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Abstract

Nitpick is a counterexample generator for Isabelle/HOL that builds on Kodkod, a SAT-based first-
order relational model finder. Nitpick supports unbounded quantification, (co)inductive predicates
and datatypes, and (co)recursive functions. Fundamentally a finite model finder, it approximates
infinite types by finite subsets. Our experimental results on Isabelle theories and the TPTP library
indicate that Nitpick generates more counterexamples than other model finders for higher-order logic,
without restrictions on the form of the formulas to falsify.

1 Introduction
Anecdotal evidence suggests that most “theorems” initially given to an interactive theorem prover do not
hold, typically because of a typo or a missing assumption, but sometimes because of a fundamental flaw.
Modern proof assistants often include counterexample generators that can be run on putative theorems
or on specific subgoals in a proof to spare users the Sisyphean task of trying to prove non-theorems.

For several years, Isabelle/HOL [11] has provided two such tools: Quickcheck [3] generates func-
tional code for the higher-order logic (HOL) formula and evaluates it for random values of the free
variables, and Refute [16] searches for finite countermodels of a formula through a reduction to SAT.
Their areas of applicability are almost disjoint: Quickcheck excels at inductive datatypes but is restricted
to the executable fragment of HOL (which excludes unbounded quantifiers) and may loop endlessly on
inductive predicates. Refute copes well with logical symbols, but inductive datatypes and predicates are
mostly out of reach due to combinatorial explosion.

In the first-order world, the Alloy Analyzer [9], a testing tool for first-order relational logic (FORL),
has enjoyed considerable success lately. Alloy’s backend, the relational model finder Kodkod [14], is
available as a stand-alone Java library and is used in many projects. Alloy’s success inspired us to
develop a new counterexample generator for Isabelle, called Nitpick [7]. It uses Kodkod as its backend,
thereby benefiting from Kodkod’s optimizations (notably its symmetry breaking) and its rich relational
logic. The basic translation from HOL to FORL is conceptually simple; however, common HOL idioms
such as (co)inductive datatypes and (co)inductive predicates necessitate a translation scheme tailored
for SAT solving [5]. In addition, Nitpick benefits from many novel optimizations that greatly improve
its performance, especially in the presence of higher-order constructs.

Our evaluation indicates that Nitpick falsifies more formulas than Quickcheck and Refute, to a large
extent because it imposes no syntactic restrictions on the formulas to falsify. Nitpick is integrated with
the TPTP benchmark suite [13] and exposed three bugs in the higher-order provers TPS [1] and LEO-
II [2].
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2 The Basic Translation
Nitpick employs Kodkod to find a finite model of ¬P, where P is the conjecture. The translation
from HOL to FORL is parameterized by the cardinalities of the atomic types occurring in it. Nitpick
enumerates the possible cardinalities for each atomic type, exploiting monotonicity to prune the search
space [6]. If a formula has a finite counterexample, the tool eventually finds it, unless it runs out of
resources.

SAT solvers are particularly sensitive to the encoding of problems, so special care is needed when
translating HOL formulas. Whenever practicable, HOL constants are mapped to their FORL equiva-
lents, rather than expanded to their definitions. For example, HOL defines the transitive closure r+ as the
least fixed point of λR(x, y). (∃ab. x= a∧ y= b∧ r (a, b))∨ (∃abc. x= a∧ y= c∧R (a, b)∧ r (b, c));
in FORL it is built-in.

As a rule, HOL scalars are mapped to FORL singletons and functions are mapped to FORL relations
accompanied by a constraint. For example, assuming the cardinalities |α|= 2 and |β|= 3, the conjecture
∀x ::α. ∃y :: β. f x = y corresponds to the (negated) Kodkod problem

var /0⊆ f ⊆ {a1,a2}×{a3,a4,a5}
solve (∀x∈{a1,a2}. one f (x)) ∧ ¬(∀x∈{a1,a2}. ∃y∈{a3,a4,a5}. f (x) = y)

The var declaration declares the free relation f with lower and upper bounds. The first conjunct ensures
that f is a function, and the second conjunct is the negation of the HOL formula translated to FORL.

An n-ary first-order function (curried or not) can be coded as an (n+ 1)-ary relation accompanied
by a constraint. However, if the return type is bool, the function is more efficiently coded as an un-
constrained n-ary relation. This allows formulas such as A+ ∪ B+ = (A ∪ B)+ to be translated without
taking a detour through ternary relations.

Higher-order quantification and functions bring complications of their own. For example, we would
like to translate ∀g :: β→α. g x 6= y into something like

∀g⊆ {a3,a4,a5}×{a1,a2}. (∀x∈{a3,a4,a5}. one g(x))−→ g(x) 6= y,

but the⊆ symbol is not allowed at the binding site; only ∈ is. Skolemization solves half of the problem,
but for the remaining quantifiers we are forced to adopt an unwieldy n-tuple singleton representation of
functions, where n is the cardinality of the domain. The n-tuple simply encodes g’s function table. For
the formula above, this gives

∀G∈{a1,a2}×{a1,a2}×{a1,a2}.
( g︷ ︸︸ ︷
{a3}×π1(G) ∪ {a4}×π2(G) ∪ {a5}×π3(G)

)
(x) 6= y,

where G is the triple corresponding to g and πi(G) is its i th component (i.e., the i th entry in the function
table). In the body, we convert the singleton G to the relational representation, then we apply x on it
using dot-join. The singleton encoding is also used for passing functions to functions; fortunately, two
optimizations, function specialization and boxing [7], make this rarely necessary.

3 Refinements to the Basic Translation
Approximation of Infinite Types and Partiality. Because of the axiom of infinity, the type nat of
natural numbers does not admit any finite models. To work around this, Nitpick considers finite subsets
{0,1, . . . , K− 1} of nat and maps numbers ≥ K to the undefined value (?), coded as the empty set.
Formulas of the form ∀n ::nat. P(n) are treated as (∀n < K. P(n)) ∧ P(?), which usually evaluates to
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either False (if P(i) gives False for some i < K) or ?, but not to True, since we do not know whether
P(K), P(K+1), . . . , collectively represented by P(?), are true. Partiality leads to a Kleene three-valued
logic, which is soundly expressed in terms of Kodkod’s two-valued logic.

Encoding of (Co)inductive Predicates. Isabelle lets users specify (co)inductive predicates p by their
introduction rules and synthesizes a fixed point definition p = lfp F or p = gfp F behind the scenes. For
performance reasons, Nitpick avoids expanding lfp and gfp to their definitions and translates (co)inductive
predicates directly, using appropriate FORL concepts.

An inductive predicate p is a fixed point, so we can use the equation p = F p as the axiomatic
specification of p. In general, this is unsound since it underspecifies p, but there are two important cases
for which this method is sound:

• If the recursion in F is well-founded [8], the fixed point equation p = F p admits exactly one
solution and we can safely use it as p’s specification.

• If p occurs negatively in the formula, we can replace these occurrences by a fresh constant q
satisfying the axiom q = F q; this transformation preserves satisfiability.

For the remaining positive occurrences of p, we unroll the predicate a given number of times, as in
bounded model checking [4]. The situation is mirrored for coinductive predicates: Positive occurrences
are coded using the fixed-point equation, and negative occurrences are unrolled.

Encoding of (Co)inductive Datatypes. In contrast to Isabelle’s constructor-oriented treatment of in-
ductive datatypes, Nitpick’s FORL axiomatization revolves around selectors and discriminators, in-
spired by Kuncak and Jackson [10]. The selector and discriminator view is usually more efficient than
the constructor view because it breaks high-arity constructors into several low-arity selectors.

Consider the type α list generated from Nil ::α list and Cons ::α→α list→α list. The FORL axiom-
atization is done in terms of the discriminators nilp and consp and the selectors hd and tl, which give
access to a nonempty list’s head and tail. Nil and Cons x xs are translated as nilp and hd−1(x)∩ tl−1(xs).

The FORL axiomatization specifies a subterm-closed finite universe of lists. Examples of subterm-
closed list substructures using traditional notation are {[], [0], [1]} and {[], [1], [2,1], [0,2,1]}. In con-
trast, the set L = {[], [1,1]} is not subterm-closed, because tl([1,1]) = [1] /∈ L. Given cardinalities for
the list type and the item type, Kodkod enumerates all corresponding subterm-closed list substructures.

Nitpick supports coinductive datatypes, even though Isabelle does not provide a high-level mech-
anism for defining them. Users can define custom coinductive datatypes from first principles and tell
Nitpick to substitute its efficient FORL axiomatization for their definitions.

4 Example: A Security Type System
Assuming a partition of program variables into public and private ones, Volpano, Smith, and Irvine [15]
provide typing rules guaranteeing that private variables stay private. They define two types, High (pri-
vate) and Low (public). An expression is High if it involves private variables and Low otherwise. A com-
mand is High if it modifies private variables only; commands that could alter public variables are Low.

We consider a fragment of the formal soundness proof by Snelting and Wasserrab [12]. Given a
variable partition Γ, the inductive predicate Γ ` e : σ tells whether e has type σ, whereas Γ,σ ` c tells
whether command c has type σ. Below is a flawed definition of Γ,σ ` c:

Γ,σ ` skip
Γ v = bHighc
Γ,σ ` v:=e

Γ ` e : Low Γ v = bLowc
Γ,Low ` v:=e

Γ,σ ` c1

Γ,σ ` c1 ;c2
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Γ ` b : σ Γ,σ ` c1 Γ,σ ` c2

Γ,σ ` if (b) c1 else c2

Γ ` b : σ Γ,σ ` c

Γ,σ ` while (b) c

Γ,High ` c

Γ,Low ` c
.

The following theorem constitutes a key step in the soundness proof:

Γ,High ` c ∧ 〈c, s〉 ∗
〈
skip, s′

〉
−→ ∀v. Γ v = bLowc −→ s v = s′ v.

It asserts that if executing the High command c in state s terminates in s′, the public variables of s and s′

must agree. This is consistent with our intuition that High commands should only modify private vari-
ables. However, because we planted a bug in the definition of Γ,σ ` c, Nitpick finds a counterexample:

Γ = [v1 7→ Low] s = [v1 7→ false]

c = skip; v1 := (Var v1 ==Var v1) s′ = [v1 7→ true].

Even though the command c has type High, it assigns true to the Low variable v1. The bug is a missing
assumption Γ,σ ` c2 in the typing rule for sequential composition.

5 Evaluation
To assess Nitpick, we used a database of mutated formulas consisting mostly of non-theorems, as was
done for Quickcheck [3]. The table below summarizes the results of running Nitpick, Refute, and
Quickcheck on 2400 random mutants from 12 Isabelle theories (200 per theory), with a limit of 10
seconds per formula. Most counterexamples are found within a few seconds; giving the tool more time
would have little impact on the results.

THEORY QUICK. REF. NITP.

Divides 134 3 141
List 78 3 117
MacLaurin 43 0 26

Map 19 103 157
Relation 0 144 150
Set 17 149 151

THEORY QUICK. REF. NITP.

ArrowGS 0 0 139
CoreC++ 7 3 29
MiniML 14 0 79
Ordinal 0 10 12
POPLmark 56 4 103
Topology 0 124 139

Nitpick also competes against Refute in the higher-order model finding division of the TPTP [13].
In a preliminary run, it disproved 293 out of 2729 formulas (mostly theorems), compared with 214 for
Refute. Much to our surprise, Nitpick exhibited counterexamples for five formulas that had been proved
by TPS [1] or LEO-II [2], revealing two bugs in the former and one bug in the latter. In exchange,
LEO-II exposed one bug in Nitpick.

6 Conclusion
Nitpick is to our knowledge the first higher-order model finder that supports both inductive and coin-
ductive predicates and datatypes. It works by translating higher-order formulas to first-order relational
logic (FORL) and invoking the highly-optimized SAT-based Kodkod model finder [14] to solve these.

The translation to FORL is designed to exploit Kodkod’s strengths. Datatypes are encoded follow-
ing an Alloy idiom [10] extended to mutually recursive and coinductive datatypes. FORL’s relational
operators provide a natural encoding of partial application and λ-abstraction, and the transitive closure
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plays a crucial role in the encoding of inductive datatypes. Our main contributions have been to isolate
three ways to translate (co)inductive predicates to FORL, based on wellfoundedness and polarity, and
to devise optimizations that dramatically increase scalability in practical applications [6, 7].

Nitpick is included with the latest version of Isabelle and is invoked automatically whenever users
enter new formulas to prove, helping to catch errors early, thereby saving time and effort. But Nitpick’s
real beauty is that it lets users experiment with formal specifications in the playful way championed by
Alloy but with Isabelle’s higher-order syntax, definition principles, and theories at their fingertips.

Acknowledgment. Nitpick would have been impossible without the help and support of Tobias Nipkow
and the members of the Isabelle group in Munich. Alexander Krauss contributed to the monotonicity
inference calculi used to prune the search space. Emina Torlak developed the Kodkod model finder
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dox, and other model finders on his computer farm. Andreas Lochbihler, Denis Lohner, and Daniel
Wasserrab were among the first users of the system and provided much helpful feedback. I thank them
all.
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