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Abstract 
The Porous Shallow water Equations are widely used in the context of urban 

flooding simulation. In these equations, the solid obstacles are implicitly taken into 
account by averaging the classic Shallow water Equations on a control volume 
containing the fluid phase and the obstacles. Numerical models for the approximate 
solution of these equations are usually based on the approximate calculation of the 
Riemann fluxes at the interface between cells. In the present paper, it is presented the 
exact solution of the one-dimensional Riemann problem over the dry bed, and it is 
shown that the solution always exists, but there are initial conditions for which it is not 
unique. The non-uniqueness of the Riemann problem solution opens interesting 
questions about which is the physically congruent wave configuration in the case of 
solution multiplicity. 

1 Introduction 
The Shallow water Equations are widely used to study urban flooding events. These hyperbolic 

partial differential equations are non-linear, and admit the existence of discontinuities (moving bores, 
standing hydraulic jumps, wetting-drying boundaries) that develop in finite time, also if the initial 
conditions are smooth, i.e. continuous with higher-order derivatives [1, 2]. The Riemann problem is a 
special initial value problem where the initial conditions are discontinuous, and it is used to model the 
cited flow field discontinuities [1, 2]. 
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Modern numerical models for the simulation of flooding phenomena are often based on the 
approximate or exact solution of the classic Riemann problem for the Shallow water Equations, which 
always exists and it is unique [1]. The solution of the Riemann problem on dry bed [3] has started the 
modern approaches in the evaluation of flooded areas extent. This solution, which inherits the 
uniqueness property from the general Riemann problem, exhibits a very simple structure, because it 
consists of a single rarefaction wave that connects the left state with the right dry bed [1, 3]. 

In the urban environment, the numerical calculations are very time consuming, because the 
modelling of building geometric details requires fine computational grids [4]. In order to reduce the 
computational burden, an alternative approach based on the Porous Shallow water Equations [5, 6, 7] 
has been introduced. In this approach, which corresponds to the averaging methods used for 
multiphase flows [8], the solid obstacles are implicitly taken into account by averaging the classic 
Shallow water Equations on a Representative Elementary Volume containing the fluid phase and the 
obstacles [5, 7]. In the single-porosity models, which are the object of the present paper, the fraction 
of the unit-surface area that is not occupied by obstacles is called porosity [5, 6, 7]. It is possible to 
demonstrate that the Porous Shallow water Equations are non-linear and hyperbolic [6, 9], and then 
may exhibit discontinuities. Moreover, a rotational invariance property is satisfied [6]. 

In realistic applications, the porosity can be discontinuous, because the fraction of the urban areas 
occupied by buildings can be strongly variable in space, and this leads to the open question about the 
influence of geometric discontinuities on the solution of the Riemann problem for the Porous Shallow 
water Equations. Despite the existence of some example solution (see, for example, [6, 9, 10]), there 
is not a systematic study of the general Riemann problem for the Porous Shallow water Equations. 

It is possible to demonstrate [11] that the solution of the dam-break problem, i.e. the particular 
case of Riemann problem with initial zero velocity, depends on the definition of the geometric-
discontinuity inner-structure. In particular, most of the existing geometric discontinuity definitions, 
such as those contained in [6] and [10], may lead to unphysical solutions (increase of the flow energy 
through the discontinuity). Other definitions, such as those by [12] and [13], are either internally 
inconsistent or imply the incompleteness of the problem solution. Interestingly, the solution of the 
dam-break problem always exists and it is unique if an appropriate parameterization of the stationary 
weak solutions of the Porous Shallow water Equations is used to supply the inner structure of the 
geometric discontinuity, as made in [11].  

In the present paper, the exact solution of the one-dimensional Riemann problem for the Porous 
Shallow water Equations is presented, assuming that the right state is initially dry and that the jump 
definition is the same of [11]. This special Riemann problem on dry bed seems a good candidate in 
order to explore interesting problems encountered when the flooding of urban areas with strong 
porosity gradients and initial dry bed is modelled. 

2  The position of the Riemann problem for the Porous 
Shallow water Equations 

The rotational invariance of the two-dimensional Porous Shallow water Equations allows 
considering the one-dimensional framework 
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In Eqs. (1)-(2), the symbols are defined as follows: x is the space variable, t is the time variable,   

h(x, t) is the water depth, u(x, t) is the depth-averaged velocity,   is the vector of the flow 

conserved variables,  is the vector of the fluxes,   is 

a vector that takes into account the porosity gradients effect,  and 

  are the initial left and right flow states, while φ(x) is the porosity. The aspect ratio 
AR is defined as the ratio between the right and the left porosity, that is . 

In order to consider the Riemann problem on dry bed, in the following it will be assumed that the  
state  coincides with the dry bed state . This implies that the flow through the 
geometric discontinuity is always directed from left to right. 

2.1 The porosity discontinuity 
The porosity discontinuity induces a standing flow discontinuity at x = 0 for t > 0. This standing 

discontinuity, where the non-conservative product   is active, is not autonomous [14], and 
the missing physical information must be supplemented. Congruently with [11], it is assumed here 
that the states  and , immediately to the left (x = 0-) and to the right 
(x = 0+) of the geometric discontinuity in x = 0, are connected by a stationary solution of Eq. (1). This 
means that the flow energy is conserved through the geometric discontinuity, unless a hydraulic jump 
is present. In addition, it is assumed that φ varies monotonically through the porosity jump. This 
means that critical state conditions can be attained only at the left (AR ³ 1) or at the right (AR < 1) of 
the geometric discontinuity. In the following   and  are the Froude 
numbers corresponding to the states  and , respectively. 

2.2 Ritter solution (AR = 1) 
When the porosity discontinuity is absent (AR = 1), the solution of the Riemann problem on the 

dry bed consists of a unique rarefaction wave contained in the first characteristic field that connects 
the left state  to the dry bed state , while . Along the rarefaction, the velocity and the 
fluid depth are constrained by [1, 2] 
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and 
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where . In particular, the left and the right edges of the rarefaction wave have 

speed  and , respectively, with . The velocity u increases (
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) along the rarefaction from the left edge (  ) to the right edge (  ), 
while the flow depth decreases ( ) from the left edge (  ) to the right edge (h = 0). If 

 is the Froude number corresponding to the left state , it is easy to see that the 

Froude number  increases continuously from the value  at the left edge, and tends 
to infinity at the right edge. 

The Froude number  rules the following three cases: 
Case Ra. When , the rarefaction wave develops entirely to the left of x = 0 because  is 

negative, and u < 0 everywhere. In this case, u1 = 0. 
Case Rb. When ,  the wave develops through x = 0 because  and . The 

eq. (4) implies that critical flow conditions are obtained in x = 0, with flow velocity  directed 

from left to right. In this case  . 

Case Rc. When , the rarefaction wave develops entirely to the right of x = 0 because  is 
positive. This implies that   for x £ 0. In addition, the velocity u is positive everywhere, and 
the flow is supercritical. 

2.3 Energy limit 
When u1 > 0, a necessary condition for the flow to be smooth through the geometric discontinuity 

is that the energy of the incoming flow u1 is not less than the minimum energy (critical state) required 
at the outlet. This implies that the constraint 

 
,         (5) 

 
is satisfied. From the study of eq. (5) it follows that: 
(a) AR ³ 1 is required when F1 = 1, and this means that the critical flow cannot freely pass 

through a porosity decrement. 
(b) The eq. (5) is satisfied by any value of F1 for AR ³ 1. In other words, any flow is able to pass 

through a porosity increment. 
(c) When AR < 1, the eq. (5) is satisfied by the values ,  

where  and  are two limits depending on AR, with  and 

. The values  or  at the inlet of the porosity discontinuity 

satisfy the eq. (5) with the equality sign, and imply  at the outlet of the porosity decrement. 

2.4 Hydraulic jump limit for supercritical flows 
When AR < 1, it is interesting to consider the case where critical flow conditions are obtained at 

the exit of the discontinuity ( ), while a subcritical stationary flow profile develops through the 
geometric discontinuity and . The supercritical flow  connected by a 
standing hydraulic jump to the subcritical flow at the inlet of the geometric discontinuity satisfies the 
limit condition 
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.      (6) 

The supercritical flow with Froude number less than  is not able to sustain a hydraulic 
jump at the inlet of the sudden porosity decrement, and a shock moving upstream may be obtained. 

2.5 Hydraulic hysteresis region 
If the equality sign and FL = F1 are taken in eq. (5), the limit condition 
  

,        (7) 

 
is obtained [15]. The eq. (7) is represented in Figure 1 (continuous black line), and the 

corresponding graph consists of a subcritical reach AB and a supercritical reach BC. Based on eq. (5), 
the points of the plane (FL, AR) above the energy limit curve of eq. (7) refer to flows uL that are able 
to pass through the geometric discontinuity remaining smooth. 

If  is taken, the eq. (6) can be solved with respect to . Recalling that   

satisfies eq. (5) with the equality sign, the following limit condition [16, 17] is obtained 
 

.      (8) 

 
The corresponding curve, which is plotted in Figure 1 (curve BD with dashed black line), lies 

above the energy limit curve ABC. Based on eq. (6), the points of the plane (FL, AR) below the 
standing hydraulic jump limit BD are referred to supercritical flows  that do not pass through the 
geometric discontinuity, because they are turned into subcritical states  by a backward moving 
shock [16, 17]. 

The region of the plane between the curves BC and BD admits both an upstream supercritical flow 
passing through the discontinuity (above BC) and a supercritical upstream flow that is turned in 
subcritical (below BD). This phenomenon is called hydraulic hysteresis [16, 17]. Interestingly, in the 
hysteresis region, a third flow condition is possible, namely a standing hydraulic jump through the 
geometric discontinuity, where the upstream supercritical flow is turned in subcritical [17]. 

3 Solution configurations for the Riemann problem with right 
dry state 

Depending on the left Froude number FL and on the aspect ratio AR, eight different solution 
configurations for the Riemann problem on dry bed are possible. These solution configurations, 
whose fields of existence are plotted in Figure 1, are listed as follows. 
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3.1 Solution configuration not depending on AR 
SC (1). In this solution configuration, the condition  is satisfied, and the solution 

configuration coincides with the Case Ra of subsection 2.2. A rarefaction wave develops entirely to 
the left of the geometric discontinuity, and the velocity u is non-positive everywhere. In other words, 
there is not interaction between the flow and the geometric discontinuity. 

 
Figure 1: Field of existence of the solution configurations. 

3.2 Solution configurations with AR ³ 1 (sudden porosity increment) 
In this group of solution configurations, the flow corresponding to the Ritter solution (Case Rb and 

Case Rc of subsection 2.2) immediately to the left of x = 0 encounters a sudden porosity increment. 
For this reason, the geometric discontinuity is not an obstacle to the flow. 

SC (2). In this solution configuration,  (Case Rb). A rarefaction connects the state uL to 
the critical state u1, and the energy of the flow is sufficient to pass through the geometric discontinuity 
because F1 = 1 satisfies the eq. (5) with AR ³ 1. The supercritical state u2 is connected to u1 by means 
of the conditions of energy and discharge conservation. Finally, the dry bed state uR is connected to u2 
by means of a rarefaction. 

SC (3). In this solution configuration,  (Case Rc). The state u1 coincides with the 
supercritical state uL, and the energy of the flow is sufficient to pass through the geometric 
discontinuity because F1 > 1 satisfies the eq. (5) with AR ³ 1. The supercritical state u2 is connected 
to u1 by means of the conditions of energy and discharge conservation, while a rarefaction connects 
the state u2 to the dry bed. 
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3.3 Solution configurations with AR < 1 (sudden porosity decrement) 
SC (4). In this solution configuration,  (Case Rb). A rarefaction connects the 

state uL to the subcritical state u1, which is characterized by . The state u2 is critical, 
and it is connected to u1 by means of the conditions of energy and discharge conservation. Finally, the 
state state u2 is connected to the dry bed by means of a rarefaction. 

SC (5). In this solution configuration,  (Case Rb). A shock moving upstream 
connects the subcritical (or critical) state uL to the subcritical state u1, which is characterized by 

. The state u2 is critical, and it is connected to u1 by means of the conditions of energy 
and discharge conservation. Finally, the state state u2 is connected to the dry bed by means of a 
rarefaction. 

SC (6). In this solution configuration,  (Case Rc). A shock moving upstream (if 

) or standing in x = 0- (if ) connects the supercritical state uL to the 

subcritical state u1, which is characterized by . The state u2 is critical, and it is 
connected to u1 by means of the conditions of energy and discharge conservation. Finally, the critical 
state u2 is connected to the dry bed by means of a rarefaction. 

SC (7). In this solution configuration,  (Case Rc). The state u1 
coincides with the supercritical state uL, while the critical state u2 is connected to u1 by means of the 
conditions of discharge conservation only, and a hydraulic jump is located through the geometric 
discontinuity. Finally, the critical state u2 is connected to the dry bed by means of a rarefaction. 

SC (8). In this solution configuration,  (Case Rc), and the flow is free to pass 
through the porosity decrement. The state u1 coincides with the supercritical state uL. The state u2 is 
connected to the state u1 by means of the conditions of energy and discharge conservation. A 
rarefaction wave, which connects the supercritical state u2 to the dry bed, develops entirely on the 
right of the geometric discontinuity. 

4 Discussion 
The solution of the Riemann problem on the dry bed for the classic Shallow water Equations is 

unique, and consists of a rarefaction wave connecting the left state to the right dry bed. Conversely, 
the Riemann problem on the dry bed for the Porous Shallow water Equations may exhibit numerous 
solution configurations, which differ for the type of waves, as well their number and position. The 
Table 1 resumes these solution configurations, described in the Section 3, using the following 
symbols: R = rarefaction wave, SW = standing wave (geometric discontinuity), S = shock. 

The direct calculations show that the solution of the Riemann problem always exists for given 
flow initial conditions and geometric discontinuity characteristics. Nonetheless, there are cases where 
this solution is not unique (bifurcation phenomenon), and the inspection of Figure 1 confirms that 
there is a field of the plane (FL, AR) where three distinct solution configurations (SC (6), SC (7), and 
SC (8)) are possible for given initial conditions and geometric discontinuity characteristics. From a 
physical point of view, this field coincides with the case where the supercritical incoming flow has 
energy greater than that strictly required to pass through the porosity reduction, and this energy can be 
dissipated through a standing hydraulic jump or a moving shock. These solutions are the unsteady 
flow counterparts of the multiple steady states in converging channels [16, 17]. 
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The non-uniqueness of the Riemann problem solution is expected in the case that geometric 
discontinuities are present, and it is well documented in the context of the Shallow water Equations 
with a bed step [18, 19]. 
 

 

5 Conclusions 
The solution of the Riemann problem over the dry bed for the Porous Shallow water Equations 

always exists, and the main parameters on which it depends are the initial left Froude number FL and 
the aspect ratio AR, i.e. the ratio between the right and the left porosity. In addition, it is demonstrated 
that, contrarily to the case of the classic Shallow water Equations (Ritter solution), numerous different 
wave configurations are possible for t > 0, despite of the very simple initial conditions. These flow 
configurations differ for the number and the type of waves exhibited by the solution. 

Interestingly, there are values of FL and AR for which the problem solution is not unique, and 
multiple flow configurations are possible. This phenomenon, which appears for supercritical left 
states, has never been documented in the context of the Porous Shallow water Equations. The non-
uniqueness of the solutions opens interesting questions about which is the physically congruent wave 
configuration in the case of solution multiplicity, and about the foundations of the Porous Shallow 
water Equations themselves. 
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