
A Simple Proof System for Lock-free Concurrency

Luı́s Caires1, Carla Ferreira1 and António Ravara

CITI and Departamento de Informática, FCT

Universidade Nova de Lisboa

1 Motivation

The use of locking is the classical approach to prevent interference in concurrent access to shared data

structures. Using locks it is not difficult to ensure data consistency (a safety property) and deadlock-

freedom (a liveness property). Many sophisticated implementation and reasoning techniques for lock-

based concurrent programming have been developed over some decades. Lock-based synchronization

has however the drawback of reducing the opportunity for concurrent execution, a limitation that may

hinder the most effective use of intensive multiprocessor hardware, commonly available today. As

an alternative, programming styles based on “non-blocking synchronization” have emerged [HS08].

In this context, alternative synchronization / cooperation techniques have been proposed, that ensure

correctness (in particular data consistency) of shared resources even when they are used by multiple

threads, and avoid pessimistic locking protocols. Locking protocols rely in general on the established

abstraction of critical region. In the critical region world, shared resources are only accessible inside

a delimited critical region in the program code. Critical regions are protected by locks, ensuring that

only a single thread may use the shared resource at a given time. Threads then must queue to access

the lock, creating contention and hindering concurrency. On the other hand, optimistic algorithms using

non-blocking synchronization usually rely on transaction-like abstractions. In this case, several threads

may engage into a transaction, and only at commit time conflicts (e.g., arising from races) are detected,

causing concurrent transactions to either abort or commit. This latter model favors concurrency, if the

“abort” rate turns out to be negligible. This general approach has been successfully encapsulated in the

STM [HS08] abstraction, that has deserved much attention recently.

2 Aim

Several works have already successfully addressed the issue of finding proof system expressive enough

to reason about “non-blocking synchronization”, usually building on programming idioms using the

CompareAndSwap (CAS) primitive [HS08], which perhaps does not reveal the optimistic transaction

analogy so clearly as we would like. In this work, we are instead exploring the analogy between the

transaction abstraction and programming idioms building on the LoadLink/StoreConditional (LL/SC)

pair of primitives [HS08], where we would like to interpret the LoadLink processor instruction as the

transaction start, and StoreConditional processor instruction as the transaction commit, returning either

“success” or “abort”. This analogy is not so clear when the CAS primitive is used. The LL/SC primitives

turn out to be encodable using more common atomic operations such as CAS [JP05], even if already

available as primitives in some processors (e.g. MIPS, Alpha). Recently several works have addressed

the design of proof systems for modular verification of concurrent programs, both lock-based (e.g.

[O’H04] ) and lock-free (e.g. [GCPV09]), usually building on separation logic, or combinations of rely

guarantee with separation logic [Vaf08]. In this work, we have been designing a Hoare-Separation-style

proof system to modularly prove correctness of lock-free algorithms based on the LL/SC model, where

we are particularly interested in data consistency, and possibly deadlock-freedom.

A. Simpson (ed.), PSPL 2010 (EPiC Series, vol. 12), pp. 1–3 1



A Simple Proof System for Lock-free Concurrency L. Caires, C. Ferreira and A. Ravara

3 Approach

We illustrate our approach with an example: proving correctness of a program to insert new nodes in a

shared linked list. The program, listed below, repeatedly tries to insert a newly created node in a shared

list. We can imagine the body of the while loop as a transaction that either commits when SC returns

true, or aborts otherwise. In that case, the transaction needs to be retried. More concretely, the loop

starts by executing operation LL, which receives the address of memory location x (global variable)

and assigns its contents to y (local variable). Next, the new node w is inserted at the top of list y.

Last, operation SC will try to store w in memory location x: if location x has not been written by any

concurrent thread since LL, the new value is written atomically to location x and returns true, according

to the standard semantics of LL/SC. We show that if the loop eventually terminates, then the insertion

succeeded, and the data structure is still a list (the one resulting from the initial list by inserting a new

node). We list the program code, together with the relevant assertions.

insertNode{
{list(∗x)}{emp} z = F;
{list(∗x)}{z = F ∧ emp} while(not z) {
{list(∗x)}{z = F ∧ emp} y = LL(x);
{list(∗x)}{z = F ∧ list(y)} w = new(y);
{list(∗x)}{z = F ∧ (w → y ∗ list(y)}
{list(∗x)}{z = F ∧ list(w)} z = SC(x,w)
{list(∗x)}{z ⇒ emp} }
{list(∗x)}{z = T ∧ emp}
{list(∗x)}{emp} }

Our triples have the general form {G}{L} S {G′}{L′} where G,G′ describes invariants over global

state, and L,L′ the local state (local view) of the thread S under consideration. All formulas are written

in separation logic [Rey02, O’H04], although interference is allowed between G and L, and between G′

and L′ as well (so this differs from the notions of local and shared state of RGSep [Vaf08]). The effect

of y=LL(x) is to create a local snapshot of a shared data structure referenced from a given memory

cell, by instantiating the global invariant. In the example, list(∗x) is copied to the local view as list(y).
A challenge posed to the proof system is then to ensure that if the anchor variable ∗x is not changed then

the global invariant is preserved, even in the presence of interference. Another challenge is to deal with

multiple interleaved or nested transactions. The effect of z=SC(x,w) is to enforce a well defined state

(emp in the example) only when the “transaction” succeeds. Notice that the while loop ensures that the

control variable z is set to T at exit, so that the desired post-condition emp is established (meaning that

the local view is lost to the global state).

In the talk, we will present a core imperative calculus, equipped with concurrency and LoadLink/S-

toreConditional (LL/SC) primitives. We define the structural operational semantics and a proof system

of this small language, prove its soundness, and discuss some simple examples.

References

[GCPV09] Alexey Gotsman, Byron Cook, Matthew Parkinson, and Viktor Vafeiadis. Proving that non-blocking

algorithms don’t block. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL’09), pages 16–28, New York, NY, USA, 2009. ACM.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2008.

[JP05] Prasad Jayanti and Srdjan Petrovic. Efficient wait-free implementation of multiword ll/sc variables. In

ICDCS, pages 59–68. IEEE Computer Society, 2005.

2



A Simple Proof System for Lock-free Concurrency L. Caires, C. Ferreira and A. Ravara

[O’H04] Peter W. O’Hearn. Resources, concurrency and local reasoning. In Philippa Gardner and Nobuko

Yoshida, editors, CONCUR, volume 3170 of Lecture Notes in Computer Science, pages 49–67.

Springer, 2004.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS02, pages

55–74. IEEE Computer Society, 2002.

[Vaf08] Viktor Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, 2008.

3


	Motivation
	Aim
	Approach

