
Logtk : A Logic ToolKit for Automated Reasoning and its

Implementation

Simon Cruanes

École polytechnique and Deducteam, Inria,
23 Avenue d’Italie, 75013 Paris, France

simon.cruanes@inria.fr

https://who.rocq.inria.fr/Simon.Cruanes/

Abstract

We describe the design and implementation of Logtk, an OCaml library for writing automated

reasoning tools that deal with (possibly typed) first-order logic. The library provides data structures

to represent terms, formulas and substitutions, and algorithms to index terms, unify them. It also

contains parsers and a few tools to demonstrate its use. It is the basis of a full-fledged superposition

prover.

1 Introduction

Writing automated reasoning tools, such as theorem provers, is a difficult engineering task that
requires solving many difficult problems in addition to the actual deduction rules. Efficient
provers for first-order logic, such as E[13], SPASS[17] or Vampire[11] are usually developed in
a low-level language, over many years with great effort. On the other hand it is often useful
to be able to prototype an idea in a higher-level language, only requiring decent performance;
for instance Saturate[3] was written in Prolog. Our goal with Logtk is to make such pro-
totyping easier by providing solid foundations that most systems need, including typing (and
type inference), term representations, formulas, indexing, substitutions, unification algorithms,
parsers for standard formats (e.g., TPTP) and various transformations (in particular, reduction
to CNF of a set of formulas).

The OCaml language is a representative of the ML family, and as such is well-suited to sym-
bolic manipulations and theorem proving. It was therefore a natural choice for such a library, as
a trade-off between safety, expressiveness and performance. Logtk is actively developed and
is free software, available at https://www.rocq.inria.fr/deducteam/Logtk/index.html.

2 Basic Building Blocks

In this section we will present the fundamentals of an automated reasoning tool: how to rep-
resent terms, formulas, substitutions, and how to manipulate them. We target polymorphic
first-order logic, as described in [1], because it encompasses the usual untyped logic but brings
more safety and expressiveness for many problems involving data structures, arithmetic, set
theory, etc. Our library can also be used, in a lesser extent, for higher-order logic, and other
term representations are relatively easy to implement from the existing ones.

2.1 Definitions

We use the notation t : τ to state that a term t is of type τ . In general a substitution will be
a finite mapping from variables to objects (terms, types. . . ). Types are inductively defined as

S.S̄chulz, L.D̄e Moura, B.K̄onev (eds.), PAAR-2014 (EPiC Series, vol. 31), pp. 39--49 39

http://www.cs.miami.edu/~tptp/
http://ocaml.org
https://www.rocq.inria.fr/deducteam/Logtk/index.html


Logtk Simon Cruanes

(i) atoms ι, o (propositions), int, a, b, f , etc. or (ii) variables α1, α2, etc. or (iii) application
of type constructor c(τ1, . . . , τn) where c is a type constructor and the τi are types. A type
constructor must be used with the same arity consistently, or (iv) function types of the form
(τ1 ∗ τ2 ∗ · · · ∗ τn) > τ where n ≥ 1, all τi and τ are types, or (v) quantified types Λα1, . . . , αn. τ
where the αi are type variables and τ is a type.

Terms are inductively defined by (i) v is a term if v : τ ∈ X (an infinite, countable set of
typed variables), (ii) defined constants (integers, rationals, propositions, etc.) such as 1 : int,
4/3 : rat, > : o and ⊥ : o (true and false) are terms, (iii) f〈τ1, . . . , τk〉(t1, . . . , tn) (k, n ∈ N2) is
a term if ∀i ∈ {1, . . . , k}, τi is a type, f is a symbol of type Λα1, . . . , αk. (κ1 ∗ · · · ∗ κn) > κ and
∀i ∈ {1 . . . k}, ti : κiσ where σ = {α1 7→ τ1, . . . , αk 7→ τk} is a type substitution. The resulting
term is of type κσ.

For instance, formal verification of a program that uses polymorphic lists might need the
symbols cons : Λα. (α ∗ list(α)) > list(α) and nil : Λα. list(α). Note that the polymorphism is
explicit, all variables occurring in the type of f must be bound to arguments of f (the τ1, . . . , τk
arguments). The list of integers [1, 2] (of type list(int)) would then be represented by the term
cons〈int〉(1, cons〈int〉(2,nil〈int〉)).

From there we can build formulas from atoms (propositions and equations), conjunction,
disjunctions, negation, existential and universal quantification.

2.2 Terms and Types in OCaml

Interactions between terms, types and formulas are non-trivial. For instance, unifying terms
also requires unifying their types, and substituting a type variable deep inside a formula should
deal with all formula, term and type binders in between. In general, we make a distinction
between bound variables, represented as De Bruijn indices, and free variables — allowed to
participate in unification, and therefore useful for resolution procedures, type inference, etc. —
that have meaningless numbers.

We could represent types, terms, and formulas with different OCaml types, but that leads to
some repetitions and duplication for dealing with substitutions, unification and bound variables
(especially type variables). Instead, we take a different path and define a single underlying type,
named scoped term, roughly as shown in Figure 1. More variants, including extensible records1,
are not shown here for the sake of brevity, but are used in other parts of Logtk (for instance
records are used in higher-order terms and in the meta-prover).

The type scoped term can be used to represent many term-like structures, which will then
define more specific views and constructors that use scoped term underneath. The type term kind

is a dynamic tag2 that is used to efficiently discriminate between terms, types, formulas, etc. For
instance, a fragment of the Type module, in Figure 2, displays a type-centric view and dedicated
constructors. Other types (such as higher-order terms) can be built on top of scoped term3 by
providing such constructors and views, and adding a variant to term kind4. Also note the field ty,
which points to another term representing the type, (or maybe another term for dependently-
typed calculi). It is wrapped in an option so that the inductive type is actually well-founded5.

Let us detail more precisely the code in Figure 2. First, the type Type.t (representing rank-1

1Extensible records are an interesting case, because they can appear both in terms and in their types. Since
they are useful and make unification relatively subtle, we included them.

2Similar tags are very common in dynamic programming languages such as Python.
3because the term is responsible for manipulating properly scoped De Bruijn indices.
4OCaml’s next version will include open types, similar to exceptions, that can be extended anywhere. That

would be a good fit for our tags.
5In TPTP, the pseudo-type $tType is used as the top of the type hierarchy.

40

http://python.org


Logtk Simon Cruanes

type scoped term = {
ty : scoped term opt ion ;
term : t e r m c e l l
kind : term kind

}
and t e r m c e l l =

| At of scoped term ∗ scoped term
| App of scoped term ∗ scoped term l i s t
| Var of i n t
| BoundVar of i n t
| Bind of symbol ∗ scoped term ∗ scoped term

and term kind =
| FOTerm
| HOTerm
| Type
| Formula

Figure 1: Declaration of scoped term

types) is defined as a private alias of scoped term, which means every Type.t can be safely coerced
into the generic representation (e.g. for substitutions, unifications, etc.) but not conversely;
down-casting must be done with the function Type.of term that checks the dynamic tag. The type
Type.view is used for pattern-matching against types, using the eponymous function. Finally,
some constructors that always return valid types (without down-casting) are then defined.

Unification, substitutions, equality, hashconsing, handling of De Bruijn indices are all defined
only once to operate on scoped terms. It is also easier to mix term and type arguments, to quantify
over types in formula-level binders, etc. because the underlying common structure will ensure
that substitutions and unification remain correct.

FOTerm is the module of (typed) first-order terms. All constructors for leaf terms require a
type argument (variables and constants are typed); other constructors just check the types of
their arguments and deduce the type of their result. Every term is annotated with its type; the
reason is that unifying terms also requires unifying their types, which must be easy to obtain.
As is done for the Type module, FOTerm provides a view of terms into the following variant:

Var: free variable, whose name is an integer;
BVar: bound variable (De Bruijn index);
TyApp: apply a term to a type (for instance nil(int));
Const: constant term, parametrized by a symbol (and its type);
App: apply a term to a list of other terms. The first term should be composed only of TyApp

and Const so that the term remains in the first-order fragment.

2.3 Substitutions

We distinguish here substitutions, that is, say mapping from free variables to terms (or types),
from environments that are used in conjunction with bound variables and the De Bruijn index-
ing system. Let us examine substitutions more closely. In many cases (rewriting, resolution. . . ),
unification works on free variables, but often requires renaming:

• for term rewriting, a subterm t|p is matched against the left-hand side of a rule l → r so
is it necessary for t and l not to share any variable;

41



Logtk Simon Cruanes

module Type : sig
type t = p r i v a t e scoped term

type view = p r i v a t e
| Var of i n t (∗ Type v a r i a b l e ∗)
| BVar of i n t (∗ Bound v a r i a b l e (De Bruijn ) ∗)
| App of symbol ∗ t l i s t (∗ parametr ized type ∗)
| Fun of t l i s t ∗ t (∗ Function type ( arg l i s t −> r e t ) ∗)
| F o r a l l of t (∗ e x p l i c i t q u an t i f i c a t i o n ∗)

val view : t −> view (∗ open the type ’ s root ∗)
val o f te rm : scoped term −> t opt ion (∗ dynamic cas t ∗)

val var : i n t −> t
val app : symbol −> t l i s t −> t
val const : symbol −> t
val arrow : t −> t −> t
val f o r a l l : t l i s t −> t −> t

end

module FOTerm : sig
type t = p r i v a t e scoped term

type view = p r i v a t e
| Var of i n t (∗ Term va r i a b l e ∗)
| BVar of i n t (∗ Bound v a r i a b l e (De Bruijn ) ∗)
| Const of Symbol . t (∗ Typed constant ∗)
| TyApp of t ∗ Type . t (∗ Type parameter ∗)
| App of t ∗ t l i s t (∗ L i s t o f parameters ∗)

val view : t −> view
val o f te rm : scoped term −> t opt ion

val var : ty : Type . t −> i n t −> t
val bvar : ty : Type . t −> i n t −> t
val const : ty : Type . t −> symbol −> t
val tyapp : t −> Type . t −> t
val app : t −> t l i s t −> t

end

Figure 2: View and Constructor for Types and FOTerms

• for resolution (or superposition), binary inferences such as

C ∨ l1 C ′ ∨ ¬l2 if l1σ = l2σ
(C ∨ C ′)σ

will require the two clauses to share no variable prior to unification.

To avoid renaming, which can be costly, some techniques have been used by provers such as
SPASS[17] or Otter[7], involving so-called variable banks. Assuming variables are indexed by
natural numbers, a variable bank is an array that maps each index 0 ≤ i < MAXVAR (where
MAXVAR is a bound on the total number of distinct variables) to either: (i) itself (variable not
bound), or (ii) to a tuple (term, varbank) where varbank provides bindings to free variables
of term, that can be recursively look up the same way. Variable banks can therefore point to
one another in a cyclic way, for instance after unifying the terms f(X, g(Z)) and f(g(Y ), Y )
where X and Z live in one bank and Y in another one. This technique works fine but suffers

42



Logtk Simon Cruanes

from two limitations:

• it requires substitutions to be mutable arrays (rather than functional-friendly immutable
structure that can safely be kept for generating proofs, or stored in data structures);

• it requires allocating big arrays (as big as the maximal authorized variable index), which
limits the number of substitutions that are allowed to live simultaneously.

To overcome those limitations we use a persistent representation and a notion of scope,
inspired from the code6 of iProver[5].

A scope is a value that represents one interpretation for free variables, which means that
the same variable can have distinct bindings in distinct scopes. In our implementation a scope
is simply an integer. Substitutions and unification therefore map pairs (variable ,scope) to pairs
(term,scope), rather than directly variable to term. A substitution is a finite mapping from pairs
to pairs (currently a persistent hash table, but balanced trees or mere linked lists could do
too). Figure 3 shows the type signatures of some operations on substitutions7. Note that if
one does not wish to rename variables (e.g. for type inference), one can use only one scope and
essentially fall back to the usual representation of substitutions. We write JtKi for the term t
interpreted in the scope i, and trivially extend the notation to literals and clauses.

When a substitution σ has been computed by unification or matching (see Section 3.1), for
instance after a resolution step between two clauses JC ∨ l1K0 and JC ′ ∨¬l2K1, we need to apply
it to build a new clause (C ∨C ′)σ. Here we need be careful because, in C ∨C ′, some variables
are bound in scope 0, some other in scope 1; we need to evaluate (JCK0 ∨ JC ′K1)σ instead. Now
the question is: how shall we deal with free variables that are not bound in the substitution?

For instance, say we have a substitution σ = {JXK0 7→ Jf(X)K1, JXK1 7→ JY K1} (remember
that JXK0 and JXK1 are distinct variables because they live in different scopes). To evaluate the
clause Jp(X,Y )K0σ∨Jp(X,Y )K1σ we must rename one of JY K0 and JY K1 because they are distinct
variables. To do so, applying a substitution requires an object called renaming, that builds an
injection from (variable , scope) to variable; the result, as expected, will be alpha-equivalent to
p(f(X), Y ) ∨ p(X,X) (renaming JY K1 to X, and JY K0 to Y ).

type scope = i n t
type subst = ( scoped term ∗ scope ∗ scoped term ∗ scope ) l i s t
type renaming = ( v a r i a b l e ∗ scope ) −> v a r i a b l e

val un i fy : scoped term −> scope −> scoped term −> scope −> subst opt ion
val rename : renaming −> v a r i a b l e −> scope −> v a r i a b l e
val apply : renaming −> subst −> scoped term −> scope −> scoped term

Figure 3: Operations on Substitutions

3 Algorithms

Many algorithms are very often useful for processing logic formulas. Some of the particularly
useful ones are implemented in Logtk.

6 it is, to our knowledge, the first occurrence of this technique.
7The type renaming is abstracted into a function for clarity.

43



Logtk Simon Cruanes

3.1 Unification and Matching

The usual first-order unification and matching algorithms are implemented only once, on the
scoped term shared structure. Their type signature is shown in Figure 3. The algorithm can be
used with any view of scoped term, including FOTerm.t and Type.t. We need to recursively unify
subterms pairwise, but also types. Indeed, term-level variables can have polymorphic types, as
is shown in the few clauses of Figure 4 that encode polymorphic lists. Note the presence of
Skolem symbols head and tail in the inversion axiom, that encode the fact that any non-nil
list is necessarily an application of cons. Which such axioms, we may need to unify both terms
and types (the type variable α) when working with concrete lists such as cons〈int〉(1,nil〈int〉);
if some variables are unshielded (i.e. they appear under some equation, but under no function
symbol) then unifying types becomes crucial for soundness, for otherwise we would try to unify
boolean variables with list-sorted terms.

∀x : α, l : list(α), cons〈α〉(x, l) 6= nil〈α〉 (injection)

∀x : list(α), x = nil〈α〉 ∨ x = cons〈α〉(head〈α〉(x), tail〈α〉(x)) (inversion)

Figure 4: A Polymorphic Theory with Unshielded Variables

3.2 Reduction to Clausal Normal Form

It is often practical to transform a given problem into a clausal form (CNF). Resolution provers,
for instance, require it. However, in many cases they prefer to rely on an external prover (for in-
stance SPASS[17]). Here, we can’t do that, first because Logtk is intended to be self-contained,
and because our terms may be more general, for they are typed and may contain additional con-
structs such as records or curried application. Naive CNF is quite easy to implement; however,
many real problems cause naive CNF to blow up because of the exponential number of clauses;
many others will yield suboptimal skolemization. Therefore, we implemented CNF reduction
with miniscoping and formula renaming8, following[9]. This is enough to avoid the exponential
blowup.

3.3 Indexing

Saturation provers rely heavily on unification. When the clause set grows, term indices become
necessarily to keep a good inference rate. In Logtk we define several such indices for first-order
(typed) terms, parametrized by the data stored at the leaves of the index. Conceptually, a term
index maps each term to a set of values of some type (for instance, a pair (clause , position) can
be used for superposition provers), and allows to retrieve values by unification or matching with
a query term. We provide several indexing schemes for theorem provers, rewriting systems, etc.

• fingerprint indexing [15] as a general purpose index;

• feature vector indexing [14] for subsumption checking;

• perfect discrimination trees[10] for rewriting, and non-perfect discrimination trees as a
general purpose index.

8although the criterion for triggering the renaming of a formula is simpler than the optimal one presented
in [9].

44



Logtk Simon Cruanes

The index implementations are all purely functional, which is facilitated by their tree-like
structure (most often a prefix tree). This can be useful in contexts where duplicating an index
might be necessary, for instance in Tableaux provers or for other splitting-like inference rules.

Let us focus on the implementation of the discrimination trees. The classic way to implement
them is based on the use of flatterms, i.e., terms represented as a flat array of symbols (including
∗ that represents variables in their imperfect variant, or regular variables in the perfect indexing
version). However this representation isn’t convenient for many other operations, and it is
incompatible with any kind of subterm sharing.

Conversion between tree-like terms and flatterms can be very costly. A pathologic example
would be, in the context of term rewriting, the application of the rule s(X) + Y 7→ s(X + Y )
that describes the addition in Peano arithmetic to the term 500000 + 500000 (where n is the
encoding of n ∈ N into a Peano term sn(0)). We would build a flatterm of size 1000000 only to
see it matched against a small rule, then the term s(499999 + 500000) would be converted to a
flatterm, matched, and so on. This series of conversions would be very expensive.

Our solution here is to perform a lazy conversion to flatterms, by using a specialized iterator
type that provides the required next and skip operations. The type of the iterator is shown
in Figure 5 and is discussed further. At any point in the traversal of a term (we traverse the
term and the corresponding branches of the discrimination tree) we remember its siblings and
the siblings of its superterms. When the term has been fully traversed, calling next or skip

will return None. This iterator type is persistent, which makes backtracking (exploring several
branches of a discrimination tree) trivial.

Let us explain the code in Figure 5. The function open term is used to flatten its term
argument’s root (given a stack of parent terms and their siblings) into a new iterator; flatten

starts the flattening of a whole term (meaning the surrounding stack is empty). The function
next and skip both use the stack; the only difference is that the latter ignores the current term’s
siblings (if any).

4 Applications

4.1 Use Case: the Theorem Prover Zipperposition

Logtk is currently used to implement the experimental theorem prover Zipperposition. It is
based on the superposition calculus and has been modified to experiment on arithmetic, poly-
morphism, and other extensions. Zipperposition uses many components of Logtk, including
the typing system, type inference, TPTP parser, term indexes, unification algorithms, sub-
term positions, reduction to CNF, etc. One benefit is that would first-order terms be extended
with new variants (records, algebraic variants, curried application. . . ), few changes would be
required at all in Zipperposition to support the extension.

4.2 Tools

We believe Logtk is well-suited for writing tools that process logic objects. Several such tools
are provided in the library, both for their usefulness and as examples of how to use it. Let us
describe those tools:

proof check tstp calls external provers to check traces a theorem prover can print upon suc-
cess. For instance if E[13] proves a theorem, it can print the DAG of the inferences it
had to perform. proof check tstp can then parse this DAG (in the TSTP[16] format),

45

https://www.rocq.inria.fr/deducteam/Zipperposition/index.html


Logtk Simon Cruanes

Listing 1: Interface

type i t e r a t o r

val sk ip : i t e r a t o r −> i t e r a t o r opt ion
val next : i t e r a t o r −> i t e r a t o r opt ion
val f l a t t e n : FOTerm. t −> i t e r a t o r

Listing 2: Implementation

module T = FOTerm

type i t e r a t o r = {
cur term : FOTerm. t ; (∗ current sub−term ∗)
s tack : FOTerm. t l i s t l i s t ;

}

let open term stack t = match T. view t with
| T. Var
| T. BVar
| T. TyApp
| T. Const −>

Some { cur term=t ; s tack = [ ] : : s tack ;}
| T. App ( , l ) −>

Some { cur term=t ; s tack=l : : s tack ;}

let rec nex t r e c s tack = match s tack with
| [ ] −> None
| [ ] : : stack ’ −> nex t r e c stack ’
| ( t : : next ’ ) : : stack ’ −>

open term ( next ’ : : stack ’ ) t

let sk ip i t e r = match i t e r . s tack with
| [ ] −> None
| : : stack ’ −> nex t r e c stack ’

let next i t e r = nex t r e c i t e r . s tack
let f l a t t e n t = open term [ ] t

Figure 5: Lazy Conversion to Flatterms

and check the validity of every deductive inference by calling one or more trusted provers.
Steps that only preserve satisfiability, such as skolemization, are not checked.

cnf of tptp parses TPTP files, infers types, and prints the clausal normal form (CNF) of the
parsed formulas.

type check tptp : a simple type-checker for TFF0 and TFF1 problems, including some type
inference for wildcards $ .

detect theories can use the implementation of a meta prover [2] to detect instances of ax-
iomatic theories in a problem. For instance it will detect the presence of an abelian group
in RNG008-4.p (a ring theory problem).

orient : reads a term rewriting system from a file, and looks for a LPO precedence that orients
all rules left-to-right (thus proving the termination of the system in this case. Our tool can
then print the witness precedence if required). The part that attempts to orient rewrite

46



Logtk Simon Cruanes

rules using a LPO is one of the modules provided in Logtk.

hysteresis is a more sophisticated tool that currently serves as a pre-processor for E. It detects
theories using the aforementioned meta-prover, collects associated rewrite systems (if any),
attempts to orient them (see previous tool) using a LPO and sends the modified problem
to E.

5 Discussion

Many provers ship with some internal library that is designed to cope with the same problems as
Logtk, for instance E[13] comes with CLIB, Prover9[6] with LADR, some other the Dedam[8]
system, etc. However, there are several significant differences with most of those libraries, and
ours.

First, Logtk is written in OCaml. While the choice of a programming language is important
for such a performance-sensitive area as Automated Theorem Proving, we made this trade-off
to make prototyping much faster than in all the aforementioned C libraries. OCaml, as a dialect
of ML, has a long record track of usage for symbolic reasoning, including the implementation
of Coq[4]. We clearly cannot hope to beat optimized C in terms of performance, but our
goal with Logtk is to make prototyping and writing decent theorem provers much easier.
Similarly, abstractions like iterators ( on subterms, subformulas, the types in a term, etc.) are
pervasively used and exposed to make the code simpler and avoid repeating the same recursive
functions everywhere. This kind of abstraction again brings more expressiveness to the user
(and implementer of the library)9. Stronger typing (absence of NULL, polymorphism, modules)
and the presence of recursive algebraic types and pattern-matching also improve readability
and safety. For instance the formula representation is an algebraic type with 14 cases; checking
the exhaustivity of pattern-matching helps ensuring every case is dealt with.

Providing functional structures for types such as substitutions, term indices, and signatures
is also a significant difference. More allocations are needed (although OCaml’s GC is very good
at allocating short-lived structures) but reasoning about one’s program becomes easier; again,
less time spent debugging improves the programmer’s productivity.

The library comes with small tools that illustrate the use of some of its core features –
type-checking, reduction to CNF, . . . – but is separated from Zipperposition. We deliberately
kept the superposition-specific structures outside of Logtk (in particular, the representation of
clauses which is very specific) so as not to constrain users to follow the same design choices. It
is possible, however, that some structures we use in Zipperposition for linear arithmetic migrate
back to Logtk (e.g. linear expressions)10.

Since Logtk is still very young, we can’t evaluate yet how easy (or difficult) it is for
someone to use it without any assistance for the authors. Good documentation and openness
to contributions will be necessary to make it as easy as possible. The choice of the very
permissive BSD2 license should make Logtk easy to contribute to and use.

9The performance impact is hard to evaluate but shouldn’t be high, especially outside of critical paths.
10Some changes needed for Zipperposition have been made, when useful in general. For instance, multisets

in which elements can have very large multiplicities are often useful for linear arithmetic, when n · t actually
means

∑n
i=1 t, a sum of n elements.

47



Logtk Simon Cruanes

Conclusion

We presented Logtk, a generic OCaml library to represent, process and reason with poly-
morphic, first-order logic formulas and terms. Several classic algorithms such as unification,
reduction to clausal form, term indexing, etc. in addition to parsers and command-line tools
are also provided. The library also features some insights about its implementation, especially
regarding the handling of bound and free variables and the term representation. We only pre-
sented a part of the library, but other modules such as term orderings (LPO, KBO) and term
rewriting are also provided.

The code, released under a permissive free license, is usable for experimental automated
theorem proving, as demonstrated by our tool Zipperposition11. We believe OCaml occupies a
sweet spot regarding the trade-off between efficiency and expressiveness in the area of symbolic
computing and hope this work will be useful to other practitioners.

References

[1] Blanchette, Jasmin Christian and Paskevich, Andrei. TFF1: The TPTP typed first-order form
with rank-1 polymorphism. In Automated Deduction–CADE-24, pages 414–420. Springer, 2013.

[2] Guillaume Burel and Simon Cruanes. Detection of First Order Axiomatic Theories. In Fontaine,
Pascal and Ringeissen, Christophe and Schmidt, RenateA., editor, Frontiers of Combining Sys-
tems, volume 8152 of Lecture Notes in Computer Science, pages 229–244. Springer Berlin Heidel-
berg, 2013.

[3] Ganzinger, Harald and Nieuwenhuis, Robert and Nivela, Pilar. The saturate system. 1998.

[4] Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The coq proof assistant. A Tutorial.
Version, 5, 1997.

[5] Konstantin Korovin. iProver — An Instantiation-Based Theorem Prover for First-Order Logic
(System Description). In Proceedings of the 4th international joint conference on Automated Rea-
soning, IJCAR ’08, pages 292–298, Berlin, Heidelberg, 2008. Springer-Verlag.

[6] W. McCune. Prover9 and mace4. http://www.cs.unm.edu/~mccune/prover9/, 2005–2010.

[7] William W. McCune. OTTER 3.0 Reference Manual and Guide, 1995.

[8] Robert Nieuwenhuis, Jos Rivero, and Miguel Vallejo. Dedam: A kernel of data structures and
algorithms for automated deduction with equality clauses. In William McCune, editor, Automated
DeductionCADE-14, volume 1249 of Lecture Notes in Computer Science, pages 49–52. Springer,
1997. 10.1007/3-540-63104-6 5.

[9] Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal forms. In
Robinson and Voronkov [12], pages 335–367.

[10] I. V. Ramakrishnan, R. C. Sekar, and Andrei Voronkov. Term indexing. In Robinson and Voronkov
[12], pages 1853–1964.

[11] Alexandre Riazanov and Andrei Voronkov. Vampire 1.1 (system description). In Proceedings of
the First International Joint Conference on Automated Reasoning, IJCAR ’01, pages 376–380,
London, UK, UK, 2001. Springer-Verlag.

[12] John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press, 2001.

[13] Stephan Schulz. E - a brainiac theorem prover. AI Commun., 15(2,3):111–126, August 2002.

[14] Stephan Schulz. Simple and Efficient Clause Subsumption with Feature Vector Indexing. In Proc.
of the IJCAR-2004 Workshop on Empirically Successful First-Order Theorem Proving. Elsevier
Science, 2004.

11Zipperposition, while still a young prover, had decent performance at CASC 2013.

48

http://www.cs.miami.edu/~tptp/CASC/24/


Logtk Simon Cruanes

[15] Schulz, Stephan. Fingerprint indexing for paramodulation and rewriting. In Automated Reasoning,
pages 477–483. Springer, 2012.

[16] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

[17] Weidenbach, Christoph and Schmidt, Renate and Hillenbrand, Thomas and Rusev, Rostislav and
Topic, Dalibor. System Description: SPASS Version 3.0. In Frank Pfenning, editor, Automated
Deduction CADE-21, volume 4603 of Lecture Notes in Computer Science, pages 514–520. Springer,
2007.

49


	Introduction
	Basic Building Blocks
	Definitions
	Terms and Types in OCaml
	Substitutions

	Algorithms
	Unification and Matching
	Reduction to Clausal Normal Form
	Indexing

	Applications
	Use Case: the Theorem Prover Zipperposition
	Tools

	Discussion

