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Abstract

A large number of species cannot be distinguished via standard non genetic analysis
in the lab. In this paper we address the problem of finding minimum sets of restriction
enzymes that can be used to unequivocally identify the species of a yeast specimen by
analyzing the size of digested DNA fragments in gel electrophoresis experiments. The
problem is first mapped into set covering and then solved using Constraint Programming
techniques. Although the data sets used are relatively small (23 yeast species and 331
enzymes), a similar approach might be applicable to larger ones and to a number of variants
as discussed in the conclusion. The subject of this paper has already raised the interest
of our biologist partners and may become a benchmark for the application of Constraint
Programming techniques to Bioinformatics.

1 Introduction

The problem of yeast identification was historically addressed through the study of both mor-
phological traits and physiological features [3, 5, 16], but alternative molecular methods have
been adopted to obtain the sequence of particular genomic regions and thus identify a given
species [6, 11].

Although sequencing nucleic acids is more accessible than ever, it is still an expensive tech-
nique, especially if applied to a high numbers of specimens. In contrast to less expensive
techniques like RFLP, RAPD, MSP-PCR (which allow the formation of clusters among the
specimens to be identified, with inherent result limitations in scope), ARDRA [12] was pro-
posed to differentiate between species of a eubacterial family and it represents an approach
that goes beyond the mere clustering operation. The amplified fragment and the digestion
products sizes are reproducible, characteristic for the substrate sequence, and thus characteris-
tic for the source taxon, generally enabling the identification of the organism.

ARDRA-ITS [10] was developed with the purpose of differentiating fungal species. The
differences between the original technique and the ITS variant lay on the primers, ITS1 and
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ITS4 [15], that amplify the 5.8S-ITS region of the operon, and in the set of enzymes used: HaeIII
and TaqI. Other authors [1] took a step further and proposed the use of a variant, ARDRA-ITS,
as an identification method for yeasts. They used a different set of restriction enzymes (CfoI,
HaeIII, HinfI, and several more to resolve occasional ambiguities), and the latter target region,
the 5.8S-ITS region. This genomic region also happens to be one of the better represented in
the public nucleotidic sequences databases (GenBank, EMBL Bank and DDBJ consortium).
This approach has been used with considerable success to identify yeasts associated with food
[2, 7, 13] and a commercial database is available for this purpose (www.yeast-id.com), but its
usefulness has been hindered by the reduced set of yeast strains studied and the limitations of
size resolution of classical electrophoresis apparatus.

Recent papers are acknowledging the power of in silico contributions in this field. One is
limited to the forecast of electrophoretic patterns [8], the other presents a program to assess
the utility of a fixed set of endonucleases to distinguish between a given set of sequences [14].
However, the integration of all the available data in a comprehensive in silico approach, targeting
optimality in identification by ARDRA is still to be proposed.

The purpose of this paper is twofold. Firstly, in the context of ARDRA-ITS, we propose
to infer the minimum set of enzymes required to identify one, from a given set of yeasts.
Secondly, we propose that this problem is used as benchmark for Constraint Programming
methods applied to Bioinformatics. Although the instance presented in the paper has been
solved, larger instances and variations of the problem may pose a relevant challenge to CP
techniques.

The paper is organized as follows. Section 2 shows how the ARDRA-ITS technique can be
cast into a minimum set covering problem. Section 3 presents different models to obtain both a
single solution and all solutions to this problem, and briefly discusses the experimental results
obtained with them. Finally, section 4 presents some initial conclusions and a discussion of
further work.

2 Mapping ARDRA into a Minimum Set Covering prob-
lem

The ARDRA-ITS technique identifies one from a set of specimens through analysis of a specific
DNA sub-sequence of its genome. Restriction enzymes (that, as is well known, cut double-
stranded or single stranded DNA at specific recognition nucleotide sequences, known as restric-
tion sites) play a central role in the ARDRA-ITS technique that proceeds as follows: First, a
“standard” fragment of the test specimen DNA is obtained (in the case of yeasts, the 5.8S-ITS
region of their operons), and many copies of it are produced. Secondly, a set of restriction
enzymes are separately applied to these copies. The complete digestion of each enzyme yields
several smaller nucleotide segments that, subject to gel-electrophoresis, originate bands of dif-
ferent lengths.

Each yeast - restriction enzyme pair generates a specific band pattern, but given the simi-
larity of their DNA, several yeasts are likely to present similar patterns when digested by most
restriction enzymes. Subject to some experimental error, there is a one-to-one correspondence
between fragment sizes and the position of the respective band in the pattern, hence the sizes
of the fragments obtained can be approximately calculated from the gel electrophoresis exper-
iments. On the other hand, when its DNA sequence is known, the pattern produced by the
digestion of yeast Y (or rather, the 5.8S-ITS region of its operon) by the restriction enzyme R
can be computed by running a simulation of a gel electrophoresis experiment. A simple diagram
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of digestion in this context is shown in Figure 1.

enzyme's recognition pattern

CGG^CCG

yeast's DNA

...TGGCCGTCGGCCGGCTTTCA...

fragment

...TGGCCGTCGG

fragment

CCGGCTTTCA...

Figure 1: Diagram of digestion

A restriction enzyme R differentiates two yeast specimens Y1 and Y2 if the patterns it
produces from them are distinguishable, i.e. at least one fragment in one of the digested yeasts
is of a sufficiently different size from any fragment in the other digested yeast.

It is thus possible to produce a Boolean coverage table D, where rows denote yeast pairs and
columns represent restriction enzymes. In this table the cell in the row Yi− Yj and the column
Ek tells whether that yeast pair is differentiated by that restriction enzyme. The problem
of identifying a yeast among a set of similar yeasts can be formulated as finding a set S of
restriction enzymes that differentiate any pair of yeasts, i.e. for all rows there is at least one
enzyme in S such that its corresponding column has a true value for that row.

More formally, given a set of yeasts Y = {Y1, ..., YNy} and a set of enzymes E = {E1, ..., ENe},
we denote as P (i, k) the induced pattern for Yi by Ek, i.e. the set of segment lengths produced
by the digestion of yeast Yi by enzyme Ek. Two patterns P and Q are distinct if there is a
fragment length in one of them that is sufficiently different (depending on the experimental
error and denoted by 6≈) from any fragment of the other pattern i.e.

distinct(P,Q) =def (∃u ∈ P )(∀v ∈ Q)(u 6≈ v) ∨ (∃u ∈ Q)(∀v ∈ P )(u 6≈ v)

Two yeasts are differentiated by a restriction enzyme if the patterns induced in them are distinct:

(∀i < j in 1..Ny)(∀k in 1..Ne)

differentiate(i, j, k) =def distinct(P (i, k), P (j, k))

A discriminating set of enzymes S is a subset of the set E of enzymes that, for any pair of
yeasts in the set Y , has an element that differentiates them, i.e.

disc(S, Y ) =def ∀(i-j) ∈ Y ∃k ∈ S : differentiate(i, j, k)

A minimal (optimal) discriminating set of enzymes S is a discriminating set with minimal
cardinality:

min disc(S, Y ) =def disc(S, Y ) ∧ (∀R disc(R, Y )→ #S ≤ #R)

Hence, given a set Y of yeast specimens, the ARDRA-ITS problem can be regarded as the
problem of finding, from a set E of available restriction enzymes, a minimal discriminating set
S for the set of yeast specimens.
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Since some solutions might be preferred over others by the user (according to not yet fully
formalized criteria such as reliability, availability and cost) it is also interesting to find not only
one, but all minimal discriminating sets.

3 Alternative models

We tested a number of alternative models with a dataset of commercially available restriction
enzymes, containing about 3500 elements [9]. As this set was redundant, meaning that many
enzymes had the same recognition sequences, it was reduced to an equivalent one containing
only 331 enzymes. The dataset of yeasts that we used is available at http://www.cbs.knaw.

nl/databases/, it includes the nucleotide sequences of the 5.8S-ITS region of the operons of 23
yeast specimens. All the tests presented below where run in a Intel(R) Core(TM)2 Duo T5670
@1.80GHz (2 CPUs) with 3 GB of RAM, with a SICStus 4 CLP system.

3.1 Greedy model

A simple and greedy approach to solve the problem was implemented by accumulating the best
enzymes (i.e. those that differentiate more yeast pairs still to be covered) until all yeast pairs
are covered. The pseudo code is shown in Algorithm 1.

Algorithm 1 Greedy model

1: S ← ∅
2: Y ← {i-j : i ∈ 1..Ny, j ∈ 1..Ny, i < j} . the set of all yeast pairs to cover
3: E ← {k : k ∈ 1..Ne} . the set of all enzymes available
4: while Y 6= ∅ do

5: e← argmax
k∈E

( ∑
i-j ∈Y

differentiate(i, j, k)

)
. select the most covering enzyme

6: S ← S ∪ {e}
7: Y ← Y \{i-j : differentiate(i, j, e)} . subtract the covered yeast pairs
8: end while

Of course, this greedy approach does not guarantee that, upon termination, set S is an
optimal discriminating set. In fact, notwithstanding the very fast execution time (125 ms), the
solution found with our datasets contains nine enzymes, being far from minimal and therefore
useless.

3.2 Backtrack model

This model guarantees optimality by finding differentiating sets of restriction enzymes with an
increased size. The first set obtained is thus an optimal discriminating set. Alternative minimal
differentiating sets can be obtained (with backtracking) by changing the condition in the while
loop. The pseudo code is shown in Algorithm 2.

The execution time was close to 1 minute, but is heavily dependent on the order in which
the enzymes are considered. If all solutions were to be found by backtracking alone, a huge
number (around 6 million) of triplets would have to be tested, requiring an unacceptably huge
execution time.
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Algorithm 2 Backtrack model

1: Y ← {1, ..., Ny} . the set of all yeast identifiers
2: p← 0 . p stands for the size of the solution
3: found← false
4: while ¬found do
5: p← p + 1 . the size of the optimal solution is searched incrementally
6: for all k1..kp ∈ 1..Ne : e1 < ... < ep do
7: S ← {k1, ..., kp}
8: for all i, j ∈ 1..Ny : i < j do
9: if ¬ discriminate(i, j, S) then

10: break
11: end if
12: end for
13: end for
14: found← differentiate(Y, S)
15: end while

3.3 Constraint Programming model with Boolean variables

The selection of the kth enzyme in the discriminating set is modeled by a Boolean variable xk,
and a Constraint Programming system simply solves the problem of finding an assignment of
these variables that covers all the yeast pairs, each covering being represented by a sum-product
constraint of the variables xk and the 0/1 constants representing the differentiating features. Of
course all solutions can be obtained by backtracking. The pseudo code is shown in Algorithm
3.

Algorithm 3 Boolean CP model

1: X ← [x1, ..., xNe
] . one boolean variable for each enzyme identifier

2: for all x ∈ 1.Ne do
3: xk ∈ 0..1
4: for all i, j ∈ 1..Ny : i < j do
5:

∑
k∈ 1..Ne

xk ∗ differentiate(i, j, k) ≥ 1 . constraints are imposed

6: end for
7: end for

8: label(X): minimising

( ∑
k∈ 1..Ne

xk

)

With this model, the first minimum solution was found 15 seconds, which includes the 5
seconds necessary to initialize the covering table. This model is sufficiently efficient to compute
all solutions of this problem instance. After the initialization time, all solutions were found in
15 minutes (the timing for finding the next solution vary widely from a some milliseconds to a
few minutes).

3.4 Constraint Programming model with Finite Domain variables

Now each variable xij in the X vector is associated to the yeast pair Yi-Yj and its domain is the
set of enzymes that differentiate such pair. By labeling X minimizing the number of different
elements it uses, minimum solutions are found. The pseudo code is shown in Algorithm 4.

79



Minimizing sets of enzymes to differentiate between species Buezas, Almeida, Barahona

Algorithm 4 Finite Domain CP model I

1: X = [x1-2, ..., xi-j , ..., x(Ny−1)-Ny
] : i < j . one Finite Domain variable for each yeast pair

2: list to set(X,S)
3: for all i, j ∈ 1..Ny : i < j do
4: xi-j ∈ {k ∈ 1..Ne : differentiate(i, j, k)}

. the domain of xi-j is the set of enzyme identifiers that cover the i-j pair
5: end for
6: label(X): minimizing(#S)

To be effective, this model requires the minimization of the number of distinct values in list
X (or equivalently, the number of elements in set S). In CP systems this can be achieved using
the Nvalue(K,L) global constraint, that maps into the finite domain variable K, the number of
distinct values in list L, as proposed in [4].

With this model, finding the first minimal solution takes 1 second (after the 5 seconds for
table initialization). Unfortunately, the model cannot be used to find all solutions since many
repetitions are obtained. For example, let us assume we have three yeast specimens (Y1, Y2, Y3)
forming three distinct yeast pairs

P1 =< Y1, Y2 >,P2 =< Y1, Y3 >,P3 =< Y2, Y3 >

and that P1 is covered by enzymes 2 and 3, P2 by enzymes 1 and 3, and P3 by enzymes 1
and 2. The tree yeast pairs would be represented as the vector X = [x1-2, x1-3, x2-3] where
x1-2 ∈ {2, 3}, x1-3 ∈ {1, 3} and x2-3 ∈ {1, 2}. This configuration allows six different labelings
for X which use the least number of enzymes and therefore minimize the cardinality of S,
namely:

X1 = [2, 1, 1] X2 = [3, 1, 1] X3 = [3, 3, 2]

X4 = [2, 1, 2] X5 = [3, 3, 1] X6 = [2, 3, 2]

but since S is a set, each pair of labelings in the same column represent the same solution. Here
there are only two repetitions per solution, but when real data is used the number of repetitions
is so big that it prevents the enumeration of all solutions.

3.5 Avoiding repetitions with a different Finite Domain model

The previous model could not be easily adapted finding all solutions because, as just discussed,
the same solution can come in a wide variety of encodings. Hence we decided to use a somewhat
dual model of the previous one by having variables associated to restriction enzymes instead of
yeast pairs. Once we found a minimal solution using the previous model, we may fix the size
of a list of enzyme variables that must distinguish all yeast pairs. The pseudo code is shown in
Algorithm 5.

Note that this model can only be setup when the size of a minimal solution is known.
Alternatively, we may start with a set of enzymes with cardinality 1 and increment this size,
as with the second (backtrack) model. With this model all solutions were found in 50 seconds.
Hence, Finite Domain models improve on the Boolean model by one order of magnitude, both
to find the first solution (1 sec against 10 secs) as well as all solutions (50 secs against 15 mins).
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Algorithm 5 Finite Domain CP model II

1: p← #S . where #S is the minimum solution size
2: S ← [k1, ..., kp]
3: k1 < ... < kp . imposing an order avoids repeated solutions
4: for all i, j ∈ 1..Ny : i < j do
5: E ← {e : differentiate(i, j, e)}
6:

∨
i∈1..p

(ki ∈ S) . a disjunctive constraint is posed

7: end for
8: label(X)

4 Conclusions and further work

In this paper we explore several potential models to a Bioinformatics problem, raised by the
ARDRA-ITS experimental technique, requiring the minimization of the number of enzymes
that must be used in gel electrophoresis experiments to unequivocally tell a yeast within a set
of alternative and related yeasts specimens. By and large the problem can be applied to other
types of organisms (ARDRA-ITS is an adaptation of ARDRA, originally used for identification
of eubacterial family members) so its practical application can be quite wide.

Species are the taxonomic level we dealing with in this paper, but this approach can be
extended to handle any taxonomic level. This idea is worth pursuing since when higher tax-
onomic levels are considered the execution time is reduced (because the number of specimen
pairs in the coverage table is smaller) and solutions are likely to require a smaller number of
enzymes.

The technique we used mapped the problem into a set covering problem, whose complexity
is proportional to number of available restriction enzymes and the square of the number of
specimen to identify. The data sets we used (around 300 enzymes and 23 yeasts, i.e. 253 yeast
pairs) show the advantage of using constraint programming techniques over backtracking or
purely heuristic search techniques, which solve this problem somewhat naively. Incidentally,
this also justifies why we did not compare our models with Integer Programming alternatives,
although we plan to do so whenever larger data sets are be available.

A number of variants to deal with uncertainty can be considered for this problem. On the
one hand, we arbitrarily assumed that bands in electrophoresis experiments are distinguishable
if their lengths differ by a certain minimum ratio (we used ± 5%). This is hardwired in our
models but it would be interesting to model such relative difference as a parameter that is to
be maximised, so that the solutions found are not only minimal but also the most reliable ones.
On the other hand, we may consider that the yeast databases are obtained by consensus, and
some of their nucleotides may vary. A quantified version of the problem would be to find a
minimal set of enzymes that unequivocally identify a yeast, whatever the nucleotides a yeast
variant may present. We plan to address both variants of this problem and provide a more
comprehensive set of benchmarks, as well as experimental results.
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