof that can be inserted in an

Isabelle development to replay the proof.

Sledgehammer was originally designed by Lawrence Paulson and his team from 2003 to
2009. I took over its development in 2010 at Tobias Nipkow’s suggestion. In the last seven
years or so, it has grown to become an essential part of most Isabelle users’ workflow.

The following provers are supported as backends:

• Unit-equality prover: Waldmeister [17];
• Superposition-based first-order provers: E [32], SPASS [38], and Vampire [31];
• Instantiation-based first-order provers: iProver [19] and iProver-Eq [20];
• SMT (satisfiability modulo theories) solvers: Alt-Ergo [10], CVC3 [3], Yices [14], and

Z3 [13];
• Higher-order provers: AgsyHOL [24], LEO-II [4], and Satallax [12].

It is straightforward to extend this list with provers that can communicate in the TPTP/
TSTP [35] or SMT-LIB [30] formats. For historical reasons, the SMT solver translation is
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distinct from the TPTP/TSTP translation. Originally, most provers developed in the community
around CADE and TPTP had no support for types or arithmetic, but this is now changing [37].

Systems such as Isabelle adhere to the tradition initiated in the 1970s by the LCF system
[16]: All inferences are derived by a small trusted kernel; types and functions are defined
rather than axiomatized to guard against inconsistencies. My experience has confirmed the
value of the foundational–definitional approach: In the past five years, I or my tools have
found soundness bugs in seven external provers (Alt-Ergo, LEO-II, TPS, Vampire, Yices, Z3,
and Zipperposition), but not in Isabelle or any of the other LCF-style provers. For this reason,
reconstruction is an essential component of Sledgehammer.

Reconstruction is performed by generating a piece of Isabelle proof text that can replay
the proof without depending on the external prover. In most cases, a single call to the built-in
resolution prover Metis [18, 29] suffices to re-find the proof in Isabelle. In ongoing work, my
colleagues and I are extending Sledgehammer to generate detailed, structured Isabelle proofs
based on the external proofs [33]. Inferences are justified by suitable proof methods.

As an added benefit, the proofs can be inspected and understood by the user. In princi-
ple, the raw proofs generated by the external provers can also be inspected. In practice, the
reconstructed Isabelle proofs are much more readable, for several reasons: They are in terms
of the original logic and not of the encoding in the target logic; they are direct instead of by
contradiction; and they collapse straightforward chains of reasoning into single inferences.

By default, Sledgehammer runs E, SPASS, Vampire, and Z3 in parallel. Vampire is run
remotely on the SystemOnTPTP service [34], unless the user has installed it locally. The other
provers are part of the Isabelle distribution and run locally in separate threads. The default time
limit is 30 seconds per thread. Even though E and Vampire implement strategy scheduling,
Sledgehammer performs its own scheduling, generating a sequence of problems with different
numbers of facts, different encodings of types, and different prover options.

Vampire is famous in the automated reasoning community for its repeated victories at the
CADE ATP System Competition (CASC) [36]. On Sledgehammer-generated benchmarks,
the race between E, SPASS, Vampire, and Z3 is very close [5, 9, 11, 23, 28]—but my latest,
unpublished benchmarks [7] put Vampire 3.0 clearly ahead of its competitors.

Among Vampire’s many features, the support for monomorphic types (as defined by TPTP
TFF0 [37]) and the detailed TSTP proofs are especially beneficial to Sledgehammer:

• The monomorphic types, in conjunction with a heuristic monomorphizer, make it easy
to encode Isabelle’s type information in a natural, lightweight fashion. Other encodings
in terms of untyped first-order logic are possible, but none are as efficient as the native
support in Vampire [7].

• Vampire can output detailed, inference-level proofs in TSTP format. Some options must
be disabled to make the proofs intelligible, but once this is done the proofs can normally
be reconstructed inference by inference in Isabelle using Metis. Unlike some of its rivals,
Vampire records the entire clausification and skolemization process in its proof output,
making it possible to use the prover as a backend in a larger tool in accordance with what
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I call the Russian doll principle.1

In recent years, some work has been done on adding arithmetic to Vampire [21, 22]. We
have yet to try out this feature. Our experience with arithmetic in SMT solvers is that it helps
increase the success rate by a few percentage points, without being an absolutely essential
feature [5]. Isabelle’s libraries are full of arithmetic lemmas that can be used in the absence of
dedicated theory reasoning in the prover.

Another promising feature of Vampire is its (currently unpublished) detection and opti-
mization of extensionality reasoning. In Isabelle, function equality is extensional, and most
Sledgehammer problems contain axioms such as ∀F,G. (∀X. app(F, X) ≈ app(G, X)) −→
F ≈G, where app(F, X) denotes the application of F to X. Virtually all provers have difficul-
ties applying such axioms when they are needed, because of the highly general literal F ≈G.

There are a number of areas in which I would welcome further development of Vampire.
They are reported here in a friendly, constructive spirit. Quite a few issues revolve around basic
system engineering:

• Vampire’s development takes place behind closed doors. The cycle of bug reports and
fixes can take months if not years. When types were introduced in Vampire, I immediately
found a soundness bug and reported it. The Vampire developers were quick at fixing the
bug, but I had to wait until the next release to try out the fix, only to discover another
type-related bug. A more agile development model would have helped make this new
feature converge more rapidly.
• The prover’s command-line options and inference rules are not well documented. Some

information can be found in outdated slides online. At one point, I was given access to a
Google Docs page that documented the options, but the link is now broken.
• The restrictive terms of the prover’s license means that we cannot distribute Vampire as

part of the Isabelle distribution. Users can download it themselves and install it locally,
but the vast majority never gets this far. Fortunately, the presence of Vampire on Sys-
temOnTPTP means that these users benefit from the prover, at least when they are not
sitting in a metro or an airplane.
• It is difficult to obtain the latest version of the tool. The official website is desperately out

of date. As a result, I usually find myself using the source version submitted to CASC,
despite the forbidding wording in the source file headers:

Posession [sic] of, or access to, this program does not give you or anybody else
a right or licence to distribute, modify, copy, compile, create derivatives, or use
in any form or for any purpose, this program, or any part thereof.
Any licence to use Vampire shall only be obtained as described on Vampire’s
home page http://vprover.org.

The above issues should be relatively easy to address, and I have no doubts that they would
contribute to increase Vampire’s deployment in academia and industry. In this respect, the

1In contrast, SPASS proofs are expressed in terms of the clausified problem. Proof reconstruction is possible
only with reverse-engineering of the various transformations performed by SPASS’s clausifier [2].
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commercially developed Z3 offers an interesting model: It combines commercial software de-
velopment imperatives (including the expensive commercial licenses) with some of the best
practices from the open source community: The source repository is publicly available, exe-
cutables are built every night for FreeBSD, Linux, Mac OS X, and Windows, and there is a
vibrant community that discusses bugs and feature requests online.

On the automated reasoning front, the following enhancements could help Sledgehammer:

• Vampire could support rank-1 polymorphism. The TPTP syntax has recently been ex-
tended with a suitable format for proofs and solutions, called TFF1 [8]. The heuristic
monomorphization performed by Sledgehammer to bridge the gap between Isabelle’s
polymorphic logic and Vampire’s monomorphic logic is incomplete and can dramatically
increase the size of the problem. Although I have no conclusive empirical evidence yet,
this grounding at the type level is almost certainly suboptimal compared with native sup-
port for polymorphism in the prover.

• It would be useful to have a simple technology to tune the prover based on a custom
set of benchmarks. Vampire has a large number of parameters and strategies, but these
are tuned against problems from the TPTP library. For example, on an eight-core ma-
chine, Sledgehammer might want to run several instances of Vampire in parallel, with
complementary strategies—but having to come up with the right setup for these Vampire
instances without basic tool support is not an attractive proposal.

In a collaboration with the SPASS developers, we are looking at ways to further reduce
the gap between automatic theorem provers and proof assistants [9]. This research is ongoing.
So far, SPASS’s superposition calculus has been extended with linear and nonlinear arithmetic
[1, 15], a polymorphic type system with type classes, datatype reasoning, and (co)induction.
The ideas have been implemented in various SPASS clones and prototypes and are expected to
be part of the forthcoming version 4.0. Similar ideas could be implemented in Vampire.

A promising avenue of work that could help derive more difficult proofs would be to have
the automatic theorem prover (partially) pre-saturate the background theories and store the
resulting inferences across invocations, instead of re-deriving the same consequences over and
over again. This requires a uniform, compositional problem encoding—a realistic prospect
once the external prover supports polymorphism.
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