
EPiC Series in Computing

Volume 50, 2017, Pages 1–5

GCAI 2017. 3rd Global Con-
ference on Artificial Intelligence

Everything’s Bigger in Texas

“The Largest Math Proof Ever”∗

Marijn J.H. Heule

Department of Computer Science, The University of Texas at Austin

Progress in satisfiability (SAT) solving has enabled answering long-standing open questions
in mathematics completely automatically resulting in clever though potentially gigantic proofs.
We illustrate the success of this approach by presenting the solution of the Boolean Pythagorean
triples problem [7]. We also produced and validated a proof of the solution, which has been
called the “largest math proof ever” [12]. The enormous size of the proof is not important. In
fact a shorter proof would have been preferable. However, the size shows that automated tools
combined with super computing facilitate solving bigger problems. Moreover, the proof of 200
terabytes can now be validated using highly trusted systems [5, 3, 13], demonstrating that we
can check the correctness of proofs no matter their size.

The origin of the Boolean Pythagorean triples problem dates back to the work of Schur in
the early 20th century [16]. He wondered whether the positive natural numbers can be colored
with k colors such that there is no monochromatic solution of a given equation. Let us consider
the case of two colors, called red and blue, and the equation a + b = c. If we color 1 with red,
we have to color 2 with blue due to 1 + 1 = 2. This forces us to color 4 with red because of
2 + 2 = 4. After this, 3 must become blue due to 1 + 3 = 4. But then, no matter if we color 5
with red or blue, we end up with a monochromatic solution of 1 + 4 = 5 or 2 + 3 = 5. Schur’s
Theorem states that every coloring of the positive numbers with finitely many colors results in
monochromatic solution of a+ b = c [16]. However, for other equations it is possible to avoid a
monochromatic solution. For example a3 + b3 = c3, because Fermat’s Last Theorem [17] states
that this equation has no solution in the positive natural numbers. The most famous equation
for which this question has remained open for decades is the Pythagorean equation a2+b2 = c2.
Ron Graham offered $100 for the solution of this question since the 1980s.

We answer this question, known as the Boolean Pythagorean triples problem, by encoding
it into propositional logic and applying massive parallel SAT solving on the resulting formula.
More concretely, we search for the smallest number n such that every coloring of the numbers 1
to n with red and blue results in a monochromatic solution of a2 + b2 = c2. For each number i
a Boolean variable vi is introduced. If vi is assigned to true (or false), then number i is colored
red (or blue). For each solution of a2 + b2 = c2, the propositional formula contains a clause
stating that at least one of a, b, and c must be colored red (va ∨ vb ∨ vc) and at least one of a,
b, and c must be colored blue (va ∨ vb ∨ vc). This formula is simplified, by removing redundant
Pythagorean triples and symmetry breaking, before solving it.

∗Thanks to the co-authors of the work summarized here: Oliver Kullmann and Victor Marek.

C. Benzmüller, C. Lisetti and M. Theobald (eds.), GCAI 2017 (EPiC Series in Computing, vol. 50), pp. 1–5

Everything’s Bigger in Texas M.J.H. Heule

Our main result is a proof that n = 7825, which required 40, 000 CPU hours of computation,
including verification. There exist many red/blue-colorings of the numbers 1 to 7824 without
a monochromatic solution of a2 + b2 = c2 as shown in Figure 1.

00

10001000

20002000

30003000

40004000

50005000

60006000

70007000

00 1010 2020 3030 4040 5050 6060 7070 8080 9090 100100

Figure 1: Many red/blue-colorings of the numbers 1 to 7824 without a monochromatic solution
of a2 + b2 = c2. Numbers in red squares are red, in blue squares are blue, and in white squares
can be red or blue. The square in lower left corner represents the number 1 and higher numbers
are represented by squares to the right (+1) and up (+100).

Is Mechanized Mathematics Meaningful?

Before describing a mechanized method to answer open questions in mathematics, let us first
explore whether this ability is meaningful. Some consider understanding the essence of math-
ematics [12]. Automatically generated answers and proofs provide mainly facts and few —if
any— new insights. However, this point of view ignores many benefits of automatically gen-
erated answers. First, the same techniques to answer these questions are absolutely crucial
in verification of hardware and software [2, 10]. Advancing these techniques in the context of
mathematical problems will result in improvements for industrial applications as well. Second,
verifying proofs of unsatisfiability reveals some useful information, such as which parts of the
problem are relevant, and therefore does provide some insights [6].

Third, there appears to be a stubborn assumption that somehow, somewhere there exist
compact proofs of automatically solved problems, but that nobody has been able to find such a
proof yet. This assumption is likely false for many problems. For example, the proofs of small
Ramsey numbers rely typically on a large case split [4]. Although our 200 terabytes proof will
not be the smallest proof of the Pythagorean triples problem, there may not exist a proof that
is shorter than a terabyte. Studying problems such as the Pythagorean triples problem may in

2

Everything’s Bigger in Texas M.J.H. Heule

fact shed some light on one of the most important questions in computer science: What makes
a problem hard?

Last but not least, we need answers to questions that humans cannot deal with. We sim-
ply cannot afford having only those answers that mathematicians can provide. Mechanized
mathematics is useful even if it only produces facts, such as our answer n = 7825, and no
understanding. Consider for example two designs of a complex critical system. For one design
we can prove —fully automatically— that it is safe, while for the other one we cannot produce
such a proof with any available method. One would opt for the first design because we know
it is safe even though we don’t know why. Increasingly, such scenarios are becoming a daily
reality. This making our ability to determine facts like safety very meaningful. By all means,
let us not underestimate the value of hard facts.

The Hidden Strength of Cube-and-Conquer

We used the cube-and-conquer method [8] to solve the Pythagorean triples problem [7] as it is
arguably the most effective method for solving very hard combinatorial problems, such as the
Erdős discrepancy problem [11]. Cube-and-conquer is a hybrid parallel SAT solving paradigm
that combines look-ahead techniques [9] with conflict-driven clause learning (CDCL) [14]: Look-
ahead techniques are used for splitting a given problem into many millions of subproblems which
are then solved with CDCL solvers. CDCL is the most well-known SAT solving paradigm, which
allows solving benchmarks from industrial applications with millions of variables and clauses.
Since the subproblems are independent, they can be easily solved with CDCL in parallel without
requiring communication.

The aim of look-ahead techniques is to find variable assignments that simplify a formula
as much as possible. This is achieved with so-called look-aheads: A look-ahead on a literal l
with respect to a formula F first assigns l to true and then simplifies F to obtain a formula
F ′. After this, it determines a heuristic value by computing the “difference” between F and
F ′. A variable v is considered useful for splitting a formula F if the look-aheads on both v and
v have a high heuristic value. Typically, look-ahead techniques select the variable v for which
the product of the heuristic values of v and v is the largest. This variable is used to split F
into two subformulas: One for which v is true, and one for which v is false.

We used an expensive, but highly effective measurement to compute the difference between
F and F ′. Notice that F ′ consists of clauses that occur in F and binary clauses that originate
from ternary clauses in F since all unit clauses are simplified away. We denote with F ′ \ F the
set of binary clauses. Each clause in (l1 ∨ l2) ∈ F ′ \ F is weighted based on the occurrences of
the literals l1 and l2 in F [15]. The heuristic value of looking ahead on v is the weighted sum
of all binary clauses in F ′ \ F with F ′ being the simplified formula after the look-ahead.

Cube-and-conquer is not only useful for partitioning a hard problem into many subproblems
that can be solved in parallel, but can also boost performance of solving a problem on a single
core. Let N be the number of subproblems. A low value of N indicates that the problem is split
into a low number of subproblems, meaning that it is mainly solved with CDCL (N = 1 means
pure CDCL) while a larger value indicates a more extensive splitting based on look-aheads.

If we experiment with different values for N when trying to solve a problem on a single
core, we can observe an interesting pattern: For low values of N , an increase of N leads to an
increase of the total runtime—apparently some subproblems are as hard as the original one.
If we increase N further, the total runtime starts to decrease and at some point it can even
become significantly smaller compared to solving the problem with CDCL alone (again running
both on a single core). However, when N becomes really large, the runtime increases again.
At this point, splitting starts to dominate the total costs. Figure 2 shows this pattern on a

3

Everything’s Bigger in Texas M.J.H. Heule

subproblem of Schur number five: What is the largest n such there exists a 5-coloring of 1 to
n with a monochromatic solution of a+ b = c. For this subproblem, the optimal value for N is
around 10 000.

0

500

1000

1500

2000

2500

1 10 100 1000 10 000 100 000

cube
conquer

Figure 2: Comparison of the total runtime in seconds (y-axis) for solving a subproblem of Schur
number five using different numbers of cubes (x-axis) on a single core (no parallelism).

Proofs are Needed!

If it takes a computer several CPU years to solve a problem, it is only natural to question
the correctness of the alleged solution. It is easy to check whether a given coloring has no
monochromatic solution of a given equation. Figure 1 offers such red/blue-colorings of the
equation a2+b2 = c2 with a, b, c ≤ 7824. However, checking the claim that all red/blue-colorings
of the numbers 1 to 7825 result in a monochromatic Pythagorean triple is more complicated.
The number of such red/blue-colorings is 27825, larger than the number of particles in the
universe. Our SAT solving approach reduced the number of colorings to be checked to roughly
240. The question arises whether these 240 colorings cover the entire search space.

If the essence of the solution of the Boolean Pythagorean triples problem would be the
number “7825”, the numerical information about the point where monochromatic Pythagorean
triples are unavoidable, then naturally there would be less pressure on actually having a veri-
fiable proof, and one would just wait for independent re-computations, as is the case currently
with all really big computations outside of the SAT-realm — only here we have the ability to
extract really big proofs. But in this case, there is currently no independent “mathematical”
existence proof. Without our result it wouldn’t even be known whether there exists that turn-
ing point at all, i.e., whether all positive numbers can be colored with red and blue without
resulting in a monochromatic Pythagorean triple. A real proof is needed.

We extracted a proof from solver runs and extended it with a proof of the simplification
of the original propositional formula along with a proof that the subproblems cover the entire
search space. The size of the combined proof is 200 terabytes in size. However, it has been
validated using three formally verified checkers — two of these efforts were by independent
groups [5, 3, 13]. Our ability to produce such proofs and certify them using theorem provers
provides high confidence in the correctness of our result.

4

Everything’s Bigger in Texas M.J.H. Heule

Acknowledgements

The author is supported by the National Science Foundation under grant CCF-1526760 and by
AFRL Award FA8750-15-2-0096. The author acknowledges the Texas Advanced Computing
Center (TACC) at The University of Texas at Austin for providing HPC resources that have
contributed to the research results reported within this paper.

References

[1] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satis-
fiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, February
2009.

[2] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking
using satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

[3] Lúıs Cruz-Filipe and Peter Schneider-Kamp. Formally proving the boolean triples conjecture. In
Thomas Eiter and David Sands, editors, Proceedings of LPAR-21, volume 46 of EPiC Series in
Computing, pages 509–522. EasyChair Publications, 2017.

[4] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey Theory, 2nd Edition.
Wiley, 1990.

[5] Marijn J. H. Heule, Warren A. Hunt Jr, Matt Kaufmann, and Nathan Wetzler. Efficient, Verified
Checking of Propositional Proofs, pages 269–284. Springer International Publishing, Cham, 2017.

[6] Marijn J. H. Heule, Warren A. Hunt, Jr, and Nathan Wetzler. Trimming while checking clausal
proofs. In Formal Methods in Computer-Aided Design, pages 181–188. IEEE, 2013.

[7] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the Boolean
Pythagorean Triples problem via Cube-and-Conquer. In Theory and Applications of Satisfiability
Testing – SAT 2016, pages 228–245. Springer, 2016.

[8] Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer:
Guiding CDCL SAT solvers by lookaheads. In 7th International Haifa Verification Conference –
HVC 2011, pages 50–65. Springer, 2012.

[9] Marijn J. H. Heule and Hans van Maaren. Look-Ahead Based SAT Solvers, chapter 5, pages
155–184. Volume 185 of Biere et al. [1], February 2009.

[10] Franjo Ivančić, Zijiang Yang, Malay K. Ganai, Aarti Gupta, and Pranav Ashar. Efficient SAT-
based bounded model checking for software verification. Theoretical Computer Science, 404(3):256–
274, 2008.

[11] Boris Konev and Alexei Lisitsa. Computer-aided proof of Erdős discrepancy properties. Artificial
Intelligence, 224(C):103–118, July 2015.

[12] Evelyn Lamb. Maths proof smashes size record: Supercomputer produces a 200-terabyte proof –
but is it really mathematics? Nature, 534:17–18, June 2016.

[13] Peter Lammich. Efficient verified (un)sat certificate checking. In Automated Deduction – CADE
26, pages 237–254. Springer, 2017.

[14] Joao P. Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-Driven Clause Learning SAT
Solvers, chapter 4, pages 131–153. Volume 185 of Biere et al. [1], February 2009.

[15] Sid Mijnders, Boris de Wilde, and Marijn J. H. Heule. Symbiosis of search and heuristics for
random 3-SAT. In David Mitchell and Eugenia Ternovska, editors, Third International Workshop
on Logic and Search (LaSh 2010), 2010.

[16] Issai Schur. Über die Kongruenz xm + ym = zm (mod p). Jahresbericht der Deutschen Mathe-
matikervereinigung, 25:114–117, 1917.

[17] Andrew Wiles. Modular elliptic curves and fermat’s last theorem. Annals of Mathematics,
141(3):443–551, 1995.

5

