
Reachability Modulo Theory Library

(Extended Abstract)

Francesco Alberti1, Roberto Bruttomesso2, Silvio Ghilardi3, Silvio Ranise4 and
Natasha Sharygina1

1 Formal Verification and Security Lab.
University of Lugano, Switzerland

francesco.alberti@usi.ch,natasha.sharygina@usi.ch
2 Atrenta

Grenoble, France
roberto@atrenta.com

3 Università degli Studi di Milano
Milan, Italy

ghilardi@dsi.unimi.it
4 FBK - Irst
Trento, Italy

ranise@fbk.eu

Abstract

Reachability analysis of infinite-state systems plays a central role in many verification
tasks. In the last decade, SMT-Solvers have been exploited within many verification tools
to discharge proof obligations arising from reachability analysis. Despite this, as of today
there is no standard language to deal with transition systems specified in the SMT-LIB
format. This paper is a first proposal for a new SMT-based verification language that is
suitable for defining transition systems and safety properties.

1 Introduction

Reachability analysis plays a central role in many verification tasks. This kind of analysis
addresses the problem of verifying if a given system can reach a particular configuration of
interest, representing, e.g., the violation of properties which should be satisfied by every state
reachable by the system, a goal that should be always reachable, etc.

While a finite-state representation is well-suited to formally represent hardware systems, it
fails to deal with several aspects of software systems, because they give rise to infinite state
spaces. Examples of such aspects include parameterization, i.e., systems with an unbounded
numbers of components, systems handling variables defined over unbounded domains, dynamic
processes creation and memory allocation, etc. The reachability problem for infinite-state
systems is, in general, undecidable. Nonetheless it received—and still is receiving—a lot of
attention, as many verification tasks of real systems can be reduced to it. For example, think
about a protocol ensuring the mutual exclusion in a multi-agent system. The configuration of
interest is that in which at least two agents are, at the same time, in the critical section.

It is not difficult to see that the class of infinite-state systems is huge, ranging from im-
perative programs to parameterized protocols, access control policies, timed automata, etc.
Each class of systems requires ad hoc techniques, heuristics, algorithms and arrangements to
effectively perform a reachability analysis. Since there is no standard for the specification of
infinite-state systems, it is extremely difficult to evaluate and compare different tools solv-
ing the same problems. Furthermore, there is no collection of benchmarks which would be

P. Fontaine, A. Goel (eds.), SMT 2012 (EPiC Series, vol. 20), pp. 67–76 67

francesco.alberti@usi.ch
natasha.sharygina@usi.ch
roberto@atrenta.com
ghilardi@dsi.unimi.it
ranise@fbk.eu

Reachability Modulo Theory Library F. Alberti et al.

extremely useful in helping developers in advancing the performance of their tools. Three
notable exceptions are (1) the Intermediate Verification Languages (IVLs) for program verifi-
cation such as Boogie [3] and Why [9], (2) the Numerical Transition Systems (NTSs) Library
(richmodels.epfl.ch/ntscomp) whose aim is to provide a common general format and a open
library of benchmarks for NTSs, i.e. simple models of computation involving infinite (or very
large) data domains, such as integers, rationals or reals, and (3) the Verification Modulo Theo-
ries (VMT) Initiative (www.vmt-lib.org) whose ambitious goal is to provide a common format
and a library of verification problems for transition systems symbolically described in the SMT-
LIB standard.

The aim of this paper is to propose a new language for the specification of an important class
of reachability problems for infinite-state systems, represented in an extension of the SMT-LIB
language, so that a collection of benchmarks can be built and verification tools can be compared
meaningfully. On the one hand, our aim is more general than IVLs and the NTS Library since
we consider a larger class of systems; e.g., not only programs or counter automata but also
distributed systems and timed networks. On the other hand, we are more focused than the
VMT Initiative since we consider only reachability problems based on our experience with the
tools mcmt [13] and Safari [1].

For the sake of simplicity and uniformity in presenting our language, we do not consider
ad-hoc constructs (e.g., abstract reachability trees) for structure preserving abstractions of the
control-flow, the recursive or the multi-procedure calls of (imperative) programs that are im-
portant ingredients of many software verification techniques for reachability problems. The
study of how to combine our proposal with such constructs is left to future work. Some prelim-
inary investigations to represent imperative programs (without recursion and procedures) in a
declarative framework similar to the one proposed here have been done in [1].

We hope that this paper can contribute to the debate about the representation of bench-
marks for verification problems and advance the state of the art in the field, as happened for,
e.g., the SMT-LIB library [18] for SMT-Solvers, TPTP library [20] for theorem proving, or
SATLIB library [15] for propositional satisfiability solvers.

Outline of the paper. We introduce an overall description of transition systems modulo
theories and the related reachability problem in Section 2. Section 3 presents a suitable language
for the definition of transition systems and reachability problems as an extension of the SMT-
LIB. We conclude in Section 4. An extended version of this report as well as examples written
in the proposed language can be found at http://www.oprover.org/rmt-lib.

2 SMT-based Transition Systems

We assume the usual first-order syntactic notions of signature, term, formula, and so on. Fol-
lowing the SMT-LIB tradition, a theory is a pair T = (Σ, C) where Σ is a signature and C a set
of Σ-structures which are called models of T . Given a theory T = (Σ, C) and a set v of “fresh”
constant, function, or predicate symbols (i.e. v ∩ Σ = ∅), a T -formula φ(v) is a formula built
out of the symbols in v ∪ Σ. The formula φ can be seen as a Tv-formula where Tv = (Σ′, C′)
with Σ′ = Σ ∪ v and C′ contains all the Σ′-structures whose reduct to Σ is a model of T .1 We
say that a T -formula φ(v) is T -satisfiable iff φ is Tv-satisfiable, i.e. if there exists a model M
of Tv such that φ is true in M. If v and v′ are two sets of fresh symbols, then v,v′ denotes
their union v ∪ v′ and φ(v,v′) is the formula built out of the symbols in v ∪ v′ ∪ Σ.

1Let Σ and Σ′ be two signatures such that Σ ⊆ Σ′. If M is a Σ′-structure, then its reduct to Σ is obtained
from M by forgetting the interpretations of the symbols in Σ′ \ Σ.

68

richmodels.epfl.ch/ntscomp
www.vmt-lib.org
http://www.oprover.org/rmt-lib

Reachability Modulo Theory Library F. Alberti et al.

In our framework, a transition system over a background theory T = (Σ, C) is defined in
a completely declarative way as a tuple ST = (v, I(v), τ(v,v′)). The set v of fresh symbols
is called the set of state variables of ST ; a formula φ(v) is called a state formula. I(v) is a
state formula representing the set of initial states. We assume the availability of the set v′ of
primed copies of the state variables in v; a formula τ(v,v′) is called a transition formula. The
transition formula τ(v,v′) represents the transition relation, defining an association between
the state variables v immediately before the execution of the transition, i.e. in the actual state,
and the state variables v′ immediately after the execution of the transition, i.e. in the next
state. The nature of T determines if ST is a finite- or infinite-state system.

Let ST = (v, I(v), τ(v,v′)) be a transition system over a background theory T and vn be
obtained from the set v by renaming a copy of each state variable in v with n primes. The
(unbounded) reachability problem for ST is defined as a pair (ST , F (v)) where F (v) is a state
formula describing a (possibly infinite) set of states, called final, error or goal states. The
solution of this problem exists, i.e., a set of states represented by F (v) is reachable by ST if it
exists n ≥ 0 such that

I(v(0)) ∧ τ(v(0),v(1)) ∧ · · · ∧ τ(v(n−1),v(n)) ∧ F (v(n)) (1)

is T -satisfiable. When, besides the transition system ST and the final formula F (v), a bound
n ≥ 0 is known, we speak of the bounded reachability problem for ST . A solution to this problem
exists if there exists 0 ≤ n ≤ n such that (1) is T -satisfiable. In the following, we focus on
unbounded reachability problems since their bounded version has received a lot of attention in
the SMT literature; e.g., [16] discusses the problem of using the SMT-LIB language to specify
transition systems in the context of Bounded Model Checking (BMC) and, more recently, [17]
puts forward the need for a common standard for BMC problems. Indeed, our proposal can be
easily adapted to bounded reachability problems.

A well-known method (see, e.g., [19]) to solve the reachability problem amounts to repeatedly
computing pre-images (post-images) of a final (initial) formula with respect to the transition
formula. Formally, given a set s(v) of states and a transition formula τ(v,v′), the post-image
of s(v) w.r.t. τ(v,v′) is the formula ∃v′.(s(v′) ∧ τ(v′,v)), while the pre-image is the formula
∃v′.(s(v′) ∧ τ(v,v′)). The reachability procedure terminates in two cases. The former is when
a fix-point is reached, i.e. when the set of states described by the pre-image (post-image, resp.)
computed at the n-th iteration is a sub-set of the set of states represented by the union of all the
pre-images (post-image, resp.) computed in previous iterations (this is called a fix-point test).
The latter is when the intersection of the currently computed pre-image (post-image, resp.) with
the set of initial (final, resp.) states is non-empty (this is called a safety test). Roughly, the idea
is to unwind the transition formula until either all reachable states of ST have been explored
or an instance of (1) is found to be satisfiable for a certain n.2 Formally, the intersection
between two set s1(v) and s2(v) of states is empty iff the state formula s1(v) ∧ s2(v) is T -
unsatisfiable and the set s1(v) is a sub-set of the set s2(v) iff the state formula s1(v) ∧ ¬s2(v)
is T -unsatisfiable. We observe that, when the set v of state variables contains function and
predicate symbols, the formulae defining post- and pre-images are second-order formulae. To
avoid T -satisfiability checks involving second-order formulae, we assume that it is possible to
compute first-order formulae that are equivalent to the second order post- or pre-images so that
safety and fix-point tests can be mechanized by currently available SMT solvers. In many cases
of practical interest, this assumption holds as there is a close relationship between second order
logic and many-sorted first-order logic (see [8] for details). An alternative to stay in the realm

2Other techniques based on overapproximations of reachable states have been recently proposed [5].

69

Reachability Modulo Theory Library F. Alberti et al.

of first-order logic is to encode functions and predicates into the theory of arrays as done, for
example, in [12].

A naive implementation of the reachability procedure is based on a client-server architecture.
The client repeatedly computes pre- or post-images and generates the proof obligations encoding
fix-point and safety checks. The server is an SMT solver capable of discharging the proof
obligations generated by the client. In theory, suitable constraints on the background theories
and the shape of the formulæ in the SMT-based transition system should be identified to
guarantee the effectiveness of the reachability procedure, such as decidability of the satisfiability
problems encoding safety and fix-point tests, and representability of the fix-point within a
class of formulæ for termination. In practice, suitable algorithms and heuristics are needed to
scale up to the verification of interesting systems. In these respects, a classification of SMT-
based transition systems would be extremely helpful to help tools select the right techniques to
efficiently explore the search space of a reachability problem.

Example 1. Consider a simplified variant of the Bakery algorithm in which a finite (but
unknown) number of processes should be granted mutual exclusion to a critical section by using
tickets that uniquely identify processes. Processes are arranged in an array whose indexes (i.e.
tickets) are linearly ordered and each process can be in one of three states: idle, wait, critical. At
the beginning, all processes are in the idle state. There are three possible transitions involving
a single process with index z (in all transitions, the processes with index different from z remain
in the same state): (τ1) z is in idle, all the processes to its left are idle, and z moves to wait;
(τ2) z is in wait, all the processes to its right are idle, and z moves to critical; and (τ3) z is in
critical and moves to idle. The system should satisfy the following mutual exclusion property:
there are no two distinct processes in the critical section at the same time.

We define a background theory TB = (ΣB , CB) as follows. ΣB contains Ind and Loc as sort
symbols, three constant symbols i, w, and c of sort Loc, and a predicate symbol < (written
infix) of arity Ind × Ind . A model in CB interprets < as a linear order over the elements in the
interpretation of Ind and Loc is a set of three elements, the interpretations of the constants i,
w, and c.

The SMT-based symbolic transition system (vB , IB , τB) is defined as follows: vB is a sin-
gleton containing the function symbol a of arity Ind → Loc, IB is the formula ∀z.a(z) = i, and
τB is the disjunction of the following three formulae:

τ1(a, a′) := ∃z. (a(z) = i ∧ ∀w.w < z → a(w) = i ∧ ∀j.a′(j) = ite(j = z, w, a(j))
τ2(a, a′) := ∃z. (a(z) = w ∧ ∀w.z < w → a(w) = i ∧ ∀j.a′(j) = ite(j = z, c, a(j))
τ3(a, a′) := ∃z. (a(z) = c ∧ ∀j.a′(j) = ite(j = z, i, a(j)),

where z, w, j are variables of sort Ind .

Finally, the error formula F can be written as ∃z1, z2.(z1 6= z2 ∧ a(z1) = c ∧ a(z2) = c),
where z1, z2 are variables of sort Ind .

Notice that T
{a}
B is the theory obtained by extending TB with the function symbol a that is

to be interpreted as a function mapping elements of the interpretation of Ind to elements of the
interpretation of Loc. Alternative formalization are possible. For example, we could have used
the theory of arrays whose indexes are of sort Ind and whose elements are of sort Loc. The state
variable a is simply an array constant and an expression of the form ∀j.a′(j) = ite(j = z, c, a(j))
in the τj ’s above could be written as a′ = store(a, j, c) for c a constant of sort Loc.

70

Reachability Modulo Theory Library F. Alberti et al.

3 Proposal

We describe an extension of the SMT-LIB language that is suitable for specifying reachability
problems along the lines of Section 2. Our proposal extends the set of SMT-LIB v.2 script
commands in order to define the background theory, the state variables, the initial, transition,
and goal formulae that together uniquely identify a reachability problem. As in the SMT-LIB
standard, a script is used to communicate with a tool in a read-eval-print loop in such a way that
the next command is parsed, executed, and a response message printed until all commands are
considered. Possible responses may vary from a single symbol (e.g., reachable, unreachable,
or unknown) to complex expressions like a (finite) sequence of formulae encoding the run of the
system leading it from a state satisfying the initial formula to one satisfying the final formula.

In the following, we fix an SMT-based symbolic transition system S = (v, I(v), τ(v,v′))
over a background theory T = (Σ, C) and a final formula F (v). Below, we let 〈symbol〉,
〈numeral〉, 〈sort〉, 〈sorted var〉, and 〈term〉 be syntactic categories inherited from the SMT-
LIB v.2 standard (see [4] for the definition).
The background theory. The command

(set-theory 〈symbol〉)
allows us to specify the “kernel” of the background theory T identified by 〈symbol〉 and available
among those defined in the SMT-LIB v.2 standard, e.g., Core, Ints, and ArraysEx.

Remark 1. In the SMT-LIB standard, a benchmark problem is associated with a logic that
identifies both a class of models and a set of formulae. The main reason is that there may exist
sets of formulae of a theory that admits more efficient satisfiability procedures than other sets.
For example, the satisfiability of conjunctions of difference logic constraints over the integers in
which no negated equalities occur can be checked in polynomial time whereas the satisfiability of
arbitrary difference logic constraints becomes NP-complete. Instead, for a reachability problem
we specify a background theory (via the command set-theory) according to Section 2.

Our motivation is the following: there exist techniques (see, e.g., [2] for an example in a
framework which is similar to the one proposed here) to over-approximate the set of reachable
states with simple formulae (e.g., containing only existential quantifiers) despite the fact that
the formulae in the SMT-based transition system are more complex (e.g., they contain both
existential and universal quantifiers as the disjuncts τ1 and τ2 of the transition formula in
Example 1). If we used such an over-approximation of the fix-point in the safety test and this
is negative (i.e. the intersection is empty), we are entitled to conclude that also the safety test
with the exact fix-point is negative and the final formula is unreachable. Other techniques (see,
e.g., [7, 14]) allows one to transform a complex reachability problem expressed with formulae
containing quantifiers into one in which only quantifier-free formulae occur and such that the
former admits a solution if the latter does so. For example, the counting abstraction technique
in [7] transforms the formulae of cache coherence protocols into quantifier-free formulae of
Linear Arithmetic over the integers. The crucial advantage of this kind of techniques is a
dramatic simplification of the formulae encoding both the safety and the fix-point tests. As
a consequence, the satisfiability problems may become significantly simpler (sometimes, the
result is even to transform the problem into an equivalent one falling into a decidable class).

From the viewpoint of the specification of reachability problems, it is difficult (if possible at
all) to foresee if the techniques discussed above can be applied and even what kind of transition
system they produce. In fact, not only the shape of the formulae may change but also the
background theory of the transformed transition system can be different as the example of the
counting abstraction shows. Deeper insights into the techniques used by reachability proce-
dures based on SMT techniques must be gained in order to design a more precise specification

71

Reachability Modulo Theory Library F. Alberti et al.

language.

The kernel theory can be extended by declaring additional sort and function symbols by
using standard SMT-LIB v.2 commands, such as declare-sort, define-sort, declare-fun,
and define-fun (see [4] for their definition). The declared additional symbols are indeed
uninterpreted and to constrain their interpretations, we introduce the command

(declare-axiom 〈term〉)
that defines the axiom encoded by the Boolean term term and extends the kernel theory. We
assume term to be a sentence of the background theory of the transition system, i.e. it contains
no state variables.

Example 2. Consider the theory TB in Example 1. It can be seen as an extension of the
theory Core with the sort symbols Ind and Loc, the weak leq and strict le predicate symbols
for the linear order, and four axioms to constrain their interpretation:
(set-theory Core)

(declare-sort Ind) (declare-fun leq (Ind Ind) Bool) (declare-fun le (Ind Ind) Bool)

(declare-axiom (forall ((?x Ind)) (leq ?x ?x)))

(declare-axiom (forall ((?x Ind) (?y Ind)) (=> (and (leq ?x ?y) (leq ?y ?x))

(= ?x ?y))))

(declare-axiom (forall ((?x Ind) (?y Ind) (?z Ind)) (=> (and (leq ?x ?y) (leq ?y ?z))

(leq ?x ?z))))

(declare-axiom (forall ((?x Ind) (?y Ind)) (or (leq ?x ?y) (leq ?y ?x))))

(declare-axiom (forall ((?x Ind) (?y Ind)) (= (le ?x ?z)

(and (leq ?x ?y) (not (= ?x ?y))))))

(declare-sort Loc)

(declare-fun i () Loc) (declare-fun w () Loc) (declare-fun c () Loc)

(declare-axiom (and (not (= i w)) (not (= i c)) (not (= w c))))

(declare-axiom (forall ((?x Loc)) (or (= ?x i) (= ?x w) (= ?x c))))

The first three axioms express the fact that leq is a linear order and the fourth axiom defines
its strict version le. The last two axioms above constrain the interpretation of Loc to be a set
containing exactly the interpretation of the constants i, w, and c.

Since constraining the interpretation of a sort to be a finite set (as it is the case of Loc in
the example above) is quite common, we introduce the command

(define-subrange 〈symbol〉 (〈numeral1〉 〈numeral2〉))
that introduces the sort symbol and the numerals in the interval [numeral1 . . . numeral2]
as constants of that sort that are to be interpreted as distinct elements. For instance, we
can replace the declarations of the sort Loc, the constants i, w, c, and the two axioms in the
example above with (define-subrange Loc (1 3)) and assume that the constant i is mapped
to the numeral 1, w to 2, and c to 3. In other words, the command define-subrange defines
an enumerated datatype over a certain sort whose constants are identified as the numerals
in a contiguous sub-set of the naturals. An alternative would be a command to define an
enumerated datatype by listing all its elements. In case of large sets of elements, the drawback
is that explicit enumerations can be rather tedious. Instead, the corresponding definition by
the define-subrange command is very compact.

Remark 2. The possibility of defining theories by using finitely many axioms was available in
SMT-LIB v.1.2 [18] but is no more so in SMT-LIB v.2 [4]. This is justified by the observation
that many theories in the standard require infinitely many axioms [4]. In our experience with
the model checker mcmt [13] and its successor Safari [1], the flexibility of defining theories
by finitely many axioms is crucial to identify classes of the reachability problem that guarantee

72

Reachability Modulo Theory Library F. Alberti et al.

the decidability of the satisfiability problems encoding safety and fix-point tests or the termi-
nation of the reachability procedure. Our experience was driven by the theoretical framework
developed in [12] that allowed us to identify sufficient conditions for the mechanization and
termination of a class of SMT-based transition systems, called array-based systems. A key
ingredient of such conditions is a class of background theories that are (i) expressive enough to
encode practically interesting transition systems and (ii) “simple” enough to guarantee both
the decidability of the safety and fix-point tests and sometimes also the termination of (back-
ward) reachability. Roughly, the axioms needed for such “simple” background theories require
just a finite set of predicate symbols and a finite set of universal sentences (i.e. sentences of
the form ∀x.ϕ(x) for x a finite tuple of variables of appropriate sort and ϕ a quantifier-free
formula). The theory TB in Example 1 (see also the box in Example 2) is an instance of a
“simple” theory in this sense.

From a practical point of view, an obvious question arises: can available SMT solvers cope
with such a flexible way of defining theories? The answer is offered by the proposal of several
quantifier instantiation procedures (see, e.g., [10] and the references therein) that are quite
successful in checking the satisfiability of formulae containing quantifiers. An ad hoc technique
combining quantifier instantiation and quantifier-free reasoning has been proposed together with
some heuristics [11] to discharge the proof obligations arising in the backward reachability of
array-based systems. An alternative to quantifier instantiation procedures would be to encode
the additional symbols in complex theories for which satisfiability procedures are available. For
instance, the standard less-than relation in the theory Ints of the standard SMT-LIB v.2 (see
page 31 of [18]) can be taken as the linear order < of Example 1; many state-of-the-art SMT
solvers provide support for the fragment of Ints containing the less-than relation.

To summarize, a careful use of the command declare-axiom can have two advantages. First,
it is possible to precisely define background theories that allow for proving important properties
of classes of reachability problems. Second, reasoning modulo such background theories can be
efficiently supported by available SMT solvers when the declared axioms allow the maximal
reuse of available procedures, possibly leveraging recent advances in quantifier instantiation
procedures.

The SMT-based transition system. Once the background theory T has been declared, we need
to specify the SMT-based transition system S = (v, I(v), τ(v,v′)). The command

(declare-state-var 〈symbol〉 (〈sort〉∗) 〈sort〉)
declares the state variable symbol together with its arity. This is similar to the behav-
ior of the command declare-fun in the SMT-LIB v.2 standard with a key difference:
declare-state-var also declares a composed symbol

(primed 〈symbol〉)
with the same arity of symbol. This is the crucial syntactic extension to the SMT-LIB v.2
standard, required to create a relationship between the state variable symbol in v and its copy
symbol′ in v′. The former identifies the value of the state variable immediately before the
execution of a transition whereas the latter the value immediately after.

The command
(declare-initial 〈term〉)

defines the state formula encoded by the Boolean term term characterizing the set of initial
states, and the command

(declare-transition 〈term〉)
defines one disjunct of the transition formula encoded by the Boolean term term. For the
command declare-initial, the term term may contain symbols of the background theory

73

Reachability Modulo Theory Library F. Alberti et al.

and the state variables; for the command declare-transition, the term may also contain the
primed version of the state variables.

Example 3. Let us consider the SMT-based transition system in Example 1. The state variable
a in the example of Section 1 can be declared as

(declare-state-var a (Ind) Loc).

As a consequence of the execution of this command, not only the function symbol a of arity
(Ind) Loc will be available but also the (atomic) symbol (primed a) with the same arity.

The state formula IB in Example 1 can be declared as

(declare-initial (forall ((?z Ind)) (= (a ?z) i)))

and

(declare-transition (exists ((?z Ind)) (and (= (a ?z) c)

(forall ((?w Ind)) (= ((primed a) ?w) (ite (= ?w ?z) i (a ?w))))))) .

is the disjunct τ3 of the transition formula τB .

In our experience with mcmt and Safari, we have found it useful to describe the behavior
of a transition system not only by transition formulae but also by system constraints, i.e.
formulae that must be satisfied in every state of a run of the system. Intuitively, constraints
usually encode invariants of the transition system that are enforced by the environment in which
the system evolves or by the way in which the state variables are updated. For example, it is
well-known that a Petri net can be specified by a SMT-based transition system over integer
state variables counting the number of tokens in each place; a system constraint is that each
state variable must be non-negative. For this reason, we introduce the command

(declare-system-constraint 〈term〉)
that adds the constraint encoded by the Boolean term term to the specification of the transition
system. We assume term to be a state formulae.
The final formula. Now that the transition system S = (v, I(v), τ(v,v′)) has been specified,
we are ready to specify the final formula F (v) to complete the specification of a reachability
problem (S, F). The command

(declare-goal 〈term〉)
sets the state formula encoded by the Boolean term term as the final (error or goal) formula.

Example 4. The final formula in Example 1 can be given as

(declare-goal (exists ((?z1 Ind) (?z2 Ind))

(and (not (= ?z1 ?z2)) (= (a ?z1) c) (= (a ?z2) c)))).

When there more than one declare-goal command in a script, the goal formula is obtained
by taking the disjunction of all their arguments.
Other commands. The command

(check-reachability)

actually tells the tool to check if the goal formula is reachable or not. The response to this
command can be reachable, unreachable, or unknown. The last symbol can be returned when
the tool has used over-approximation techniques.

74

Reachability Modulo Theory Library F. Alberti et al.

When there are more than one declare-goal command, it is left to the tool to decide to
consider each goal separately, all of them together, or some subset. It is known that it is usually
better to consider several goals at the same time.

Sometimes, the reachability problem is so complex that it is better to guide the tool to-
wards the fact that a certain goal is unreachable by constructing an appropriate sequence
(S, F1), ..., (S, Fn−1), (S, Fn) of reachability problems where Fn encodes the complement of the
safety property that S should satisfy while the complement of F1, ..., Fn−1 are invariants of S
that may hopefully contribute to show that Fn is unreachable. For example, if F1 has been
found unreachable, then its negation can be used in the fix-point tests when trying to establish
the unreachability of F2 by checking the satisfiability of s1(v) ∧ ¬F1(v) ∧ ¬s2(v) rather than
simply s1(v) ∧ ¬s2(v) for s1, s2 state formulae describing the sets of reachable states at two
successive iterations of the reachability procedure. Example of this technique can be found
in [2, 6].

Indeed, building the right sequence of reachability problems that allow one to prove a certain
safety problem is a difficult task that may well depend on the heuristics used by a tool to exploit
previously solved reachability problems. To simplify this kind of interaction, we believe it is
useful to have commands push and pop as in the SMT-LIB v.2 standard that allows one to
handle a stack of reachability problems. In order to keep those goals whose negation will
constitute a useful invariant for the proof of a certain safety property, we provide the command

(save-verified-goals)

that permits to save the goals that have been shown unreachable so as to prevent their deletion
by some pop command.

We also envisage other commands for setting the parameters of reachability solver. The
command

(set-option 〈reachability option〉)
may set how the search space should be computed (e.g., depth- or breadth-first) or heuristics
for the synthesis of invariants should be turned on. A value for reachability option can be

:produce-counterexample 〈b value〉
that tells the prover to return (or not according to the fact that b value is true or false) a
sequence of transition formulae that leads the system from a state satisfying the inital formula
to one satisfying the final formula. Indeed, every tool may define its own set of reachability
options. The command

(set-smt-option 〈option〉)
may suggest a set the options to the background SMT solver that should be used to discharge
the proof obligations encoding the safety or the fix-point tests where 〈option〉 is inherited from
the SMT-LIB v.2 standard.

Every reachability problem must end with the command

(exit)

4 Conclusion

We have presented an extension of the SMT-LIB which is suitable for the description of reach-
ability problems for a large class of heterogeneous transition systems. The problem of finding a
common standard is in dire need of solutions for many reasons, most importantly the inability
in performing comparison between competitor systems and the lack of a library for collecting
benchmarks. Further discussions on this problem are surely needed, and we hope the SMT
community will benefit from the ideas presented in this paper.

75

Reachability Modulo Theory Library F. Alberti et al.

References

[1] Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise, and Natasha Sharygina.
Lazy abstraction with interpolants for arrays. In LPAR, pages 46–61, 2012.

[2] Francesco Alberti, Silvio Ghilardi, Elena Pagani, Silvio Ranise, and Gian Paolo Rossi. Universal
guards, relativization of quantifiers, and failure models in model checking modulo theories. JSAT,
8(1/2):29–61, 2012.

[3] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In FMCO, pages 364–387, 2005.

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0.
www.SMT-LIB.org, 2010.

[5] Aaron R. Bradley and Zohar Manna. Checking safety by inductive generalization of counterex-
amples to induction. In FMCAD, pages 173–180. IEEE Computer Society, 2007.

[6] Roberto Bruttomesso, Alessandro Carioni, Silvio Ghilardi, and Silvio Ranise. Automated analysis
of timing based mutual exclusion algorithms. In NASA FM, 2012.

[7] Giorgio Delzanno. Automatic Verification of Parameterized Cache Coherence Protocols. In CAV,
LNCS, 2000.

[8] Herbert B. Enderton. A mathematical introduction to logic. Harcourt/Academic Press, 2001.

[9] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program Verification. In CAV, pages 173–177, 2007.

[10] Yeting Ge and Leonardo de Moura. Complete instantiation for quantified SMT formulas. In
Conference on Computer Aided Verification (CAV), 2009.

[11] Silvio Ghilardi and Silvio Ranise. Model Checking Modulo Theory at work: the integration of
Yices in MCMT. In AFM, 2009.

[12] Silvio Ghilardi and Silvio Ranise. Backward Reachability of Array-based Systems by SMT solving:
Termination and Invariant Synthesis. LMCS, 6(4), 2010.

[13] Silvio Ghilardi and Silvio Ranise. MCMT: A Model Checker Modulo Theories. In IJCAR, pages
22–29, 2010.

[14] Sumit Gulwani and Madan Musuvathi. Cover Algorithms and their Combination. In ESOP,
LNCS, 2008.

[15] Holger H. Hoos and Thomas Stützle. SATLIB: An Online Resource for Research on SAT. In I. P.
Gent, H. v. Maaren, and T. Walsh, editors, SAT, pages 283–292. IOS Press, 2000.

[16] Tim King and Clark Barrett. Exploring and Categorizing Error Spaces using BMC and SMT. In
Proc. of the 9th Int. Workshop on Satisfiability Modulo Theories (SMT), 2011.

[17] Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. Corral: A Solver for Reachability Modulo
Theories. In Proc. of Computer-Aided Verification (CAV), 2012.

[18] Silvio Ranise and Cesare Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2006.

[19] Tatiana Rybina and Andrei Voronkov. A logical reconstruction of reachability. In Ershov Memorial
Conf., volume 2890 of LNCS, pages 222–237. Springer, 2003.

[20] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

76

http://www.smt-lib.org
http://www.smt-lib.org

	Introduction
	SMT-based Transition Systems
	Proposal
	Conclusion

