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Abstract
A recursive function is well defined if its every recursive call corresponds a decrease in some well-founded order.
Such well-founded functions are useful for example in computer programs when computing a value from some
input. A boolean function can also be defined as an extreme solution to a recurrence relation, that is, as a least
or greatest fixpoint of some functor. Such extreme predicates are useful for example in logic when encoding a set
of inductive or coinductive inference rules. The verification-aware programming language Dafny supports both
well-founded functions and extreme predicates. This tutorial describes the difference in general terms, and then
describes novel syntactic support in Dafny for defining and proving lemmas with extreme predicates. Various
examples and considerations are given. Although Dafny’s verifier has at its core a first-order SMT solver, Dafny’s
logical encoding makes it possible to reason about fixpoints in an automated way.

0. Introduction
Recursive functions are a core part of computer science and mathematics. Roughly speaking, when
the definition of such a function spells out a terminating computation from given arguments, we may
refer to it as a well-founded function. For example, the common factorial and Fibonacci functions are
well-founded functions. There are also other ways to define functions. An important case regards the
definition of a boolean function as an extreme solution (that is, a least or greatest solution) to some
equation. For computer scientists with interests in logic or programming languages, these extreme
predicates are important because they describe the judgments that can be justified by a given set of
inference rules (see, e.g., [2, 17, 20, 24, 27]).

To benefit from machine-assisted reasoning, it is necessary not just to understand extreme predicates
but also to have techniques for proving theorems about them. A foundation for this reasoning was
developed by Paulin-Mohring [22] and is the basis of the constructive logic supported by Coq [0] as
well as other proof assistants [1, 25]. Essentially, the idea is to represent the knowledge that an extreme
predicate holds by the proof term by which this knowledge was derived. For a predicate defined as the
least solution, such proof terms are values of an inductive datatype (that is, finite proof trees), and for
the greatest solution, a coinductive datatype (that is, possibly infinite proof trees). This means that one
can use induction and coinduction when reasoning about these proof trees. Therefore, these extreme
predicates are known as, respectively, inductive predicates and coinductive predicates (or, co-predicates
for short). Support for extreme predicates is also available in the proof assistants Isabelle [23] and
HOL [5].
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In this paper, I give my own tutorial account on the distinction between well-founded functions and
extreme predicates. I also show how the verification-aware programming language Dafny [12] sets these
up to obtain automation from an underlying first-order (that is, fixpoint and induction ignorant) SMT
solver. The encoding for coinductive predicates in Dafny was described previously [15]. The present
paper adds inductive predicates (which are duals of the coinductive ones), new syntactic shorthands
(based on the experience of using inductive predicates in Dafny), and examples.

1. Function Definitions
To define a function f : X → Y in terms of itself, one can write an equation like

f = F(f) (0)

where F is a non-recursive function of type (X → Y ) → X → Y . Because it takes a function as
an argument, F is referred to as a functor (or functional, but not to be confused by the category-theory
notion of a functor). Throughout, I will assume that F(f) by itself is well defined, for example that
it does not divide by zero. I will also assume that f occurs only in fully applied calls in F(f); eta
expansion can be applied to ensure this. If f is a boolean function, that is, if Y is the type of booleans,
then I call f a predicate.

For example, the common Fibonacci function over the natural numbers can be defined by the equa-
tion

fib = λn • if n < 2 then n else fib(n− 2) + fib(n− 1) (1)

With the understanding that the argument n is universally quantified, we can write this equation equiv-
alently as

fib(n) = if n < 2 then n else fib(n− 2) + fib(n− 1) (2)

The fact that the function being defined occurs on both sides of the equation causes concern that we
might not be defining the function properly, leading to a logical inconsistency. In general, there could
be many solutions to an equation like (0) or there could be none. Let’s consider two ways to make sure
we’re defining the function uniquely.

1.0. Well-founded Functions
A standard way to ensure that equation (0) has a unique solution in f is to make sure the recursion
is well-founded, which roughly means that the recursion terminates. This is done by introducing any
well-founded relation� on the domain of f and making sure that the argument to each recursive call
goes down in this ordering. More precisely, if we formulate (0) as

f(x) = F ′(f) (3)

then we want to check E � x for each call f(E) in F ′(f). When a function definition satisfies this
decrement condition, then the function is said to be well-founded.

For example, to check the decrement condition for fib in (2), we can pick � to be the arithmetic
less-than relation on natural numbers and check the following, for any n:

2 ≤ n =⇒ n− 2� n ∧ n− 1� n (4)

Note that we are entitled to using the antecedent 2 ≤ n, because that is the condition under which the
else branch in (2) is evaluated.
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A well-founded function is often thought of as “terminating” in the sense that the recursive depth in
evaluating f on any given argument is finite. That is, there are no infinite descending chains of recursive
calls. However, the evaluation of f on a given argument may fail to terminate, because its width may
be infinite. For example, let P be some predicate defined on the ordinals and let PDownward be a
predicate on the ordinals defined by the following equation:

PDownward(o) = P (o) ∧ ∀p • p� o =⇒ PDownward(p) (5)

With� as the usual ordering on ordinals, this equation satisfies the decrement condition, but evaluating
PDownward(ω) would require evaluating PDownward(n) for every natural number n. However, what
we are concerned about here is to avoid mathematical inconsistencies, and that is indeed a consequence
of the decrement condition.

1.0.0. Example with Well-founded Functions

So that we can later see how inductive proofs are done in Dafny, let’s prove that for any n, fib(n) is even
iff n is a multiple of 3. We split our task into two cases. If n < 2, then the property follows directly
from the definition of fib. Otherwise, note that exactly one of the three numbers n − 2, n − 1, and n
is a multiple of 3. If n is the multiple of 3, then by invoking the induction hypothesis on n − 2 and
n− 1, we obtain that fib(n− 2) + fib(n− 1) is the sum of two odd numbers, which is even. If n− 2 or
n − 1 is a multiple of 3, then by invoking the induction hypothesis on n − 2 and n − 1, we obtain that
fib(n − 2) + fib(n − 1) is the sum of an even number and an odd number, which is odd. In this proof,
we invoked the induction hypothesis on n − 2 and on n − 1. This is allowed, because both are smaller
than n, and hence the invocations go down in the well-founded ordering on natural numbers.

1.1. Extreme Solutions
We don’t need to exclude the possibility of equation (0) having multiple solutions—instead, we can just
be clear about which one of them we want. Let’s explore this, after a smidgen of lattice theory.

For any complete lattice (Y,≤) and any set X , we can by pointwise extension define a complete
lattice (X → Y, ⇒̇ ), where for any f, g : X → Y ,

f ⇒̇ q ≡ ∀x • f(x) ≤ g(x) (6)

In particular, if Y is the set of booleans ordered by implication (false ≤ true), then the set of predicates
over any domainX forms a complete lattice. Tarski’s Theorem [26] tells us that any monotonic function
over a complete lattice has a least and a greatest fixpoint. In particular, this means that F has a least
fixpoint and a greatest fixpoint, provided F is monotonic.

Speaking about the set of solutions in f to (0) is the same as speaking about the set of fixpoints of
functor F . In particular, the least and greatest solutions to (0) are the same as the least and greatest
fixpoints of F . In casual speak, it happens that we say “fixpoint of (0)”, or more grotesquely, “fixpoint
of f” when we really mean “fixpoint of F”.

In conclusion of our little excursion into lattice theory, we have that, under the proviso of F being
monotonic, the set of solutions in f to (0) is nonempty, and among these solutions, there is in the ⇒̇
ordering a least solution (that is, a function that returns false more often than any other) and a greatest
solution (that is, a function that returns true more often than any other).

When discussing extreme solutions, I will now restrict my attention to boolean functions (that is,
with Y being the type of booleans). Functor F is monotonic if the calls to f in F ′(f) are in positive
positions (that is, under an even number of negations). Indeed, from now on, I will restrict my attention
to such monotonic functors F .
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g(0)
g(2)
g(4)
g(6)

...
g(−5)
g(−3)
g(−1)
g(1)

Figure 0. Left: a finite proof tree that uses the rules of (9) to establish g(6). Right: an infinite proof tree
that uses the rules of (10) to establish g(1).

Let me introduce a running example. Consider the following equation, where x ranges over the
integers:

g(x) = (x = 0 ∨ g(x− 2)) (7)

This equation has four solutions in g. With w ranging over the integers, they are:

g(x) ≡ x ∈ {w | 0 ≤ w ∧ w even}
g(x) ≡ x ∈ {w | w even}
g(x) ≡ x ∈ {w | (0 ≤ w ∧ w even) ∨ w odd}
g(x) ≡ x ∈ {w | true}

(8)

The first of these is the least solution and the last is the greatest solution.
In the literature, the definition of an extreme predicate is often given as a set of inference rules. To

designate the least solution, a single line separating the antecedent (on top) from conclusion (on bottom)
is used:

g(0)
g(x− 2)
g(x) (9)

Through repeated applications of such rules, one can show that the predicate holds for a particular value.
For example, the derivation, or proof tree, to the left in Figure 0 shows that g(6) holds. (In this simple
example, the derivation is a rather degenerate proof “tree”.) The use of these inference rules gives rise
to a least solution, because proof trees are accepted only if they are finite.

When inference rules are to designate the greatest solution, a double line is used:

g(0)
g(x− 2)
g(x)

(10)

In this case, proof trees are allowed to be infinite. For example, the (partial depiction of the) infinite
proof tree on the right in Figure 0 shows that g(1) holds.

Note that derivations may not be unique. For example, in the case of the greatest solution for g, there
are two proof trees that establish g(0): one is the finite proof tree that uses the left-hand rule of (10)
once, the other is the infinite proof tree that keeps on using the right-hand rule of (10).

1.2. Working with Extreme Predicates
In general, one cannot evaluate whether or not an extreme predicate holds for some input, because doing
so may take an infinite number of steps. For example, following the recursive calls in the definition (7) to
try to evaluate g(7) would never terminate. However, there are useful ways to establish that an extreme
predicate holds and there are ways to make use of one once it has been established.
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For anyF as in (0), I define two infinite series of well-founded functions, [fk and ]fk where k ranges
over the natural numbers:

[fk(x) =
{

false if k = 0
F([fk−1)(x) if k > 0 (11)

]fk(x) =
{

true if k = 0
F(]fk−1)(x) if k > 0 (12)

These functions are called the iterates of f , and I will also refer to them as the prefix predicates of f (or
the prefix predicate of f , if we think of k as being a parameter). Alternatively, we can define [fk and
]fk without mentioning x: Let⊥ denote the function that always returns false, let> denote the function
that always returns true, and let a superscript on F denote exponentiation (for example, F0(f) = f and
F2(f) = F(F(f))). Then, (11) and (12) can be stated equivalently as [fk = Fk(⊥) and ]fk = Fk(>).

For any solution f to equation (0), we have, for any k and ` such that k ≤ `:

[fk ⇒̇ [f ` ⇒̇ f ⇒̇ ]f ` ⇒̇ ]fk (13)

In other words, every [fk is a pre-fixpoint of f and every ]fk is a post-fixpoint of f . Next, I define two
functions, f↓ and f↑, in terms of the prefix predicates:

f↓(x) = ∃k • [fk(x) (14)

f↑(x) = ∀k • ]fk(x) (15)

By (13), we also have that f↓ is a pre-fixpoint of F and f↑ is a post-fixpoint of F . The marvelous thing
is that, if F is continuous, then f↓ and f↑ are the least and greatest fixpoints of F . These equations let
us do proofs by induction when dealing with extreme predicates. I will explain in Section 2.2 how to
check for continuity.

Let’s consider two examples, both involving function g in (7). As it turns out, g’s defining functor
is continuous, and therefore I will write g↓ and g↑ to denote the least and greatest solutions for g in (7).

1.2.0. Example with Least Solution

The main technique for establishing that g↓(x) holds for some x, that is, proving something of the form
Q =⇒ g↓(x), is to construct a proof tree like the one for g(6) in Figure 0. For a proof in this direction,
since we’re just applying the defining equation, the fact that we’re using a least solution for g never
plays a role (as long as we limit ourselves to finite derivations).

The technique for going in the other direction, proving something from an established g↓ property,
that is, showing something of the form g↓(x) =⇒ R, typically uses induction on the structure of the
proof tree. When the antecedent of our proof obligation includes a predicate term g↓(x), it is sound to
imagine that we have been given a proof tree for g↓(x). Such a proof tree would be a data structure—to
be more precise, a term in an inductive datatype. For this reason, least solutions like g↓ have been given
the name inductive predicate.

Let’s prove g↓(x) =⇒ 0 ≤ x ∧ x even. We split our task into two cases, corresponding to which
of the two proof rules in (9) was the last one applied to establish g↓(x). If it was the left-hand rule, then
x = 0, which makes it easy to establish the conclusion of our proof goal. If it was the right-hand rule,
then we unfold the proof tree one level and obtain g↓(x−2). Since the proof tree for g↓(x−2) is smaller
than where we started, we invoke the induction hypothesis and obtain 0 ≤ (x − 2) ∧ (x − 2) even,
from which it is easy to establish the conclusion of our proof goal.
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Here’s how we do the proof formally using (14). We massage the general form of our proof goal:

f↑(x) =⇒ R
= { (14) }

(∃k • [fk(x)) =⇒ R
= { distribute =⇒ over ∃ to the left }
∀k • ([fk(x) =⇒ R)

The last line can be proved by induction over k. So, in our case, we prove [gk(x) =⇒ 0 ≤ x ∧ x even
for every k. If k = 0, then [gk(x) is false, so our goal holds trivially. If k > 0, then [gk(x) = (x =
0 ∨ [gk−1(x− 2)). Our goal holds easily for the first disjunct (x = 0). For the other disjunct, we apply
the induction hypothesis (on the smaller k− 1 and with x− 2) and obtain 0 ≤ (x− 2) ∧ (x− 2) even,
from which our proof goal follows.

1.2.1. Example with Greatest Solution

We can think of a given predicate g↑(x) as being represented by a proof tree—in this case a term in a
coinductive datatype, since the proof may be infinite. For this reason, greatest solutions like g↑ have
been given the name coinductive predicate, or co-predicate for short. The main technique for proving
something from a given proof tree, that is, to prove something of the form g↑(x) =⇒ R, is to destruct
the proof. Since this is just unfolding the defining equation, the fact that we’re using a greatest solution
for g never plays a role (as long as we limit ourselves to a finite number of unfoldings).

To go in the other direction, to establish a predicate defined as a greatest solution, likeQ =⇒ g↑(x),
we may need an infinite number of steps. For this purpose, we can use induction’s dual, coinduction.
Were it not for one little detail, coinduction is as simple as continuations in programming: the next part
of the proof obligation is delegated to the coinduction hypothesis. The little detail is making sure that it
is the “next” part we’re passing on for the continuation, not the same part. This detail is called produc-
tivity and corresponds to the requirement in induction of making sure we’re going down a well-founded
relation when applying the induction hypothesis. There are many sources with more information, see
for example the classic account by Jacobs and Rutten [8] or a new attempt by Kozen and Silva that aims
to emphasize the simplicity, not the mystery, of coinduction [10].

Let’s prove true =⇒ g↑(x). The intuitive coinductive proof goes like this: According to the
right-hand rule of (10), g↑(x) follows if we establish g↑(x − 2), and that’s easy to do by invoking the
coinduction hypothesis. The “little detail”, productivity, is satisfied in this proof because we applied a
rule in (10) before invoking the coinduction hypothesis.

For anyone who may have felt that the intuitive proof felt too easy, here is a formal proof using (15),
which relies only on induction. We massage the general form of our proof goal:

Q =⇒ f↑(x)
= { (15) }

Q =⇒ ∀k • ]fk(x)
= { distribute =⇒ over ∀ to the right }
∀k • Q =⇒ ]fk(x)

The last line can be proved by induction over k. So, in our case, we prove true =⇒ ]gk(x) for every k.
If k = 0, then ]gk(x) is true, so our goal holds trivially. If k > 0, then ]gk(x) = (x = 0 ∨ ]gk−1(x−2)).
We establish the second disjunct by applying the induction hypothesis (on the smaller k − 1 and with
x− 2).

57



Well-founded Functions and Extreme Predicates in Dafny K.R.M. Leino

1.3. Other Techniques
Although in this paper I consider only well-founded functions and extreme predicates, it is worth men-
tioning that there are additional ways of making sure that the set of solutions to (0) is nonempty. For
example, if all calls to f inF ′(f) are tail-recursive calls, then (under the assumption that Y is nonempty)
the set of solutions is nonempty. To see this, consider an attempted evaluation of f(x) that fails to de-
termine a definite result value because of an infinite chain of calls that applies f to each value of some
subset X ′ of X . Then, apparently, the value of f for any one of the values in X ′ is not determined by
the equation, but picking any particular result values for these makes for a consistent definition. This
was pointed out by Manolios and Moore [18]. Functions can be underspecified in this way in the proof
assistants ACL2 [9] and HOL [11].

2. Functions in Dafny
In this section, I explain with examples the support in Dafny0 for well-founded functions, extreme
predicates, and proofs regarding these.

2.0. Well-founded Functions in Dafny
Declarations of well-founded functions are unsurprising. For example, the Fibonacci function is de-
clared as follows:

function fib(n: nat): nat

{

if n < 2 then n else fib(n-2) + fib(n-1)

}

Dafny verifies that the body (given as an expression in curly braces) is well defined. This includes
decrement checks for recursive (and mutually recursive) calls. Dafny predefines a well-founded relation
on each type and extends it to lexicographic tuples of any (fixed) length. For example, the well-founded
relation x � y for integers is x < y ∧ 0 ≤ y, the one for reals is x ≤ y − 1.0 ∧ 0.0 ≤ y (this is
the same ordering as for integers, if you read the integer relation as x ≤ y − 1 ∧ 0 ≤ y), the one for
inductive datatypes is structural inclusion, and the one for coinductive datatypes is false.

Using a decreases clause, the programmer can specify the term in this predefined order. When a
function definition omits a decreases clause, Dafny makes a simple guess. This guess (which can be
inspected by hovering over the function name in the Dafny IDE) is very often correct, so users are rarely
bothered to provide explicit decreases clauses.

If a function returns bool, one can drop the result type : bool and change the keyword function to
predicate.

2.1. Proofs in Dafny
Dafny has lemma declarations. These are really just special cases of methods: they can have pre- and
postcondition specifications and their body is a code block. Here is the lemma we stated and proved in
Section 1.0.0:

lemma FibProperty(n: nat)

ensures fib(n) % 2 == 0 <==> n % 3 == 0

0Dafny is open source at dafny.codeplex.com and can also be used online at rise4fun.com/dafny.
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{

if n < 2 {

} else {

FibProperty(n-2); FibProperty(n-1);

}

}

The postcondition of this lemma (keyword ensures) gives the proof goal. As in any program-correctness
logic (e.g., [6]), the postcondition must be established on every control path through the lemma’s body.
For FibProperty, I give the proof by an if statement, hence introducing a case split. The then branch is
empty, because Dafny can prove the postcondition automatically in this case. The else branch performs
two recursive calls to the lemma. These are the invocations of the induction hypothesis and they follow
the usual program-correctness rules, namely: the precondition must hold at the call site, the call must
terminate, and then the caller gets to assume the postcondition upon return. The “proof glue” needed to
complete the proof is done automatically by Dafny.

Dafny features an aggregate statement using which it is possible to make (possibly infinitely) many
calls at once. For example, the induction hypothesis can be called at once on all values n’ smaller than
n:

forall n’ | 0 <= n’ < n {

FibProperty(n’);

}

For our purposes, this corresponds to strong induction. More generally, the forall statement has the
form

forall k | P(k)

ensures Q(k)

{ Statements; }

Logically, this statement corresponds to universal introduction: the body proves that Q(k) holds for an
arbitrary k such that P(k), and the conclusion of the forall statement is then ∀k • P (k) =⇒ Q(k).
When the body of the forall statement is a single call (or calc statement), the ensures clause is inferred
and can be omitted, like in our FibProperty example.

Lemma FibProperty is simple enough that its whole body can be replaced by the one forall state-
ment above. In fact, Dafny goes one step further: it automatically inserts such a forall statement at the
beginning of every lemma [13]. Thus, FibProperty can be declared and proved simply by:

lemma FibProperty(n: nat)

ensures fib(n) % 2 == 0 <==> n % 3 == 0

{ }

Going in the other direction from universal introduction is existential elimination, also known as
Skolemization. Dafny has a statement for this, too: for any variable x and boolean expression Q, the
assign such that statement x :| Q; says to assign to x a value such that Q will hold. A proof obligation
when using this statement is to show that there exists an x such that Q holds. For example, if the fact
∃k • 100 ≤ fib(k) < 200 is known, then the statement k :| 100 <= fib(k) < 200; will assign to k

some value (chosen arbitrarily) for which fib(k) falls in the given range.
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2.2. Extreme Predicates in Dafny

In this previous subsection, I explained that a predicate declaration introduces a well-founded predicate.
The declarations for introducing extreme predicates are inductive predicate and copredicate. Here is
the definition of the least and greatest solutions of g from above, let’s call them g and G:

inductive predicate g(x: int) { x == 0 || g(x-2) }

copredicate G(x: int) { x == 0 || G(x-2) }

When Dafny receives either of these definitions, it automatically declares the corresponding prefix pred-
icates. Instead of the names [gk and ]gk that I used above, Dafny names the prefix predicates g#[k] and
G#[k], respectively, that is, the name of the extreme predicate appended with #, and the subscript is given
as an argument in square brackets. The definition of the prefix predicate derives from the body of the
extreme predicate and follows the form in (11) and (12). Using a faux-syntax for illustrative purposes,
here are the prefix predicates that Dafny defines automatically from the extreme predicates g and G:

predicate g#[_k: nat](x: int) { _k != 0 && (x == 0 || g#[_k-1](x-2)) }

predicate G#[_k: nat](x: int) { _k != 0 ==> (x == 0 || G#[_k-1](x-2)) }

The Dafny verifier is aware of the connection between extreme predicates and their prefix predicates, (14)
and (15).

Remember that to be well defined, the defining functor of an extreme predicate must be monotonic,
and for (14) and (15) to hold, the functor must be continuous. Dafny enforces the former of these by
checking that recursive calls of extreme predicates are in positive positions. The continuity requirement
comes down to checking that they are also in continuous positions: that recursive calls to inductive
predicates are not inside unbounded universal quantifiers and that recursive calls to co-predicates are
not inside unbounded existential quantifiers [15, 19].

2.3. Proofs about Extreme Predicates

From what I have presented so far, we can do the formal proofs from Sections 1.2.0 and 1.2.1. Here is
the former:

lemma EvenNat(x: int)

requires g(x)

ensures 0 <= x && x % 2 == 0

{

var k: nat :| g#[k](x);

EvenNatAux(k, x);

}

lemma EvenNatAux(k: nat, x: int)

requires g#[k](x)

ensures 0 <= x && x % 2 == 0

{

if x == 0 { } else { EvenNatAux(k-1, x-2); }

}

Lemma EvenNat states the property we wish to prove. From its precondition (keyword requires) and
(14), we know there is some k that will make the condition in the assign-such-that statement true. Such
a value is then assigned to k and passed to the auxiliary lemma, which promises to establish the proof
goal. Given the condition g#[k](x), the definition of g# lets us conclude k != 0 as well as the disjunction
x == 0 || g#[k-1](x-2). The then branch considers the case of the first disjunct, from which the proof
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goal follows automatically. The else branch can then assume g#[k-1](x-2) and calls the induction
hypothesis with those parameters. The proof glue that shows the proof goal for x to follow from the
proof goal with x-2 is done automatically.

Because Dafny automatically inserts the statement

forall k’, x’ | 0 <= k’ < k && g#[k’](x’) {

EvenNatAux(k’, x’);

}

at the beginning of the body of EvenNatAux, the body can be left empty and Dafny completes the proof
automatically.

Here is the Dafny program that gives the proof from Section 1.2.1:

lemma Always(x: int)

ensures G(x)

{ forall k: nat { AlwaysAux(k, x); } }

lemma AlwaysAux(k: nat, x: int)

ensures G#[k](x)

{ }

While each of these proofs involves only basic proof rules, the setup feels a bit clumsy, even with the
empty body of the auxiliary lemmas. Moreover, the proofs do not reflect the intuitive proofs I described
in Section 1.2.0 and 1.2.1. These shortcoming are addressed in the next subsection.

2.4. Nicer Proofs of Extreme Predicates

The proofs we just saw follow standard forms: use Skolemization to convert the inductive predicate into
a prefix predicate for some k and then do the proof inductively over k; respectively, by induction over
k, prove the prefix predicate for every k, then use universal introduction to convert to the coinductive
predicate. With the declarations inductive lemma and colemma, Dafny offers to set up the proofs in these
standard forms. What is gained is not just fewer characters in the program text, but also a possible
intuitive reading of the proofs. (Okay, to be fair, the reading is intuitive for simpler proofs; complicated
proofs may or may not be intuitive.)

Somewhat analogous to the creation of prefix predicates from extreme predicates, Dafny automati-
cally creates a prefix lemma L# from each “extreme lemma” L. The pre- and postconditions of a prefix
lemma are copied from those of the extreme lemma, except for the following replacements: For an
inductive lemma, Dafny looks in the precondition to find calls (in positive, continuous positions) to
inductive predicates P(x) and replaces these with P#[_k](x). For a co-lemma, Dafny looks in the post-
condition to find calls (in positive, continuous positions) to co-predicates P (including equality among
coinductive datatypes, which is a built-in co-predicate) and replaces these with P#[_k](x). In each case,
these predicates P are the lemma’s focal predicates.

The body of the extreme lemma is moved to the prefix lemma, but with replacing each recursive call
L(x) with L#[_k-1](x) and replacing each occurrence of a call to a focal predicate P(x) with P#[_k-1](x).
The bodies of the extreme lemmas are then replaced as shown in the previous subsection. By construc-
tion, this new body correctly leads to the extreme lemma’s postcondition.

Let us see what effect these rewrites have on how one can write proofs. Here are the proofs of our
running example:

inductive lemma EvenNat(x: int)

requires g(x)

ensures 0 <= x && x % 2 == 0
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{ if x == 0 { } else { EvenNat(x-2); } }

colemma Always(x: int)

ensures G(x)

{ Always(x-2); }

Both of these proofs follow the intuitive proofs given in Sections 1.2.0 and 1.2.1. Note that in these
simple examples, the user is never bothered with either prefix predicates nor prefix lemmas—the proofs
just look like “what you’d expect”.

Since Dafny automatically inserts calls to the induction hypothesis at the beginning of each lemma,
the bodies of the given extreme lemmas EvenNat and Always can be empty and Dafny still completes the
proofs. Folks, it doesn’t get any simpler than that!

3. Case Study: Modeling Semantics
Computer scientists in the programming language area like to model the semantics of languages in order
to reason about their behavior. This activity is often aided by the use of inductive predicates [3, 20, 24,
27], and sometimes coinductive predicates [17]. Let me illustrate with a small excerpt from a semantics
proof how Dafny’s features can be used.

Chapter 7 of Nipkow and Klein’s book Concrete Semantics [20] defines the big-step and small-
step semantics for the rudimentary imperative language IMP [27]. The commands (statements) of the
language are defined using an inductive datatype:

datatype com = SKIP | Assign(vname, aexp) | Seq(com, com)

| If(bexp, com, com) | While(bexp, com)

and the big-step semantics is defined using an inductive predicate, of which I show the case for sequential
composition (Seq) here:

inductive predicate big_step(c: com, s: state, t: state)

{ match c ...

case Seq(c0, c1) =>

∃ s’ :: big_step(c0, s, s’) && big_step(c1, s’, t)

}

This case corresponds to what in inference rules would be rendered as follows:

big_step(c0, s, s′) big_step(c1, s′, t)
big_step(Seq(c0, c1), s, t) (16)

Note how the s′ above the line becomes existentially quantified in the definition of the inductive predi-
cate in Dafny.

The small-step semantics of IMP is defined using two inductive predicates, one for a single step
(omitted here) and one for the reflexive transitive closure thereof:

inductive predicate small_step_star(c: com, s: state, c’: com, s’: state)

{

(c == c’ && s == s’) ||

∃ c”, s” :: small_step(c, s, c”, s”) && small_step_star(c”, s”, c’, s’)

}

A usual theorem of interest is to prove a correspondence between the big-step and small-step semantics.
Here, I show the statement of that theorem along with the proof case for Seq:
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inductive lemma BigStep_implies_SmallStepStar(c: com, s: state, t: state)

requires big_step(c, s, t)

ensures small_step_star(c, s, SKIP, t)

{ match c ...

case Seq(c0, c1) =>

var s’ :| big_step(c0, s, s’) && big_step(c1, s’, t);

calc {

true;

==> // induction hypothesis

small_step_star(c1, s’, SKIP, t);

==> // small-step semantics with SKIP as first argument to Seq

small_step_star(Seq(SKIP, c1), s’, SKIP, t);

==> // induction hypothesis

small_step_star(c0, s, SKIP, s’) && small_step_star(Seq(SKIP, c1), s’, SKIP, t);

==> { lemma_7_13(c0, s, SKIP, s’, c1); }

small_step_star(Seq(c0, c1), s, Seq(SKIP, c1), s’) &&

small_step_star(Seq(SKIP, c1), s’, SKIP, t);

==> { star_transitive(Seq(c0, c1), s, Seq(SKIP, c1), s’, SKIP, t); }

small_step_star(c, s, SKIP, t);

}

}

This proof case first Skolemizes the s’ from the corresponding definition of big_step and then em-
barks on a proof calculation [16] that shows successive implications from true to the proof goal. The
proof looks natural and never mentions any prefix predicate explicitly. Under the hood, the lemma’s
precondition is really big_step#[_k](c, s, t) and the right-hand side of the Skolemization is really
big_step#[_k-1](c0, s, s’) && big_step#[_k-1](c1, s’, t). The first and third steps of the calculation
hold on behalf of these prefix predicates and the (automatically applied) induction hypothesis. Overall,
these shorthands contribute to a short and readable proof.

One more example will illustrate a final point. Here is the statement and proof of “Lemma 7.13”
that was used above:

inductive lemma lemma_7_13(c0: com, s0: state, c: com, t: state, c1: com)

requires small_step_star(c0, s0, c, t)

ensures small_step_star(Seq(c0, c1), s0, Seq(c, c1), t)

{

if c0 == c && s0 == t {

} else {

var c’, s’ :| small_step(c0, s0, c’, s’) && small_step_star(c’, s’, c, t);

lemma_7_13(c’, s’, c, t, c1);

}

}

The else branch of this lemma, like the Seq case in the proof above, uses Skolemization to give names
(c’ and s’) to what is known to hold at this point. This is typical when the definition of the inductive
predicate uses an existential quantifier. But what if the definition has further disjuncts with existential
quantifiers? Then the if statement in the lemma must check for these, which I can illustrate with the
same example by just reversing the order of the then and else branches:

if ∃ c’, s’ :: small_step(c0, s0, c’, s’) && small_step_star(c’, s’, c, t) {

var c’, s’ :| small_step(c0, s0, c’, s’) && small_step_star(c’, s’, c, t);
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lemma_7_13(c’, s’, c, t, c1);

}

(Here, I omitted the else branch in the usual way, since it is empty anyway.) Having to repeat the
condition both in the if guard and the subsequent Skolemization is clumsy. Therefore, Dafny features
if statements with binding guards, which allow the body of lemma_7_13 to be simply:

if c’, s’ :| small_step(c0, s0, c’, s’) && small_step_star(c’, s’, c, t) {

lemma_7_13(c’, s’, c, t, c1);

}

In short, the if alternative is taken if there exist values for c’ and s’ that make the condition hold, and
then c’ and s’ remain bound in the then branch. Dafny also includes a symmetric if statement, like the
if . . . fi statement in Dijkstra’s guarded command language [4]. It also supports the binding guards, as
can be seen here:

if {

case c0 == c && s0 == t =>

case c’, s’ :| small_step(c0, s0, c’, s’) && small_step_star(c’, s’, c, t) =>

lemma_7_13(c’, s’, c, t, c1);

}

This concludes my tutorial examples. More examples of coinductive definitions and proofs are found
in previous papers [14, 15]. The full Dafny encoding of Nipkow and Klein’s chapter 7 is found in the
test suite of the Dafny open-source distribution, dafny.codeplex.com. Never in this encoding (other than
in an example) are the prefix predicates or prefix lemmas mentioned explicitly, which gives support to
the idea that the syntactic rewrites hit the spot. A user can inspect the rewrites by hovering over the calls
to the extreme lemmas and predicates in the Dafny IDE.

4. Other Tools
Other tools, like Coq [22], Isabelle [21], HOL [5], Agda [1], VeriFast [7], and F* [25], have since
long supported inductive predicates, typically via dependent types. In these languages, the notation for
defining inductive predicates is inverted compared to Dafny, using a clausal form rather than a casewise
form [5]. For example, here is the big-step definition in Coq, showing the case for Seq:

Inductive big_step : com -> state -> state -> Prop := ...

| BS_Seq : forall c0 c1 s s’ t,

big_step c0 s s’ -> big_step c1 s’ t -> big_step (Seq c0 c1) s t

Sometimes, this direction of the definition is more intuitive. It would be nice to support in Dafny an
alternative syntax for writing definitions this way.

In this paper, I have presented extreme predicates as being defined as extreme fixpoints of a functor
F . A well-founded predicate is also a fixpoint of the defining functor, but talking about it as a least
or greatest fixpoint is not interesting, since the fixpoint of the defining functor is unique. From this
perspective, it is curious that the keyword used in Coq to define a well-founded function is Fixpoint.

Another difference is that whereas tools like Coq and F* do the induction over the actual proof tree,
Dafny’s induction is essentially over the height of the proof tree (an upper bound of which is given by
_k). With the syntactic rewriting shown in this paper, the Dafny proofs can read as if they were over the
proof trees, rather than having to talk about the height explicitly.

When it comes to defining co-predicates, the continuity restriction is awkward. It means that the
common existential quantifiers like in the inductive definition of Seq above cannot be used directly. The
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workaround is to move the existential quantifier outside the entire co-predicate, see [15]. It would be
wonderful to have a different solution for this in Dafny.

The fact that the Dafny verifier uses an SMT solver provides useful automation for a lot of proof
glue. Dafny’s encoding of extreme predicates and its automatic insertion of the induction hypothesis
extend this automation to more advanced proof steps. The verifying type checker for F* [25] also uses
an SMT solver, but does not include the more advanced automation. The Why3 language provides
a syntax for inductive predicates and its verifier backend supports several SMT solvers. However, the
inductive predicates defined are treated as any arbitrary solution to (0), so the SMT solvers do not reason
about least or greatest fixpoints [3].

In this paper, I’ve talked about Dafny as a tool to state and prove lemmas. More generally, Dafny
is a programming language and the constructs I have shown for proofs are shared with the compiled
fragment of the language. In particular, forms of the forall statement, the assign-such-that statement,
and the binding if guards are also available for writing programs that compile and run.

5. Conclusions
In this paper, I have conveyed a way to understand well-founded functions and extreme predicates and
have given a number of small but representative examples of their use. The Dafny language previously
had well-founded functions, induction, co-predicates, and co-lemmas. New in this paper are the in-
ductive predicates and inductive lemmas, which are simply the duals of the coinductive counterparts.
Having both makes for a more balanced understanding of how these are used, and I tried in my presen-
tation not to make the coinductive constructs seem any more mysterious than the inductive counterparts.
Because the inductive constructs are used more often in practice, the additional experience with them
has led to the further improvements presented in this paper, namely rewriting of focal predicates in ex-
treme lemmas and the binding if guards. I hope that the automation facilitated by Dafny, as well as
this tutorial itself, will give students and researchers less painful access to mechanized support around
formalizations and proofs.
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