
EPiC Series in Computing

Volume 47, 2017, Pages 31–42

COLIEE 2017. Fourth Competition on Le-
gal Information Extraction/Entailment

Recognizing entailments in legal texts using sentence

encoding-based and decomposable attention models

Nguyen Truong Son, Phan Viet Anh, and Nguyen Le Minh

Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan 923-1292
nguyen.son@jaist.ac.jp, anhpv@@jaist.ac.jp, nguyenml@jaist.ac.jp

Abstract

This paper presents an end-to-end question answering system for legal texts. This
system includes two main phases. In the first phase, our system will retrieve articles from
Japanese Civil Code that are relevant with the given question using the cosine distance after
the given question and articles are converted into vectors using TF-IDF weighting scheme.
Then, a ranking model can be applied to re-rank these retrieved articles using a learning to
rank algorithm and annotated corpus. In the second phase, we adapted two deep learning
models, which has been proposed for the Natural language inference task, to check the
entailment relationship between a question and its related articles including a sentence
encoding-based model and a decomposable attention model. Experimental results show
that our approaches can be a promising approach for information extraction/entailment
in legal texts.

Keywords: legal question answering, information retrieval, entailment extraction, deep
learning

1 Introduction

Studying legal issues from the perspective of informatics is a topic that draws interests from
researchers recent years. In this task, one of the important targets is the information extrac-
tion/reasoning from legal data including legal relation extraction, textual entailment, etc. Legal
question answering is also an essential task in legal issues. Recent work proposed some of the
first efforts for this task [8, 15, 6].

In this work, we build a two-phase system for the legal information extraction/entailment
task. In the first phase, a list of relevant articles are retrieved by compute the cosine similarity
between the TF-IDF vectors of the given question and articles. A ranking model can be applied
to obtain the best results. The architecture of this phase is followed the architecture of our
system last year [12] by adding some n-gram indexing models (n = 2) beside the uni-gram
indexing model.

A question in the COLIEE task is a statement that we need to check whether or not it
is entailed by some articles in legal documents. Therefore, the second phase will try to check
entailment relationship between a question and its related articles thanks to a classifier. Because

K.Satoh, M.-Y.Kim, Y.Kano, R.Goebel and T.Oliveira (eds.), COLIEE 2017 (EPiC Series in Computing, vol.
47), pp. 31–42

RTE in legal texts using deep learning models Nguyen T. Son, Phan V. Anh and Nguyen L. Minh

we have an annotated data set, supervised methods are preferred approaches for this task by
treating this task as a binary classification task.

Recently, deep learning models show it effectiveness for NLP tasks such as machine trans-
lation, sequence labeling, text generation as well as natural language inference task. In many
tasks such as named entity recognition, deep learning models can produce the state-of-the-art
without using any engineering features [9]. In the natural language inference tasks [2], which try
to recognize the entailment relationship between a text and a hypothesis, deep learning models
also produce better results in comparison with conventional machine learning algorithms [2].
For these reasons, our motivation is how to adapt these models for question answering task
in legal texts. In this work, we investigate two deep learning models including the sentence
encoding-based model proposed by [2], and the decomposable attention model proposed by
[13].

Experimental results show that our approaches have some promising results. First, adding
bi-gram and tri-gram indexing models shows a significant improvement. Second, deep learning
models could be a good approaches for entailment recognition in legal texts because without
engineering features, the result is competitive with conventional algorithms.

The remainder of this paper is organized as follows. Section 2 presents briefly some related
works. The architecture of Information retrieval phase and entailment checking phase are
presented in Section 3 and 4. The experiments are analyzed in Section 5. Conclusions and
future works are shown in Section 6.

2 Related Work

A basis for a Yes/No Arabic Question Answering System was proposed in [1] using a textual
entailment method. For the task of legal information retrieval/entailment task, [8] proposed a
system for answering yes/no questions in legal bar exams.

The first shared task of the legal information retrieval/extraction (COLIEE2014) was re-
ported in [15]. There are many methods proposed to solve the task. [17] focused on exploiting
reference information to build a question answering system restricted to the legal domain. [7]
used ranking SVM and syntactic/semantic similarity.

In the COLIEE 2015 competition, [6] proposed using a convolutional neural network in legal
question answering. D. S. Carvalho et al. [3] used lexical and morphological characteristics to
extract n-gram features from the query and articles; their own relevance score was then used
for Phase 1. They used the query and relevant article are represented in vector space model for
Phase 2. In order to classify the queries between Yes label and No label, they used AdaBoost
(basic classifier: DecisionStump). Sushimita et al. [14] used voting of three information retrieval
techniques: Hiemstra, BM25 and PL2F for the information retrieval task. In [4], a keyword
weighting method was proposed and snippet scoring after diving data into snippets. Tran et
al., 2015 [16] proposed using hidden markov model for the legal information retrieval task.

In the COLIEE 2016, [5] proposed ensemble similarity using a least square method and linear
discriminant analysis with variety of features such as lexical similarity, syntactic similarity, and
semantic similarity. Among their many approaches, LSM ensemble showed best performance.
Besides, for the entailment recognition task, they applied majority voting scheme with three
classifiers (decision tree, linear SVM, and convolutional neural network (CNN) classifiers) using
many features such as word overlap, cosine similarity, substring similarity, the Lucene similarity
score, 3 different role similarity scores, 6 WordNet similarity scores, negative term ratio, and
length ratio. Their system showed the best performance in COLIEE 2016.

32

RTE in legal texts using deep learning models Nguyen T. Son, Phan V. Anh and Nguyen L. Minh

3 Phase 1: Retrieving relevant articles

Ques%ons	 Pre-‐procesing	

Pre-‐Processing	

Indexing	 Retrieval	

Result	 Ranking	 SVM	
(ranking)	

Indexed
articles

Model of ranking

Ranking	 SVM	
(learning)	

Question &
related
articles

Feature	
extrac%on	

Feature	
extrac%on	

Question
& related
articles Civil

code
H18.xml
…
H25.xml

H18.xml
…
H25.xml

RETRIEVAL

RANKING

ARTICLES INDEXING

BUIDLING MODEL
FOR RANKING

Genera%ng	
more	 training	

data	

Ques%on	
Expansion	

Figure 1: The architecture of information retrieval phase used in [12]

The architecture of the information retrieval system is described in Figure 1 which is followed
by the architecture in [12]. It has two main steps including information retrieval and ranking.
In the first step, for each given question, the system will retrieve top 100 relevant articles based
on the cosine distance between the TF-IDF vectors of articles and the given question.

The ranking step will re-rank 100 relevant articles of the first step by using a ranking model
which is trained by SVM rank algorithm. Finally, for each question we choose the most relevant
article after the ranking step.

The details of these steps will be described in the remain of this section.

3.1 Articles Indexing

This component will convert all articles into TF-IDF vector representations, a popular method
for representing documents in the information retrieval field. Moreover, to improve the perfor-
mance of the system, some preprocessing steps can be applied such as stemming or removing
stop words. Besides, to increase the important of long text matching, instead of using only
uni-gram model, we add bi-gram and tri-gram indexing model for documents representation.

33

RTE in legal texts using deep learning models Nguyen T. Son, Phan V. Anh and Nguyen L. Minh

3.2 Query Expansion

The query expansion step is an option in our system. This step tries to add related terms into
a given query to improve retrieve performance. Query expansion involves techniques that can
find synonyms of words, and search for the synonyms as well. We used two methods for query
expansion using Word2Vec and WordNet.

Query expansion using word2vec[10]: From questions and their relevant articles in training
corpus, extract similar word pairs of word in question and articles base on cosine similarity of
their word embedding representation. We select word-pairs that have the cosine similarly value
≥ 0.5 as the related words for query expansion. We expect this methods can retrieve articles
that does not share words with the given query.

Query expansion using WordNet[11]: From questions, we expand the question by adding
synonyms and hypernyms of words in that question by looking in WordNet dictionary. However,
this way is not effective because each word may have it make the precision score reduce sharply.

3.3 Ranking

3.3.1 Prepare training data

Given a question, learning to rank algorithms require relevant articles and non-relevant articles
for that question as the training data to build the model for ranking. However, the COLIEE
training data only contains questions and relevant articles, so it is not enough for learning
to rank algorithm work effective. To get more training data for learning to rank algorithm,
we generate non-relevant articles of a question by selecting articles that have the low cosine
similarity value based on TF-IDF vectors.

3.3.2 Features Extraction

We used the following feature list to train the ranking model.

• Cosine similarity between question and article of TF-IDF unigram vectors

• Cosine similarity between questions and articles of TF-IDF bigram vectors

• Cosine similarity between question and article of TF-IDF trigram vectors

• Cosine similarity between nouns in questions and articles

• Cosine similarity between verbs in questions and articles

• Distance feature between questions and article: Euclidean, Manhattan, Levenshtein, Jac-
card

3.3.3 Training the ranking model

We train the ranking model using SVMRank tool 1 based on the above feature set. Many
previous works showed that SVM Rank are an effective tools for training ranking models. [7]
also used SVM-Rank for ranking the result after the retrieval phase in the COLIEE task.

1https://www.cs.cornell.edu/people/tj/svm light/svm rank.html

34

RTE in legal texts using deep learning models Nguyen T. Son, Phan V. Anh and Nguyen L. Minh

4 Recognizing Entailment between articles and queries

Given a pair of text including a question b and a text a in which a is the content of some
articles that relevant to question b which has been retrieved from the phase 1. This task tries
to recognize whether or not b is entailed by a based on the meaning of the given question and
related articles. By considering the content of related articles as a text, and the content of
the given question is hypothesis we can solve this task using some approaches for the natural
language inference task that have been developed in recent years.

We adapt two types of deep learning models to recognize the entailment relationship be-
tween law articles and questions including: (1) a sentence encoding based model that uses
recurrent neural networks to encode the content of an article and the given question; and (2) a
decomposable attention model which try to solve the textual entailment task by computing the
alignment between words and phrases of the given question and related articles then use these
alignments as features to check the entailment relationship.

Training data set: each training example in the training set is a triple of {a(n),b(n),y(n)}
where a(n), b(n), and y(n) is content of related articles, a question and the label of the this
training example (y ∈ {Y,N}).

4.1 A Sentence encoding model based on Recurrent neural networks

(a
1 , …

, a
n)

(b
1 , …

, b
m)

words
word vector
representation

sentence
representation

100D
 Q

uestion
100D

 Text of
articles

Text
Q

uestion

200D
 R

ELU

200D
 R

ELU

200D
 R

ELU

Logistic
regression

encoder

Artices

Question

Figure 2: The sentence encoding model for recognizing the entailment between a question and
the relevant articles

Figure 2 shows the architecture of the sentence encoding-based model. Let a =
(a1, a2, ..., ala) and b = (b1, b2, ..., blb) be the two input texts (related articles and question)
respectively. Each ai, bj is a word embedding vector of dimension d. la and lb is the length
of a and b. Then these texts are encoded into vectors (the translation step) using a sentence
encoder model. After that, two these vectors are concatenated into only one vector and then
this vector is fed through three layers with RELU activation. Finally, the logistic regression

35

RTE in legal texts using deep learning models Nguyen T. Son, Phan V. Anh and Nguyen L. Minh

layer will classify the input sentence pair to predict whether or not the given article entails the
question.

Below are some simple sentence encoder models which have used in [2]:

• Summation of embedding words: This method will sum the embeddings of the words in
each text to obtain the vector representation.

• Simple sequence embedding models: using simple RNN or Long-short term memory to
encode the input sentence.

4.2 Decomposable attention models

Figure 3 shows the architecture of the decomposable attention model for natural language
inference proposed by [13] which is used to recognize the relationship between two input texts
a = (a1, a2, ..., ala) and b = (b1, b2, ..., blb) by decomposing the problem into sub-problems. This
model is composed from three main components: attend, compare and aggregate.

Attend This component will soft-align the elements of a and b using the neural attention
technique. For each word ai in a, this step will find a sub-phrase βi in b that soft-aligned to ai
and vice versa for αj . The values of βi and αj are computed by equation 1 and 2.

βi :=

lb∑
j=1

exp(eij))∑lb
k=1 exp(eik)

bj (1)

αj :=

la∑
i=1

exp(eij))∑la
k=1 exp(eik)

ai (2)

where eij are attention weights between words in a and b which is computed using a feed
forward neural network F :

eij = F (ai)
TF (bj) (3)

The obtained aligned phrases {(ai, βi)}lai=1 and {(bj , αj)}lbj=1 allow the model to decompose
the problem into the comparison of aligned sub-phrases.

Compare This step will compare aligned phrases obtained from the previous step using a
function G.

v1,i := G([ai, βi]) ∀i ∈ [1, ..., la]

v2,j := G([bj , αj]) ∀j ∈ [1, ..., lb]
(4)

where the brackets [•, •] denote the concatenation between two vectors. G is again a feed
forward neural network with RELU activations.

Aggregate Two sets of comparison vectors {v1,i}lai=1 and {v2,j}lbj=1 are aggregated into two
vector v1 and v2 using summation:

v1 =

la∑
i=1

v1,i v2 =

lb∑
j=1

v1,i (5)

36

RTE in legal texts using deep learning models Nguyen T. Son, Phan V. Anh and Nguyen L. Minh

Figure 3: The decomposable attention model for recognizing textual entailment between two
sentences including 3 steps: Attend (left), Compare (center) and Aggregate (right) [13]

Finally, a classifier H is used to predict the scores for each class. H is a feed forward network
followed by a linear layer:

ŷ = H([v1,v2]) (6)

where ŷ ∈ RC is a vector that represents the scores of each classes (e.g. Yes/No). Then, the
predicted class is computed by argmaxiŷi.

For training, the model is trained using dropout regularization with the cross-entropy loss
function. During the training process, parameters of F , G, H is updated to minimize the loss
function.

5 Experiments

5.1 Experimental results of phase 1

For phase one, we analysed aspects of the information retrieval task in our system including:
stemming, query expansion, n-gram indexing, removing stop-words, and ranking. We conducted
experiments and compared different configurations to find the configuration that produces the
best performance. Table 1 shows the results of the information retrieval phase.

The results on the H18-H25 shows the contribution of the stemming and removing stop
words step. When we stem or remove stop words, the performance of the system is usually
better. However, these steps have negative impact on the data set H26 and H28.

Adding bi-gram indexing and tri-gram indexing models also improves the performance of
our system. On all three data sets, top 3 best results are always using bi-gram or tri-gram
indexing model. Experimental results in Table 2 also show that adding 2-gram and 3-gram
have an important contribution for the retrieval task. For example, the retrieval performance
improves 1.93%, 4.42%, 7.44% on H18-H25, H26, H28 data sets if we use the 2-gram indexing
model.

However, when we use the n-gram indexing model with n > 3, the results do not improve
but it takes more time for retrieving as well as for indexing.

Table 1 also shows that our query expansion approach does not always improve the results.
Using word embedding similarity can find useful terms to the given question for but it may add
many unrelated terms.

37

RTE in legal texts using deep learning models Nguyen T. Son, Phan V. Anh and Nguyen L. Minh

#
QUERY-

EXPANSION
N-GRAM

REMOVE-
STOPWORD

STEM H18-H25 H26 H28

1 1gram 0.5096 0.5752 0.5319
2 1gram x 0.5203 0.5487 0.5000
3 1gram x 0.5075 0.5221 0.5532
4 1gram x x 0.5139 0.5133 0.4894
5 2gram 0.4989 0.5398 0.5426
6 2gram x 0.5139 0.5487 0.5319
7 2gram x 0.5096 0.5487 0.5638
8 2gram x x 0.5332 0.5575 0.5638
9 3gram 0.4968 0.5575 0.5532
10 3gram x 0.5139 0.5752 0.5426
11 3gram x 0.5161 0.5841 0.5638
12 3gram x x 0.5289 0.5664 0.6277(H28a)

13 4gram 0.4946 0.6018 0.5638(H28b)

14 4gram x 0.5032 0.5929 0.5319
15 4gram x 0.5139 0.5664 0.5638
16 4gram x x 0.5246 0.5664 0.5957
17 x 1gram 0.5203 0.5752 0.5213
18 x 1gram x 0.5118 0.5310 0.5106
19 x 1gram x 0.5139 0.5133 0.5426
20 x 1gram x x 0.5032 0.4956 0.5213(H28c)

21 x 2gram 0.5075 0.5487 0.5745
22 x 2gram x 0.5310 0.5487 0.5319
23 x 2gram x 0.5246 0.5487 0.5532
24 x 2gram x x 0.5439 0.5310 0.5851(H28d)

25 x 3gram 0.5032 0.5664 0.5532
26 x 3gram x 0.5203 0.5752 0.5532
27 x 3gram x 0.5246 0.5664 0.5532
28 x 3gram x x 0.5353 0.5664 0.5957
29 x 4gram 0.5011 0.5841 0.5638
30 x 4gram x 0.5075 0.5841 0.5319
31 x 4gram x 0.5268 0.5664 0.5426
32 x 4gram x x 0.5268 0.5575 0.5957

Table 1: Experimental results (Fβ=1 score) of phase 1 - Information Retrieval without applying
re-ranking models. H28b, H28d is the result on the test set when the performance is the best
on the development set (H26) and training set respectively; H28a indicates the performance is
the best on the test set but training set and development set; H28c indicates the result which
we have submitted for the final official evaluation.

Table 3 shows the results after using the ranking model which is trained on the H18-H25 data
set. Firstly, We retrieve relevant articles for each configuration then apply the ranking model
to re-rank the retrieve articles. Experimental results show that the ranking model produces an
intermediate result in comparison with the highest and the lowest results. For example, in the
H26 data set, the Fβ=1 score range is from 0.4956 to 0.6018 depend on the chosen configuration.
However, after applying the ranking model, the results are 0.5221 of Fβ=1 for all configurations.

38

RTE in legal texts using deep learning models Nguyen T. Son, Phan V. Anh and Nguyen L. Minh

N-GRAM H18-H25 H26 H28

4 1 gram 0.5139 0.5133 0.4894

8 2 gram 0.5332 0.5575 0.5638
12 3 gram 0.5289 0.5664 0.6277
16 4 gram 0.5246 0.5664 0.5957

Table 2: Comparison between difference n-gram indexing models (all other configurations are
the same: Query Expansion:No, Remove Stop words: Yes, Stemming: Yes)

This shows that the ranking model does not produce the best result.

Question set Before ranking After ranking

H26 0.4956∼0.6018 0.5221
H28 0.4894∼0.6277 0.5106

Table 3: Results (Fβ=1 score) after using SVM rank model

5.2 Experimental results of phase 2

We use two available implementations 2 3 for both two models with some adaptation for pro-
cessing the input data. Both of the two tools are implemented in python language using Tensor
Flow and Theano library.

Experimental settings:

• Configurations for the sentence encoding model: We experimented with two methods for
sentence encoding including Word-summation and BI-LSTM. Other parameters are fixed
such as word embedding size = 100, hidden layer size = 100, batch size = 8, drop-out
rate = 0.2. This model is trained with training with RMSP optimizer and the training
process will be stopped if the loss on the development set does not reduce after 50 epochs.

• Decomposable attention model: word embedding size=100, each feed forward network
has 2 layers with hidden layer size = 200 , batch size = 8. This model is trained with
Adagrad optimizer and learning rate = 0.05.

Pre-trained word embedding vectors for legal domain To train word embedding vec-
tors for legal domain, we make a legal corpus from legal documents that crawled from website
of Ministry of Justice, Japan 4. Then, word embedding vectors are trained by using word2vec
tool [10]. These embedding vectors are used for both two deep learning models in this task.

2https://github.com/Smerity/keras snli
3https://github.com/erickrf/multiffn-nli
4http://www.japaneselawtranslation.go.jp: This website contain the English translation of Japanese legal

documents

39

RTE in legal texts using deep learning models Nguyen T. Son, Phan V. Anh and Nguyen L. Minh

Results Table 4 and 5 show the results of the entailment classification task. The decompos-
able attention model outperforms the sentence encoding based model. Table 5 shows that the
decomposable attention model usually produces the good result after 100 epoch training.

In the sentence encoding based model, using a complex network to encode input sentences
does not improve the performance. For example, in 4 of 5 cases in Table 4, the BI-LSTM
encoder shows lower results than word-summation encoder.

Sometimes, the model achieves the best results on the development set but it shows the bad
results on the test set. It makes the parameter tuning process more difficult. We think that
the size of training data and the difference between data sets are the reasons for these unstable
results.

Sentence encoding method
Development set

H26
H28a H28b H28c H28d

Word-summation 0.6000 0.4872 0.4615 0.5128 ♣ 0.4872
BI-LSTM 0.5895 0.4359 0.4872 0.4359 0.4359

Table 4: Experimental results (accuracy) using sentence encoding-based models. H28a, H28b,
H28c, H28d are obtained from phase 1 with configuration 12, 13, 20, 24 respectively. (♣) is the
results we have summited for official evaluation

Epoch
Development set

H26
H28a H28b H28c H28d

10 0.4737 0.4615 0.4615 0.4615 0.4615
20 0.4211 0.5256 0.5256 0.4872 0.5000
30 0.4632 0.4487 0.4872 0.4359 0.4487
40 0.5895 0.4615 0.4487 0.4872 0.4872
50 0.4737 0.4359 0.4359 0.4359 0.4359
60 0.4842 0.4744 0.4615 0.4744 0.4872
70 0.5895 0.5128 0.5385 0.5513 0.5385
80 0.6000 0.5256 0.5000 0.5641 0.4744
90 0.5895 0.5641 0.5256 0.5897(∗) 0.5385
100 0.6211 0.5769 0.5256 0.4872♣ 0.5128
110 0.4526 0.5641 0.5513(∗) 0.5513 0.5385
120 0.5053 0.5897(∗) 0.5256 0.5385 0.5513(∗)

130 0.6000 0.4231 0.4615 0.4359 0.4231
140 0.4632 0.4872 0.5128 0.5769 0.5256
150 0.4316 0.5385 0.5385 0.4872 0.5385

Table 5: Accuracy on the development set and test set of the decomposable attention model
during the training process. The bold line indicates the results on test sets when the perfor-
mance is the best on the development set. H28a, H28b, H28c, H28d are obtained from phase
1 with configuration 12, 13, 20, 24 respectively. The (*) symbols indicate the result are the
best on the test set but the development set. Network setting={dropout(keep):0.8, learning
rate:0.05, number node in hidden layers:200, input embedding size: 100}. (♣) is the results we
have summited for official evaluation

40

RTE in legal texts using deep learning models Nguyen T. Son, Phan V. Anh and Nguyen L. Minh

6 Conclusion

We built a system for the legal information retrieval/entailment task. For the first phase, the
most relevant article given a question was obtained based on two steps. A set of relevant articles
were extracted using cosine TF-IDF vectors with some additional techniques to improve the
performance such as query expansion with word embedding sources. Then, retrieved articles
were re-ranked based on SVM rank to achieve the most relevant article. For the second phase,
we employed two deep learning models to recognize entailments between articles and questions.
One of limitation of this approach is that the size of training corpus is too small to train a
stable model. In future, incorporating engineering features can be good ways to improve the
performance of the system.

7 Acknowledgments

This work was supported by JAIST CREST, Japan.

References

[1] Wafa N Bdour and Natheer K Gharaibeh. Development of yes/no arabic question answering
system. International Journal of Artificial Intelligence and Applications, 4(1):51–63, 2013.

[2] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large
annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

[3] Danilo Carvarlho, Minh-Tien Nguyen, Chien Tran, and Le-Minh Nguyen. Lexical-morphological
modeling for legal text analysis. In Lecture notes in computer science:New Frontiers in Artificial
Intelligence. Springer, 2016.

[4] Y. Kano. Keyword and snippet based yes/no question answering system for coliee 2015. In Ninth
International Workshop on Juris-informatics (JURISIN), 2015.

[5] Kiyoun Kim, Seongwan Heo, Sungchul Jung, Kihyun Hong, and Young-Yik Rhim. Ensemble
based legal information retrieval and entailment system. In The 10th International Workshop on
Juris-Informatics (JURISIN), 2016.

[6] Mi-Young Kim and Ken Goebel, Randy Satoh. Coliee-2015 : Evaluation of legal question answer-
ing. In Ninth International Workshop on Juris-informatics (JURISIN), 2015.

[7] Mi-Young Kim, Ying Xu, and Randy Goebel. Legal question answering using ranking svm and
syntactic/semantic similarity. In JSAI International Symposium on Artificial Intelligence, pages
244–258. Springer, 2014.

[8] Mi-Young Kim, Ying Xu, Randy Goebel, and Ken Satoh. Answering yes/no questions in legal
bar exams. In JSAI International Symposium on Artificial Intelligence, pages 199–213. Springer,
2013.

[9] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer.
Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360, 2016.

[10] T Mikolov and J Dean. Distributed representations of words and phrases and their composition-
ality. Advances in neural information processing systems, 2013.

[11] George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–
41, 1995.

[12] Truong-Son Nguyen, Viet-Anh Phan, Thanh-Huy Nguyen, Hai-Long Trieu, Ngoc-Phuong Chau,
Trung-Tin Pham, and Le-Minh Nguyen. Legal information extraction/entailment using svm-
ranking and tree-based convolutional neural network. In The 10th International Workshop on
Juris-Informatics (JURISIN), 2016.

41

RTE in legal texts using deep learning models Nguyen T. Son, Phan V. Anh and Nguyen L. Minh

[13] Ankur P Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. arXiv preprint arXiv:1606.01933, 2016.

[14] S. Pal Sushmita, A. Kanapala. Legal information retrieval task: Participation from ism, dhanbad.
In Ninth International Workshop on Juris-informatics (JURISIN), 2015.

[15] Satoshi Tojo. Eighth international workshop on juris-informatics (jurisin 2014). In JSAI Interna-
tional Symposium on Artificial Intelligence. Springer, 2014.

[16] Duc-Vu Tran, Viet-Anh Phan, Hai-Long Trieu, and Le-Minh Nguyen. An approach for retrieving
legal texts. In Ninth International Workshop on Juris-informatics (JURISIN), 2015.

[17] Oanh Thi Tran, Bach Xuan Ngo, Minh Le Nguyen, and Akira Shimazu. Answering legal questions
by mining reference information. In JSAI International Symposium on Artificial Intelligence, pages
214–229. Springer, 2013.

42

	Introduction
	Related Work
	Phase 1: Retrieving relevant articles
	Articles Indexing
	Query Expansion
	Ranking
	Prepare training data
	Features Extraction
	Training the ranking model

	Recognizing Entailment between articles and queries
	A Sentence encoding model based on Recurrent neural networks
	Decomposable attention models

	Experiments
	Experimental results of phase 1
	Experimental results of phase 2

	Conclusion
	Acknowledgments

