
Documenting architectural rationale using 

source code annotations: An exploratory study 

Santiago Hyun Dorado1 and Julio Ariel Hurtado1 
1 Universidad del Cauca, Cauca, Colombia 

santiagodorado@unicauca.edu.co, ahurtado@unicauca.edu.co 

Abstract 

The architectural rationale is the documentation of the reasons why certain software 

design decisions are made that satisfy quality needs in a system. On many occasions 

this rationale is implicitly found in precise sentences of the system's documentation or 
the same source code, making it difficult to understand and make decisions on the 

maintenance phase, leading to a deviation and erosion of the architecture and therefore 

aging of the software. In this paper, we discuss the utility of a tool based on code 

annotations as an alternative to document the architectural rationale with the source 

code. For this, a quasi-experiment with local industry software engineers is done, in 

order to answer the research question: Does the source code annotations, with 

information about the architectural rationale, improves the software maintenance? The 

quasi-experiment is done with software engineers who know Java language and notions 

of software architectures. It included 3 tasks that involve changes to the architecture and 

its documentation. After the results were analyzed using the t-student test, concluding 

that the participants who use the annotations with information of the Architectural 
Rationale achieve a better understanding of the architecture and its Rationale than those 

using a traditional way for documenting the rationale(documents). However, the 

efficiency and effectiveness of maintenance time do not depend on the Rationale 

specification. With the same problem, the variation was due to the ability of individuals 

to develop software, but the documentation of the architecture, in general, was very 

important to be able to make the changes within the limits. 

1 Introduction 

The scalability and maintainability of a software system are key aspects to develop a system with 

a much longer life cycle [1]. Due to this, a lot of effort is made in the initial phases of the 

development to design a good architecture, capable of allowing the construction of software systems 

more extensible in the future and much easier to modify, without having to change the source code 

already written [2]. However, a common problem in software development is to dedicate a lot of 

EPiC Series in Computing

Volume 64, 2019, Pages 204–214

Proceedings of 28th International Conference
on Software Engineering and Data Engineering

F. Harris, S. Dascalu, S. Sharma and R. Wu (eds.), SEDE 2019 (EPiC Series in Computing, vol. 64),
pp. 204–214



effort to the initial design of the architecture and not to update it while the software life cycle 

progresses, causing modifications to the system to be implicit in the code and cause the erosion of the 

architecture, changing its structure and decreasing its performance [3]. The correct documentation of 

architectural decisions allows designers to transmit knowledge through time [4]. This knowledge or 

justification of architectural decisions that meet quality needs is known as "Architectural Rationale" 

and it describes why a change is made in architecture [4]. Many times, this rationale is implicitly 

found in particular sentences of the source code, causing much more time, effort and money for 

understanding, maintain and extends the architecture [5]. The research goal is to analyze the 
documentation of Architectural Rationale through code annotations, to determine the value of the 

code annotations as a tool for documenting the architectural rationale. This value is analyzed in the 

context of the maintenance of small system respect to the maintenance of its architecture in terms of 

efficiency and effectiveness, as well as the architecture comprehension and its rationale, while 

architectural changes are being made by a new architect. To validate the research hypotheses, it was 

necessary to perform a quasi-experiment. The central hypothesis states the use of code annotations as 

a software tool to document the architectural rationale improves the maintainability of a system. In 

this experiment, we had one system developed in Eclipse IDE, 4 software engineers with Java 

experience of at least 2 years, the system documentation in a repository with version control, ARAT 

Eclipse Plugin (Architecture Rationale Annotations Tool) and libraries with methods of reflection1. 

The experiment consisted of four participants individually perform 3 tasks and complete a survey, the 

tasks that the groups did include architectural changes and their documentation, to document these 
changes and the Rationale involved through the documentation strategy randomly assigned to each 

group: with the annotation model or in a text / Word document. Finally, participants completed a 

survey that tries to confirm the understanding of the architecture and its rationale, in addition to 

knowing the usefulness of the model in a qualitative way. To determine the efficiency, effectiveness, 

and understanding of the architectural changes, it was necessary to measure the time taken to make 

the changes to each participant, review the correctness of each task, to finally contrast the results of 

the two groups, to determinate the usefulness of the developed annotation model. The rest of this 

document is organized as follows: The second section deals with the works related to the research 

objective. In section 3, the experiment is planned and designed. The execution, analysis, and 

discussion of the experiment are described respectively in sections 4, 5 and 6. Section 7 contains the 

conclusions and further work. 

2 Related Work 

The architecture of a system according to Jasnen A et al [4] is the composition of a set of 

architectural design decisions and it is generally based on decisions made in the requirements 

elicitation activity. Two types of important design decisions are the application of tactics and 

architectural patterns [6], the patterns are common architectural structures, which are well defined, 

documented and well understood for reusing [7], [8]. The architecture defines what the system must 

do through the selected architecture patterns [6]; Tactics are important design decisions because they 

allow us approaching quality attributes [9]. However, mistakes are often resulting in decision making 

without determining the scope, consider legal and business aspects, neither remove obsolete decisions 

[10]. Relating rationale issues with software architecture allows software engineers to reuse, make 

changes with less effort, improve the quality of the final product and support the transfer of 

knowledge through time [10]. The rationale is the justification for the decisions or actions that are 
taken in the development process. In software engineering, it is captured and managed to improve the 

comprehension of a system by the stakeholders [11]. The rationale is usually found in all the decisions 

                                                        
1 Reflection: It is the ability of a computer program to auto examine itself and modify its behavior and structure at runtime 

Documenting architectural rationale using source code annotations S. Hyun Dorado and J. Hurtado

205



that are made in the analysis, design implementation and testing. In this work, we will refer to the 

design rationale, which is defined by Allen H. D. et al [11] as the reasons that determine the 

realization and the influences on the artifact design [12]. On the other hand, according to Milan N. et 

al [13], the code annotations are structured and declarative labels in the source code that allows 

developers to customize the functionality of a program. These annotations are placed on source code 

elements called annotation objectives, these can be global variables, function parameters, return 

values, methods, user-defined types, among others [14]. The implementation of the source code 

annotations generally has two approaches:1. As a plugin 2  to obtain source code information at 
compile time. 2. As a reflection mechanism for getting program information at runtime. The first 

approach requires the existence of a processor factory to handle each annotation declared and the 

second approach requires libraries allowing capture of metadata in the source code [13]. Archium is 

an extension of Java proposed by Van der Ven. et al [10] that uses an architectural model, defined by 

an ADL (Architectural Description Language) and a decision model which allows modeling design 

decisions with its rationale through DRL (Decision Representation Language), an argumentation 

scheme that allows to architect modeling a decision including decision problems, alternatives, 

objectives, claims, and groups. With the Van der Ven et al [10] approach it is possible to define 

design decisions in a structured way. However, the rationale is an element that depends considerably 

on the architect’s mental model. The generated artifacts by Archium work as a bridge between 

architecture and design decisions, however, these are not directly related to the implementation of the 

system, neither specified as code elements. In this paper, we present a model of architectural rationale 
directly codified at the code source level. This rationale is located on architecturally relevant code 

elements. 

3 Planning the experiment 

The goal of this research is to analyze the architectural rationale documentation through code 

annotations, to determining the value of the code annotations as a tool to document the architectural 

rationale for achieving a maintainable architecture in terms of efficiency, effectiveness, and 

comprehension while architecturally relevant changes are realized by software architects. For the 

preparation of this document, the guide to report experiments in software engineering proposed by 

Andreas J. et al [15] was followed up. 

3.1 Hypotheses 

The overall hypothesis of this experiment states the architecture rationale codified as source code 

annotations improve the architecture maintainability aspects such as the efficiency, effectiveness, and 

architecture (including its rationale) comprehension at maintenance time. To confirm the general 

hypothesis, the null and alternative hypotheses are formulated for each aspect related to architecture 

maintenance: 

H1: The effectiveness of achieving an architectural change in a system using rationale 

documented as code annotations: 

 Null: it is not significantly different than the effectiveness when changes are realized 

without code annotations. 

 Alternative: it is significantly greater than the effectiveness, when changes are realized 

without code annotations. 

                                                        
2 Plugin: It is a complement for software that adds functionality 

Documenting architectural rationale using source code annotations S. Hyun Dorado and J. Hurtado

206



H2: The efficiency for achieving an architectural change in a system using rationale documented 

as code annotations: 

 Null: is not significantly different than the efficiency when changes are realized without 

code annotations. 

 Alternative: it is significantly greater than the efficiency when changes are realized 

without code annotations. 

H3: The comprehension of the architecture and its rationale for achieving an architectural change 

in a system using rationale documented as code annotations: 

 Null: it is not significantly different when changes are realized without code annotations. 

 Alternative: it is greater than comprehension when changes are realized without code 

annotations. 

3.2 Variables 

The variables of this experiment were divided into independent variables (Can be controlled) and 

dependent variables (Results obtained). In this work, the only independent variable is the specification 

or not of architectural rationale as source code annotations. The possible values are “Yes” or “No”, 

this variable is of categorical type. The dependent variables, efficiency, and effectiveness are 

calculated by measuring other variables such as time and the level of correctness in the performance 
of the task. Also, define the reference values was necessary to calculate the results of the efficiency 

and effectiveness variables as a percentage measure. A third dependent variable is the comprehension 

level of the architecture and its rationale, in a range between 0 and 100 according to an assessment 

protocol. Participants should perform 3 maintenance tasks. The assessment protocol allows us to 

measure the correctness level of each task, for the first, second and third tasks, an example for the 

protocol for measuring the correctness level is described in Table 1. The detailed description of all 

tasks can be found in section 3.5. 

 

CL1 

Value Description 

100 The participant did not realize the change. 

200 The participant realize the changes but she/he did not complete the task. 

300 The participant completed the task but she/he did not maintain the established design. 

400 
The participant completed the task keeping the design, but it took longer than the 
established time. 

500 The participant completed the task keeping the design in the established time. 
Table 1: Correctness Level task 1 

The sum of the levels of the correctness of all tasks is defined as ‘TCL’ expressed as follows: 

𝑻𝑪𝑳 =  ∑ 𝐶𝐿𝑖

𝑛

𝑖=1

 

Where ‘n’, is the total number of realized tasks. 

The time in which a participant performs a task is denoted by the letter ‘t’. The time it takes to 

perform all tasks ‘T’ is defined as the sum of each of the times taken in each task, as expressed in the 

following equation: 

𝑻 =  ∑ 𝑡𝑖

𝑛

𝑖=1

 

Documenting architectural rationale using source code annotations S. Hyun Dorado and J. Hurtado

207



The estimated values that are defined for the total time and the total correctness are shown below: 

 The estimated time for the first, second and third tasks is 1 hour, 50 minutes and 30 

minutes respectively, with an estimated total time of Te = 140 minutes to perform all 

tasks. 

 Total estimated correctness level in the execution of all assigned tasks:  

TCLe = 500 + 500 +500 = 1500 cl 

Efficiency: Value measured concerning the correctness and total time obtained in carrying out the 

tasks, the absolute efficiency value 'E' is defined below as: 

𝑬 =  
𝑇𝐶𝐿

𝑇
 

Due to absolute efficiency values are not easy for comparing, so the efficiency value must be 

calculated in terms of percentage considering a reference point as the ideal performance of tasks, 

which is defined as: 

𝑬𝒓 =  
𝑇𝐶𝐿𝑟

𝑇𝑒
 

Where the total level of correctness is: TCLr= 400 + 500 + 500 = 1400 cl. Which we get the 

following efficiency value referring ‘Er’: 

𝑬𝒓 =  
1400

140
= 10 

𝑐𝑙

𝑚𝑖𝑛
 

Finally, we obtain the efficiency percentage for each participant: 

% 𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 =  
𝐸

𝐸𝑟
∗ 100 

Effectiveness: Value measured by correctness in the performance of all tasks divided by the total 

expected correctness. In this work, we define the effectiveness of ‘EF’ as: 

𝑬𝑭 =  
𝑇𝐶𝐿

𝑇𝐶𝐿𝑒
 

Finally, we obtain the percentage of effectiveness of each participant by: 

% 𝑬𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆𝒏𝒆𝒔𝒔 =  𝐸𝐹 ∗ 100 

Comprehension level: It is a quantitative value evaluated by cross-referencing information between 

the responses of a survey and the documentation provided in a task of maintainability documentation. 

To calculate the value of this variable it is necessary to define the documentation level according to 

the understanding expressed by the participants in the different artifacts of the experiment. Table 2 

shows the design to calculate the level of comprehension of the architecture and its Rationale, through 

the evaluation of the content in the performed task documentation and the writing in the survey 

responses.  These auxiliary variables are in a range of 0 to 100 for a total maximum of 500. The level 

of comprehension denoted as ' C ' is the average of the values of the auxiliary variables. 

𝑪 =  
𝐶𝐷𝑓 + 𝐶𝐷𝑑 + 𝐶𝐷𝑎 + 𝑅𝐷𝑑 + 𝑅𝐷𝑎

5
 

CDf: Changes Documentation at functional level, CDd: Changes Documentation at design level, 
CDa: Changes Documentation at architectural level, RDd: Rationale Documentation at design level, 

RDa: Rationale Documentation at architectural level 

 

Participant CDf CDd CDa RDd RDa C 

Participant 1 100 100 100 100 90 98 
Table 2: Example of Comprehension level in documentation 

Documenting architectural rationale using source code annotations S. Hyun Dorado and J. Hurtado

208



3.3 Participants 

To obtain the participation of people, emails were sent, inviting potential participants to the 

experiment. The participants full fit the characteristics as follow:  

1. Basic knowledge about software architectures.  

2. Experience as Java developer for at least two years.  

For selecting the participants, the guidance of Andrew J. et al [16] is followed. The participants 

were software and electronic engineers currently related to the local software industry, so all the 

selected people know fields of computer science and related fields. All were men over twenty-five 

(25) years, counting with experience between two (2) and twelve (12) years in the industry and 

playing different roles such as analyst, product engineer, software developer and architect. Also, one 
of the participants has active work as software engineering professor. The experiment and the process 

rubric was explained to the participants, introducing the experiment and obtain their written 

permission.   

3.4 Experimental material 

The system used in the experiment, is a family of games ‘n' in a- row, which consists of a game in 

which each player must vertically, horizontally or diagonally place on a board, n consecutive chips in 

an arrow. This game has many variants, one of them is called 'Connect four': this variant is a game on 

a board of seven columns wide and six rows high. Each player uses tiles of a particular color and, 

alternating the turn, places tiles on the board. The winner is the first achieving four chips of their color 

in a line, either horizontally, vertically or diagonally. The source code3 has about 1664 lines of code, 3 
tiers and four main components of manage games, data and presentation ways. 

Some participants (experimental subjects) count with the code annotations, including information 

about the previous architectural rationale, specified at the source code level, using the library in the 

folder 'lib' called 'ARAT.jar' (Architectural Rationale Annotations Tool 4 ). It has documented 

architectural reasons and shows a report with the location and information marked as annotations. All 

participants had access to the Software Architecture Document SAD, using different architecture 

perspectives: scenarios, logic, development, process and physical.  Additionally, the SAD includes 

different models such as use cases, classes, sequence, packages, components, and deployment 

diagrams. 

3.5 Tasks 

The experiment consisted of three tasks to be performed by each participant:  

1. Additive maintenance (New game 'PopOut'): the tiles can be placed in a full column, in this 

case, the player inserts the tile and all the tiles descend one position, eliminating the tile 

below. As a result of this new rule, other situations appear, for example, both players can, at 

the same movement, achieve connect four, and then the game must continue. Also, the player 

who places a tile could lose the game. This would happen if the tile is placed in a full column 

and gets your opponent to keep your tiles in line. 

2. Corrective maintenance (Architectural change): the result of a game must be stored locally in 

a file located in a directory of the system, this directory can be accessed by anyone who 

knows where the project files are located. It is a new requirement where the system includes 

                                                        
3 Source code: https://github.com/zahydo/cuatroenlinea  
4 ARAT: https://zahydo.github.io/arat-V1.0/ 

Documenting architectural rationale using source code annotations S. Hyun Dorado and J. Hurtado

209

https://github.com/zahydo/cuatroenlinea
https://zahydo.github.io/arat-V1.0/


the capacity for delegating the responsibility for managing the files with the information of 

the results to a server. It would wait for requests from the instances of the game. To keeping 

the data safe, considering a separate system from the game, so that they cannot be modified 

and these can be accessed by several instances of the game concurrently. 

3.  Architectural Rationale Documentation (Documentation): to verify the comprehension of the 

architecture and its Rationale, the participants documented the changes realized while the 

tasks before mentioned were performed, according to the documentation strategy assigned 

(including or not the ARAT model). Participants also wrote quality attributes to be achieved 
and potential techniques or strategies to be used. In the course of this task, the participants 

reviewed different software artifacts such as the SAD Software Architecture Document 

(Software Architecture Document), the source code and the architectural rationale code 

annotations when applied. 

3.6 Process 

The participants were automatically grouped into 2 pairs, using a web tool [17], which allows us to 

create random groups. The system source code was located on the ‘src’ folder, with annotations for 

one group and without annotations for the other; the reflection library and the annotation model 

library was located on the ‘lib’ folder.  The ‘ExampleSockets’ folder includes an example of a sockets 

based implementation suggested to the second task. Additionally, each participant had access to the 
Software Architecture Document in PDF format. 

The experiment begins with an introduction to the participants about the architectural rationale and 

related concepts. Then, the researchers presented the source code annotations, making an example for 

understanding the structures, use, and some constraints. After, the researchers presented the 

annotation model with architectural rationale information. Additionally, they explained as change 

tasks must be performed.  Corresponding material was delivered to each group and timestamps were 

taken at finish each. After carrying out all the tasks and delivering the results, each participant 

completed a survey with the following questions: 

1. Describe the reasons why the code was organized under the structure you proposed. 

2. Describe the reasons why your architectural structure had to be altered to meet the requested 

changes. 

3. Was the rationale information provided in this experience useful for making the 

modifications? 

4. Why do you think it is important to document the Architectural Rationale in software 

development? 

3.7 Analysis procedure 

The systems with the modifications were received for evaluating the level of correctness in the 

accomplishment of the tasks.  In order to determine the results of the experiment, a hypothesis test 

was carried out to confirm that the use of code annotations with information from architectural 

rationale improves the maintainability of Architecture in terms of efficiency, effectiveness, and 

comprehension of the architecture and its rationale, when changes are made with an impact at an 
architectural level. The test of the hypothesis used is the t-  student test, this allows us to determine if 

there is a statistical significance between two variables, this means that the presence of the 

independent variable positively affects the results of the dependent variables. For this test was 

necessary to have two equal samples and the same variance must be assumed between the samples of 

Documenting architectural rationale using source code annotations S. Hyun Dorado and J. Hurtado

210



each group. In this work, the groups are divided into: with annotations group (With) and without 

annotations group (Without). 

4 Execution 

The configuration of the project is done in the NetBeans development environment and the files 

were downloaded from the source code of the experimental material. The participants began to 

perform the tasks and the completion times of each task for each participant were captured. As each 

participant completed the tasks, the survey was delivered, for gathering qualitative information that 

contributes to the definition of the final structure of the annotation model for the architectural 

rationale. Below some of the most accurate responses to the survey made to the participants are 
presented: 

1. The system was organized in this way to facilitate the maintainability and extensibility of the 

architecture. 

2. Because a new functionality was required in a new component where the data will be stored 

for security. 

3. In general terms, the participants answered that the documentation strategy that corresponded 

to them was useful. 

4. At a general level, the answer to participants was what is important to facilitate the 

maintainability of a system to subsequent people to those who develop it. 

5. In this question, the participants named the following aspects that seemed important to them: 

Type of requirement to satisfy, requirement priority, rationale modifications history. 

Table 3 shows the results for the efficiency, effectiveness, and comprehension of the Architecture and 

its Rationale in the task realization that involve changes in the Software Architecture. 

 

 % Efficiency % Effectiveness % Comprehension 

Participant With Without With Without With Without 

1 83.3 53.7 80 53.3 90 50 

2 86.1 103.7 86.7 93.3 80 62 
Table 3: Variables results 

5 Analysis 

5.1 Descriptive statistics 

Each of the hypotheses considers an independent variable on a nominal scale with two levels (with 

annotations, without annotations) and a dependent variable (effectiveness, efficiency or 

comprehension of the architecture and its rationale). To confirm the hypotheses a t-student test was 
used assuming a normal distribution, variances and sample size equal, for two independent 

measurements. Because we are interested in knowing if the results are above the normal distribution, 

a one-tailed t student test is used. 

Documenting architectural rationale using source code annotations S. Hyun Dorado and J. Hurtado

211



5.2 Data set preparation 

To determine the value of the dependent variables, it was necessary to transform the task 

completion times into minutes. To calculate the comprehension level of the architecture and its 

rationale it was necessary to make a manual review of the results of task 3 of each participant, in 

addition, it was necessary to evaluate the answers of the survey that was given to each participant, 

which confirm the comprehension of the architecture and rationale involved, as well as giving a 

critical value to the annotation model. 

5.3 Hypotheses testing 

Once the dependent variables have been calculated, the hypotheses were tested through the t 

student test with a level of significance equal to 0.05. 

Efficiency: The average efficiency percentage for the group with code annotations was 84.7%, 

unlike the group without code annotations, which had an average efficiency percentage of 78.7%. 

However, the p-value was 0.4913 which is much higher than alpha (0.05), therefore, we accept the 

null hypothesis and reject the alternative hypothesis.   

Effectiveness: The results show that the effectiveness average for the group with code annotations 

was 83.3% and the average percentage for the group without code annotations was 73.3%. However, 

with the p-value of 0.4369 greater than 0.05, the alternative hypothesis must be rejected and the null 

hypothesis accepted. 

Comprehension: The average comprehension for the group with the code annotations was 85%, 

unlike the group without annotations which is 56%. When the p-value is calculated, it gives 0.0327, 
which is less than our alpha 0.05, therefore, we accept the alternative hypothesis and reject the null 

hypothesis. This means that the use of code annotations with architectural rationale information does 

not improve the efficiency or effectiveness in making changes with an architectural impact, but we 

can affirm that the increase in the understanding of the architecture and its rationale is due to the use 

of source code annotations with structured rationale information. In Figure 1 we can observe the 

distribution of the data with respect to the average of the efficiency and effectiveness of each group, 

where we can see that the efficiency and effectiveness average is higher in the group with code 

annotations, however, the results were kept within the range of the group without code annotations, 

due this we can affirm that the increase in the median for the group with annotations is due to other 

factors and not to the use of code annotations with information from architectural rationale. Finally, 

we can observe that the values for the group with code annotations were greater and were outside the 
range of the results of the group without code annotations, for this reason, there is a statistic 

significance in the results about the architecture and its rationale documentation comprehension. 

Figure 1: t-student results 

Documenting architectural rationale using source code annotations S. Hyun Dorado and J. Hurtado

212



6 Discussion 

According to the results obtained from this quasi-experiment, the documentation of the 

architectural rationale through the use of code annotations has a positive effect on the comprehension 

of the architecture and its rationale, however, it does not guarantee efficiency or effectiveness for 

executing maintenance tasks at the same system. When making changes with an architectural impact, 

which does not indicate that the efficiency and effectiveness of making changes with an architectural 

impact do not depend on the rationale specification, but there are other factors such as the ability to 

develop, the experience, the development environment among other factors. The results showed that 

some participants performed better at a functional level than others, this is because some of them were 
currently working on software development and others have not developed software for some period. 

The latter is engaged in other engineering tasks, such as requirements analysis and systems design. 

The participants who read the information from the annotations expressed better the reasons for which 

the system was constructed in that way and the underlying reasons for the new modifications. This 

quasi-experiment in addition to testing the usefulness of the code annotations in comprehension the 

architecture and the decisions behind it, allowed us to capture comments and advice that contribute to 

the definition and improvement of the annotation model, through a survey in which the participants 

freely express their impressions of the architectural rationale, for example, several of them maintained 

that they would make use of the annotation model in the industry, since this facilitates the 

transmission of knowledge over time and of the people who are responsible for maintenance. It is 

important to have the participants motivated with the experiment, this allows them to be much more 
active in the development of tasks and have full interest in experimenting. The training on 

architectural rationale should be addressed with more time, since it is an aspect that is not usually 

taught in the academy or the industry, but which, according to the participants, should be addressed to 

avoid future problems in the maintenance of a software system. The use of code annotations is also a 

subject that requires training and exemplification time, this technology is frequently used in many 

known use cases, however, declaration and use of personalized code annotations is little known and 

requires an additional effort to generate value as a complementary tool. 

7 Conclusions 

In this quasi-experiment, we evaluated whether the code annotations with architectural rationale 

information has a positive impact on the efficiency, effectiveness, and comprehension of the 

architecture and its rationale, managing some architectural changes tasks. For this, a game system was 

changed which participants had some modifications and documented the reasons why the system 

changed its structure. As the central measurement trends shows,  the average and the median was 
better for the annotation model with respect to the efficiency, effectiveness, and comprehension of the 

architecture and its rationale, however, when the hypothesis confirmation tests are carried out, the use 

of the code annotations with architectural rationale information only benefits the comprehension of 

the architecture and its rationale. However, the efficiency and effectiveness of making changes with 

an architectural impact do not depend on the way as the rationale is specified, because there are other 

affecting factors such as the ability to develop, the experience, the development environment, and 

other factors. Finally, a survey was carried out to obtain the opinion of the participants regarding the 

documentation of the rationale and its importance, to which the participants agree, that it facilitates 

the maintainability work and the comprehension of the architecture of a system implemented by 

others, for instance, third party development. As future work, we intend to make modifications to the 

annotation model based on the observations and results of this quasi-experiment, to develop a 
controlled experiment with larger samples of engineers and with a second system closer to 

Documenting architectural rationale using source code annotations S. Hyun Dorado and J. Hurtado

213



commercial development problems. In other future work, we want to raise the annotation model to the 

free development community to have more observations by developers from around the world, to 

detail the annotation model with real needs of programmers and designers. As a long-term work, we 

want to establish a model of annotations supporting the modeling through UML, which can identify, 

using a metaphor, the concept of the architectural rationale. 

References 

[1] A. E. Sabry, “Decision Model for Software Architectural Tactics Selection Based on Quality 

Attributes Requirements,” Procedia Comput. Sci., vol. 65, no. Icc, pp. 422–431, 2015. 

[2] M. Shahin, P. Liang, and Z. Li, “Do architectural design decisions improve the understanding 
of software architecture? two controlled experiments,” Proc. 22nd Int. Conf. Progr. Compr. - 

ICPC 2014, pp. 3–13, 2014. 

[3] L. De Silva and D. Balasubramaniam, “Controlling software architecture erosion: A survey,” 

J. Syst. Softw., vol. 85, no. 1, pp. 132–151, 2012. 

[4] A. Jansen and J. Bosch, “Software Architecture as a Set of Architectural Design Decisions,” 

5th Work. IEEE/IFIP Conf. Softw. Archit., pp. 109–120, 2005. 

[5] J. E. Burge, J. M. Carroll, R. McCall, and I. Mistrík, Rationale-Based Software Engineering, 

Springer. Springer-Verlag Berlin Heidelberg, 2008. 

[6] N. B. Harrison and P. Avgeriou, “How do architecture patterns and tactics interact? A model 

and annotation,” J. Syst. Softw., vol. 83, no. 10, pp. 1735–1758, 2010. 

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented 
Software architecture, 1st ed. Germany, 1996. 

[8] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software Architecture, 

Patterns for Concurrent and Networked Objects, John Wiley., vol. 2. West Sussex PO19 

1UD, England: John Wiley & Sons, Ltd, 2000. 

[9] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, Second. Addison 

Wesley, 2003. 

[10] J. S. van der Ven, A. G. J. Jansen, J. A. G. Nijhuis, and J. Bosch, “Design Decisions: The 

Bridge between Rationale and Architecture,” in Rationale Management in Software 

Engineering, 2006. 

[11] A. H. Dutoit, R. McCall, I. Mistrík, and B. Paech, “Rationale Management in Software 

Engineering: Concepts and Techniques,” in Rationale Management in Software Engineering, 

SPI Publisher Services, Pondicherry, 2006. 
[12] L. Bratthall, E. Johansson, and B. Regnell, “Is a Design Rationale Vital when Predicting 

Change Impact? -- A Controlled Experiment on Software Architecture Evolution,” in Product 

Focused Software Process Improvement, 2000, pp. 126–139. 

[13] M. Nosáľ, M. Sulír, and J. Juhár, “Source Code Annotations as Formal Languages,” Comput. 

Sci. Inf. Syst. (FedCSIS), 2015 Fed. Conf., vol. 5, no. 1, pp. 953–964, 2015. 

[14] M. Das et al., “Source Code Annotation Language,” vol. 2, no. 12, 2009. 

[15] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “This is a preliminary version of a chapter in 

Reporting Experiments in Software Engineering,” 2007. 

[16] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide to controlled experiments of 

software engineering tools with human participants,” Empir. Softw. Eng., vol. 20, no. 1, pp. 

110–141, 2015. 
[17] “Echalo a la suerte.” [Online]. Available: https://echaloasuerte.com/draw/new/groups/. 

 

Documenting architectural rationale using source code annotations S. Hyun Dorado and J. Hurtado

214


