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Abstract

Genome Rearrangement distance problems are used to infer the evolutionary distance
between genomes. These problems look at the number of mutations called rearrangement
events necessary to transform one genome into another. Two commonly studied rearrange-
ments are the reversal, which inverts a sequence of genes, and the transposition, which
exchanges two consecutive sequences of genes. Seminal works on that topic looked only at
the sequence of genes and assumed that no gene has more than one copy. More realistic
models have been assuming multiple copies of a gene or have been taking the number
of nucleotides between intergenic regions into account. This work combines these two
generalizations defining the Signed Intergenic Reversal Distance (SIRD) and the Signed
Intergenic Reversal and Transposition Distance (SIRTD) problems. Using a relationship
with a problem called Signed Minimum Common Intergenic String Partition, we show
Θ(k)-approximation algorithms for the SIRD and the SIRTD problems, where k is the
maximum number of copies of a gene in the genomes. Our experimental tests on simulated
genomes show that the algorithms tend to find low distances despite the high theorical
approximation factor.

1 Introduction

Estimation of the evolutionary distance between genomes is a fundamental task in the field of
comparative genomics. Many computational problems help in the estimation of that distance.
One important group of such problems is the so-called rearrangement distance problems. A
genome rearrangement event is a mutation that affects a large portion of the genome. Given a
set of possible events, a rearrangement distance problem aims at finding the minimum number
of events necessary to transform one genome into another.

The conservative rearrangement events are a particular class of mutations that do not affect
the quantity of genetic material, but instead affect the order in which genes appear. Two
important events with that characteristic are the reversal, which inverts a sequence of genes in
the genome, and the transposition, which exchanges two consecutive sequences of genes.

When solving rearrangement problems, the genomes may be modeled as strings, with each
character corresponding to a gene. In some problems, we take the orientation of the genes into
account and a sign (+ or −) is associated with each character to represent such orientation, in
that case we have signed strings.

H. Al-Mubaid, T. Aldwairi and O. Eulenstein (eds.), BICOB2022 (EPiC Series in Computing, vol. 83), pp. 31–42



Signed Rearrangement Distances with Intergenic Regions G. Siqueira et al.

The Signed Reversal Distance problem is the rearrangement distance problem that considers
the reversal event and model genomes as signed strings. Such problem has an exact linear time
algorithm if no gene has more than one copy [2], but it is in the NP-hard class if more than
one copy of the same gene exists [13]. The best known approximation factors for the general
case are 16k [9] (where k is the maximum number of copies of a character in the strings) and
O(log n log∗ n) [7] (where n is the size of the strings). Those approximation algorithms rely
on the relationship between the Reversal Distance in Signed Strings problem and the Signed
Minimum Common Partition [6] problem.

If the transposition event is considered alongside the reversal event, we have the Signed
Reversal and Transposition Distance problem, which is in the NP-hard class even if no gene has
more than one copy [10]. For such restrict case, there is an approximation algorithm of 2 [16].
For the general case, variations of the algorithms for reversal distance ensure approximations of
factors 24k and O(log n log∗ n).

These works use only gene order to represent a genome; however, there are more elements that
could be considered. For instance, consecutive genes in a genome are separated by nucleotides,
which are called intergenic regions. Recent studies argue that including intergenic region
information may improve genome comparison [3, 4]. That motivates the study of rearrangement
distances considering the distribution of sizes in intergenic regions. These studies considered
only the size of intergenic regions because rearrangement events do not break genes, while they
break intergenic regions and, therefore, there is no correspondence between intergenic regions
content for distinct genomes.

The Signed Intergenic Reversal Distance (SIRD) problem is the rearrangement distance
problem that considers the reversal event and models genomes as signed strings and a list of
intergenic region sizes. To the best of our knowledge, that problem was only studied when no
gene has more than one copy; in that case, the problem is in the NP-hard class, and there is an
approximation algorithm of factor 2 [11]. When combining the reversal and the transposition
events we have the Signed Intergenic Reversal and Transposition (SIRTD) problem, which was
also only studied when no gene has more than one copy; in that case, the problem is in the
NP-hard class, and there is an approximation algorithm of factor 3 [12].

This work focuses on the SIRD and SIRTD problems when more than one copy of each gene
is allowed. Section 2 formalizes the distance problems and defines other concepts, including
a related problem of string partition. Next, Section 3 uses a relationship between distance
and partition problems to produce an approximation algorithm for the SIRD and the SIRTD
problems. Finally, Section 4 shows experimental results with the proposed algorithms, and
Section 5 concludes the paper.

2 Definitions

In the following definitions we use ordered sequences of elements (lists). The number of elements
in a list X is denoted by |X|, and an element at the i-th position of a list X is denoted by
Xi. The list Y = rev(X) is equal to the list X in the reverse order (i.e., |X| = |Y | and Yi =
X|X|−i+1,∀1 ≤ i ≤ |X|). A list of characters is called a string. A string may have a positive or
negative sign associated with each element, and in that case we call it a signed string ; otherwise
it is an unsigned string. Given a signed string S, we denote by Y = srev(S) the string rev(S)
with all its signs swapped (i.e., |S| = |Y | and Yi = −S|S|−i+1,∀1 ≤ i ≤ |S|).

Given a string S, the set ΣS of distinct elements of S, disregarding signs, is the alphabet of
S and each element of ΣS is called a label. Note that characters +α and −α both have label α.
The occurrence of a label α in a string S is the number of characters of S with label α, and is
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denoted by occ(α, S). The maximum occurrence of a label in S is occ(S) = maxα∈ΣS
(occ(α, S)).

A character whose label has occurrence one is called a singleton, and a character whose label
has occurrence at least two is called a replica. Two strings S and P are balanced if ΣS = ΣP

and occ(α, S) = occ(α, P ),∀α ∈ ΣS . In other words, balanced strings are formed by the same
characters in possibly different orders and orientations.

Example 1. Three string S, P , and Q with some information describing them. Strings S and
P are balanced, while S and Q are not. String S has 2 singletons (A and D) and 2 replicas (B
and C).

S = [+A −B +C +C −D −B −C], S1 = +A, S7 = −C

P = [+C +C +C −A −B −D −B], P1 = +C, P7 = −B

Q = [+A +A +B −D −B −C −C], Q1 = +A, Q7 = −C

occ(A,S) = occ(A,P ) = 1, occ(A,Q) = 2

ΣS = ΣP = ΣQ = {A,B,C,D}, |S| = |P | = |Q| = 7

We encode a genome G = (S, S̆) with a sequence of n genes represented by a string S and a
sequence of n−1 intergenic regions represented by a list S̆. The number of genes n = |S| is the
genome size. When we take gene orientation into account, the string S is signed (the sign of
each character corresponds to the orientation of the gene), and the genome is called a signed
genome; otherwise, the string S is unsigned, and the genome is called an unsigned genome.

Two genomes G = (S, S̆) and H = (P, P̆ ) are called co-tailed if they have the same initial
and final gene (i.e., S1 = P1 and Sn = Pn). When modeling a real genome, the initial and final
gene are artificially inserted to ensure that any pair of genomes are co-tailed.

The reverse of a genome G = (S, S̆) is the genome rev(G) = (srev(S), rev(S̆)), if G is signed,
or rev(G) = (rev(S), rev(S̆)), if G is unsigned. We say that two genomes G and H are congruent
(G ∼= H) if G = H or G = rev(H).

Two genomes G = (S, S̆) and H = (P, P̆ ) of size n are balanced if the strings S and P are
balanced and the sum of the integers correspondent to intergenic regions are the same (i.e.,∑n

i=1 S̆i =
∑n

i=1 P̆i). Figure 1 shows an example of two balanced co-tailed signed genomes and
the reverse of one of them.

−A3+B4−C1−C0+B1+C0−D −A−A3+B+B4−C−C1−C−C0+B+B1+C+C0−D−D

+D1−B1+C2−C4+B0+C1+A +D+D1−B−B1+C+C2−C−C4+B+B0+C+C1+A+A

+D0−C1−B0+C1+C4−B3+A +D+D0−C−C1−B−B0+C+C1+C+C4−B−B3+A+A

rev(G) =

H =

G =

Figure 1: Two balanced co-tailed signed genomes G and H, and the reverse rev(G) of G. We
have G = (S, S̆), such that S = [+A −B +C +C −B −C +D] and S̆ = [3 4 1 0 1 0].

Given two balanced genomes G = (S, S̆) and H = (P, P̆ ), an orthologous assignment ξ
between them is a mapping between genes, i.e., for each gene Si of S there is a correspondent
gene ξ(Si) in P . Each singleton from S is associated with the singleton of same label from P .
Each replica from S must be associated with a replica of same label from P . Note that there
are multiple ways to perform the association for a replica.
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Consider a signed genome G = (S, S̆) of size n and the integers i, j, x, y, with 2 ≤ i ≤ j ≤ n−1,

0 ≤ x ≤ S̆i−1, and 0 ≤ y ≤ S̆j . The intergenic reversal ρ
(i,j)
(x,y) is an operation that transforms G

into a genome G.ρ(i,j)(x,y) = (S′, S̆′), where:

S′ = [S1 . . . Si−1 −Sj . . . −Si Sj+1 . . . Sn ]

S̆′ = [S̆1 . . . S̆i−2 x+ y S̆j−1 . . . S̆i x′ + y′ S̆j+1 . . . S̆n−1 ],

with x′ = S̆i−1 − x and y′ = S̆j − y.

Consider a genome G = (S, S̆) of size n and the integers i, j, k, x, y, z, with 2 ≤ i < j < k ≤ n,

0 ≤ x ≤ S̆i−1, 0 ≤ y ≤ S̆j−1, and 0 ≤ z ≤ S̆k−1. The intergenic transposition τ
(i,j,k)
(x,y,z) is an

operation that transforms G into a genome G.τ (i,j,k)(x,y,z) = (S′, S̆′), where:

S′ =[S1 . . . Si−1 Sj . . . Sk−1 Si . . . Sj−1 Sk . . . Sn ]

S̆′ =[S̆1 . . . S̆i−2 x+ y′ S̆j . . . S̆k−2 z + x′ S̆i . . . Sj−2 y + z′ Sk . . . Sn−1 ],

with x′ = S̆i−1 − x, y′ = S̆j−1 − y, and z′ = S̆k−1 − z.
As shown in the following problem statements, we are interested in finding the minimum

number of intergenic operations necessary to transform one signed genome into another. We
assume that the genomes are co-tailed.

Signed Intergenic Reversal Distance (SIRD)

Input: Two balanced co-tailed signed genomes G and H.
Goal: Find a minimum size sequence of intergenic reversals that transforms G into H.

Signed Intergenic Reversal and Transposition Distance (SIRTD)

Input: Two balanced co-tailed signed genomes G and H.
Goal: Find a minimum size sequence of intergenic reversals or intergenic
transpositions that transforms G into H.

The minimum number of intergenic reversals necessary to transform one signed genome G
into another signed genome H is called the signed intergenic reversals distance (denoted by
dSIR(G,H)). Similarly, the minimum number of operations among intergenic reversals and
intergenic transpositions necessary to transform one signed genome G into another signed genome
H is called the signed intergenic reversals and transposition distance (denoted by dSIRT (G,H)).

2.1 Intergenic Partitions

In this section, we describe two partition problems that are related to rearrangement distance
problems. For that, we need some additional definitions.

A break of a genome G = (S, S̆) is an operation that separates G into two genomes H = (P, P̆ )
and K = (Q, Q̆) with an intergenic region S̆i such that: |P | = i; Pj = Sj ,∀1 ≤ j ≤ i;

|Q| = |S| − i; Qj−i = Sj ,∀i < j ≤ |S|; |P̆ | = i − 1; P̆j = S̆j ,∀1 ≤ j < i; |Q̆| = |S̆| − i; and

Q̆j−i = S̆j ,∀i < j ≤ |S̆| (i.e., H and K consist of all genes and intergenic regions before S̆i and

after S̆i, respectively). We call the intergenic region used in the break operation a breakpoint.
Note that a genome can be broken into multiple smaller genomes with multiple breakpoints.
Figure 2 shows an example of a signed genome G broken into two signed genomes.

A signed intergenic partition between two balanced signed genomes G = (S, S̆) andH = (P, P̆ )
is a pair of signed genome sequences (S,P) such that:

34



Signed Rearrangement Distances with Intergenic Regions G. Siqueira et al.

+E2−C1−B0−D2+C1+C4−B3+A +E+E2−C−C1−B−B0−D−D2+C+C1+C+C4−B−B3+A+AG =

H︷ ︸︸ ︷ K︷ ︸︸ ︷

Figure 2: A signed genome G = (S, S̆) broken into two signed genomes H and K by the
breakpoint S̆4 = 2.

1. The genome G can be broken into the genomes of S.

2. The genome H can be broken into the genomes of P.

3. It is possible to change the order and orientation of the genomes of S to obtain the genomes
of P (i.e., there is at least one permutation ϕ, from the numbers 1 to |S|, such that Pi

∼= Sϕi
,

∀ 1 ≤ i ≤ |S|).

Figure 3 shows an example of a signed intergenic partition. A reverse intergenic partition
between two balanced unsigned genomes G = (S, S̆) and H = (P, P̆ ) is defined in the same way,
but the genomes of S and P are also unsigned.

+F0−B3+C1−D5−D1−C0−E0+D2+A +F+F0−B−B3+C+C1−D−D5−D−D1−C−C0−E−E0+D+D2+A+AH =

+F0−D1−C0−E2+D1+D4−C3+B1+A +F+F0−D−D1−C−C0−E−E2+D+D1+D+D4−C−C3+B+B1+A+AG =

Figure 3: A signed intergenic partition between two genomes G and H.

In both intergenic partitions, the genomes corresponding to elements of S and P are called
blocks. As the blocks of S must be combined to form G, the blocks must follow the order in
which they appear in G. Additionally, every gene must appear in some block. The same is valid
for P and H. We recall that the breakpoints of S and P are the intergenic regions between blocks
in G and H, respectively.

The cost(S,P) of an intergenic partition (S,P) is the number of breakpoints of S. The cost
can also be calculated by the number of blocks in S minus one. Note that, as a consequence
of the third condition, both sequences S and P must have the same number of blocks and,
consequently, the cost would be the same if we consider P instead of S.

An intergenic partition is minimal if no two consecutive blocks can be combined to form an
intergenic partition with smaller cost. An orthologous assignment between two genomes G and
H associates genes of G with genes of H and, consequently, induces a unique minimal intergenic
partition between G and H. Note that a partition may be induced by multiple assignments. An
assignment ξ is compatible with a minimal partition (S,P) if that partition is induced by ξ.

Let us now show a way to relate reverse intergenic partitions with signed intergenic partitions.
For that, we define the unsigned extension of a signed genome G = (S, S̆) as a genome G′ = (S′, S̆′)
created by the following procedure:

1. To create S′, replace each gene Si with two genes S′
2i−1 = |Si|h and S′

2i = |Si|t, if Si is
positive, or with two genes S′

2i−1 = |Si|t and S′
2i = |Si|h, if Si is negative (|Si| denotes

the character Si without its sign).

2. To create S̆′, we have S̆′
2i = S̆i and S̆′

2i−1 = 0, ∀1 ≤ i ≤ |S̆|.
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Lemma 1. Let G′ and H′ be the unsigned extension of two signed genomes G and H, respectively.
For every reverse intergenic partition (S′,P′) between G′ and H′ there is a signed intergenic
partition (S,P) between G and H, such that cost(S,P) ≤ cost(S′,P′).

Proof. To transform the reverse intergenic partition (S′,P′) between G′ = (S′, S̆′) and H′ =
(P ′, P̆ ′) into a signed intergenic partition (S,P) between G = (S, S̆) and H = (P, P̆ ), we first
ensure that every pair (S′

2i−1, S
′
2i), with i ∈ [1, |S|], belongs to the same block by constructing a

new reverse intergenic partition.
Let (S′

2i−1, S
′
2i) be a pair of genes that are not in the same block in S′. By construction

of the unsigned extension, we know that if S′
2i−1 is in a block B′ = S′j then it is the last gene

of that block and S′
2i is the first gene of the block C ′ = S′j+1. Construct a new sequence S′′,

where B′′ = S′′j is the block B′ with the inclusion of S′
2i as the last gene (i.e., |B′′| = |B′|+ 1,

B′′
|B′′| = S′

2i, and B′′
k = B′

k,∀1 ≤ k ≤ |B′′|−1) and C ′′ = S′′j+1 is the block C ′ with the exclusion

of S′
2i (i.e., |C ′′| = |C ′| − 1, C ′′

k = C ′
k+1,∀1 ≤ k ≤ |C ′′|). Note that if C ′ has only the element

S′
2i, then the block B′′ is the concatenation of B′ and C ′ into a single block. Apply the same

transformation for every pair (S′
2i−1, S

′
2i), with i ∈ [1, |S|], that are split into different blocks of

S′. Let S∗ be the resulting sequence and P∗ a sequence resulting from the same transformations
applied to P′. Note that for every block changed in S∗ there is a corresponding block changed in
P∗, consequently (S∗,P∗) is also a reverse intergenic partition between G′ and H′. Also, we have
that cost(S∗,P∗) ≤ cost(S′,P′) since we do not increase the number of blocks when creating
(S∗,P∗).

Let S be a sequence formed by replacing every pair (S′
2i−1, S

′
2i) from S∗, such that i ∈ [1, |S|],

with the original gene from G and let P be a sequence formed by replacing every pair (P ′
2i−1, P

′
2i)

from P∗, such that i ∈ [1, |S|], with the original gene from H.
Note that, every block or breakpoint in S corresponds to a block or breakpoint in S∗,

every block or breakpoint in P corresponds to a block or breakpoint in P∗, and reversing
a block from S corresponds to reversing a block from S∗. Since there is a correspondence
between blocks of S∗ and blocks of P∗, there is also a correspondence between blocks of S
and blocks of P. Consequently, (S,P) is a signed partition between G and H, such that
cost(S,P) = cost(S∗,P∗) ≤ cost(S′,P′).

Lemma 2. Let G′ and H be the unsigned extension of two signed genomes G and H, respectively.
For every signed intergenic partition (S,P) between G and H there is a reverse intergenic partition
between G′ and H′, such that cost(S′,P′) = cost(S,P) and no intergenic region with odd index
(the ones to which we attributed 0 in the unsigned extension) is a breakpoint.

Proof. Given a signed intergenic partition (S,P) between G and H, we can produce a reverse
intergenic partition (S′,P′) between G′ and H′ by applying the unsigned extension on every
genome of S and P to produce S′ and P′, respectively. Note that, the breakpoints of (S′,P′) are
intergenic regions already present in G or H, hence the cost remains the same and there is no
breakpoint with odd index.

We are interested in minimum cost partitions, as shown in the following problem statements.

Reverse Minimum Common Intergenic String Partition (RMCISP)

Input: Two balanced unsigned genomes G and H.
Goal: Find a minimum cost reverse intergenic partition between G and H.
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Signed Minimum Common Intergenic String Partition (SMCISP)

Input: Two balanced signed genomes G and H.
Goal: Find a minimum cost signed intergenic partition between G and H.

Siqueira et al. [14] showed that the RMCISP problem is in the NP-hard class by reducing
a version of the problem without intergenic regions (the Reverse Minimum Common String
Partition), which is in the NP-hard class [8]. An analogous reduction can be applied between
the Signed Minimum Common String Partition (a version of SMCISP without intergenic regions
that is also in the NP-hard class [8]) and the SMCISP problem to show its NP-hardness.

3 Using SMCISP to Approximate the Distance Problems

This section presents a correspondence between SMCISP and the distance problems. Such
correspondence allows us to adapt an approximation for the SMCISP problem to obtain an
approximation for the SIRD and SIRTD problems. The following lemmas establish lower bounds
for the distances based on partitions cost.

Lemma 3. Let (S,P) be a signed minimal intergenic partition induced by an orthologous
assignment between two balanced signed genomes G = (S, S̆) and H = (P, P̆ ). For any

intergenic transposition τ
(i,j,k)
(x,y,z), the signed minimal intergenic partition (R,Q) between the

genomes G.τ (i,j,k)(x,y,z) and H, induced by the same orthologous assignment, respects the restriction

cost(R,Q) ≥ cost(S,P)− 3.

Proof. As the signed intergenic partition (R,Q) must be induced by the same assignment of
(S,P), we can only reduce the cost of the signed intergenic partition by moving the blocks to
allow their combination. The intergenic transposition may be able to combine three pairs of
blocks: the block ending in Si−1 with the block starting in Sj ; the block ending in Sk−1 with
the block starting in Si; and the block ending in Sj−1 with the block starting in Sk. In the best
case, if all three combinations occur, we have cost(R,Q) = cost(S,P)− 3.

Lemma 4. Let (S,P) be a signed minimal intergenic partition induced by an orthologous
assignment between two balanced signed genomes G = (S, S̆) and H = (P, P̆ ). For any intergenic

reversal ρ
(i,j)
(x,y), the signed minimal intergenic partition (R,Q) between the genomes G.ρ(i,j)(x,y) and H,

induced by the same orthologous assignment, respects the restriction cost(R,Q) ≥ cost(S,P)− 2.

Proof. Similar to the proof of Lemma 3, considering that the intergenic reversal ρ
(i,j)
(x,y) can

combine at most two pairs of blocks: the block ending in Si−1 with the block ending in Sj and
the block starting in Sj+1 with the block starting in Si.

Lemma 5. Let (S,P) be a signed intergenic partition of minimum cost between two balanced
signed genomes G = (S, S̆) and H = (P, P̆ ). Any sequence of intergenic reversals that transforms

S into P must have size at least cost(S,P)
2 .

Proof. Consider a sequence of k intergenic reversals capable of transforming G into H. Such
sequence establishes an orthologous assignment between G and H. The assignment is recovered
by verifying, for each character of S, the new position in P , after the intergenic reversals are
applied.

Let (R,Q) be the signed minimal intergenic partition induced from the orthologous assignment.

We know that cost(R,Q)
2 ≤ k, because each intergenic reversal can remove at most 2 breakpoints
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(Lemma 4) and k intergenic reversals are sufficient to turn R into Q (i.e., k intergenic reversals
can remove all breakpoints). As (S,P) is a minimum cost signed intergenic partition, we have
|(S,P)|

2 ≤ |(R,Q)|
2 ≤ k.

Lemma 6. Let (S,P) be a signed intergenic partition of minimum cost between two balanced
signed genomes G = (S, S̆) and H = (P, P̆ ). Any sequence composed of intergenic reversals and

intergenic transpositions that transforms S into P must have size at least cost(S,P)
3 .

Proof. Analogous to the proof of Lemma 5, but using Lemma 3 in combination with Lemma 4.

With the bounds presented on the previous lemmas, we can establish a relation between
partition and distance problems.

Theorem 1. Let G = (S, S̆) and H = (P, P̆ ) be two co-tailed genomes and let (S,P) be the
signed intergenic partition between G and H returned by an ℓ-approximation for the SMCISP
problem. If there is an algorithm that produces a sequence of k reversals, with k ≤ r cost(S,P),
capable of transform G into H, then it is a 2rℓ-approximation for the SIRD problem.

Proof. Let p be the size of the minimum signed intergenic partition between G and H. An
ℓ-approximation algorithm for the SMCISP problem returns a signed intergenic partition (S,P),
such that p ≤ cost(S,P) ≤ ℓp.

By Lemma 5, we know that dSIR(G,H) ≥ p
2 . As we can turn G into H with k reversals, we

have dSIR(G,H) ≤ k ≤ 2rℓdSIR(G,H).

Corollary 1. An ℓ-approximation for the SMCISP problem ensures a 4ℓ-approximation for
the SIRD problem.

Proof. Let G = (S, S̆) and H = (P, P̆ ) be two co-tailed genomes and (S,P) the signed intergenic
partition given by the 4ℓ-approximation for the SMCISP problem. First, we apply the unsigned
extension to G and H turning them into the unsigned strings G′ = (S′, S̆′) and H′, respectively.
By Lemma 2, there is a reverse intergenic partition (S′,P′) of G′ and H′, such that cost(S′,P′) =
cost(S,P) and all breakpoints are on even indexed intergenic regions.

Next, we can use an algorithm from Brito et al. [5, Theorem 15] to find a sequence R′ of
k = 2cost(S′,P′) = 2cost(S,P) reversals that turn G′ into H′ and only acts on breakpoints of

(S′,P′) (for every reversal ρ
(i,j)
(x,y) of R

′, S̆′
i−1 and S̆′

j are breakpoints). As the reversals of R′ act

only on breakpoints we can construct a correspondent sequence R of k reversals that turns G
into H by replacing every reversal ρ

(i,j)
(x,y) of R with a reversal ρ

(i/2,j/2)
(x,y) .

By setting r = 2 in Theorem 1, we have a 4ℓ-approximation for the SIRD.

Theorem 2. Let G = (S, S̆) and H = (P, P̆ ) be two co-tailed genomes and let (S,P) be the
sigend intergenic partition between G and H returned by an ℓ-approximation for the SMCISP
problem. If there is an algorithm that produces a sequence of k reversals or transpositions, with
k ≤ r cost(S,P), capable of transform G into H, then it is a 3rℓ-approximation for the SIRTD
problem.

Proof. Analogous to the proof of Theorem 1, but using Lemma 6 instead of Lemma 5.

Corollary 2. An ℓ-approximation for the SMCISP problem ensures a 4.5ℓ-approximation for
the SIRTD problem.
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Proof. Analogous to Corollary 1, but using Theorem 2 instead of Theorem 1 and another
algorithm from Brito et al. [5, Lemma 20] to find a sequence R′ of k = 3

2cost(S
′,P′) = 3

2cost(S,P)
reversals and transpositions that turn G′ into H′ and only acts on breakpoints of (S′,P′).

Now, we are going to reduce the SMCISP to the RMCISP problem, so we can use the
2k-approximation for RMCISP from Siqueira et al. [14] (which we call Algorithm-R) to ensure
an 2k-approximation to the SMCISP problem, where k is the maximum occurrence of any gene
in the input genomes.

Let us define an algorithm to the SMCISP problem (Algorithm-S) with the following steps:

1. Take the unsigned extensions G′ and H′ of G and H, respectively.

2. Use Algorithm-R to obtain a reverse intergenic partition (S′,P′) between G′ and H′.

3. Take the signed intergenic partition (S,P) between G and H given by Lemma 1.

Theorem 3. Algorithm-S has approximation factor of 2k for the SMCISP problem between the
genomes G = (S, S̆) and H = (P, P̆ ), where k = occ(S).

Proof. Let (S′,P′) be the reverse minimum common intergenic partition between G′ and H′,
and let (R′,P′) be the reverse common intergenic partition returned by Algorithm-R. We know
that cost(R′,Q′) ≤ 2kcost(S′,P′) [14, Theorem 8]. Besides, for a signed minimum common
intergenic partition (S,P) between G and H, we must have cost(S′,P′) ≤ cost(S,P), because
for every signed intergenic partition between G and H there is a reverse intergenic partition of
same cost between G′ and H′ (Lemma 2). As the partition (R,Q) given by Lemma 1 applied
to (R′,Q′) is such that cost(R,Q) ≤ cost(R′,Q′), we have cost(R,Q) ≤ 2kcost(S,P) and the
theorem follows.

It is worth noting that our algorithm may be applied to a version of the problem without
intergenic regions (by setting every intergenic region to 0), keeping the same approximation
factor for the problem. That improves the previously known Θ(k) approximation for that
variation of the problem from 8k [9] to 2k.

Corollary 3. Algorithm-S in combination with the algorithm described in Corollary 1, ensures
an approximation factor of 8k for the SIRD problem between genomes G = (S, S̆) and H = (P, P̆ ),
where k = occ(S).

Proof. Directly from Corollary 1 and Theorem 3.

Corollary 4. Algorithm-S in combination with the algorithm described in Corollary 2, ensures an
approximation factor of 9k for the SIRTD problem between genomes G = (S, S̆) and H = (P, P̆ ),
where k = occ(S).

Proof. Directly from Corollary 2 and Theorem 3.

4 Experimental Results

This section presents the experimental results using a database of simulated genomes. Our
partition algorithm was implemented in Haskell and the distance algorithms were implemented
in C++. These implementations are available in a public repository1. The experiments were

1https://github.com/compbiogroup/Approximation-Algorithm-for-Rearrangement-Distances-Considering-
Repeated-Genes-and-Intergenic-Region
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conducted on a PC equipped with a 2.3GHz Intel® Xeon® CPU E5-2470 v2, with 40 cores
and 32 GB of RAM, running Ubuntu 18.04.2.

We generated a simulated genome database with 80 sets of genomes. Each set is defined by: (i)
the set of operations M used (M = R if reversals were used to create the database and M = RT
if reversals and transpositions were used); (ii) the number o ∈ {25, 50, 75, 100} of operations
applied to produce the target genome; and (iii) the size l ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
of the alphabet of possible labels. Each set was created by the following procedure:

1. 1000 source genomes were generated. For each one, we selected 100 characters (genes)
by choosing labels from a uniform distribution of ℓ labels (each label could be selected
more than once) and assigning + and − signs randomly. Besides, we select 101 integers
(intergenic regions) from the interval [0, 100] (each value had the same probability of being
chosen).

2. For each source genome G = (S, S̆), we created a target genome H = (P, P̆ ), by applying

o operations in S. If M = R, we applied o intergenic reversals ρ
(i,j)
(x,y), where the values of

i, j, x, and y were randomly chosen. If M = RT , we applied
⌊
o
2

⌋
intergenic reversals and⌈

o
2

⌉
intergenic transpositions. These operations were applied in a random order and the

parameters of each one were randomly chosen.

3. For each genome (sources and targets) we include two new genes. One at the beginning of
the genome and one at the ending of the genome. The same two genes are used for all
genomes, which ensure that all pairs of source and target genomes are co-tailed. Note
that, the final genomes have size 102.

In our experimental tests, we generated 200 random orthologous assignments between each
pair of genomes, such that 100 of these assignments had no restriction and the other 100 were
orthologous assignments compatible with the partitions returned by our algorithm for the
SMCISP problem. For each assignment, we computed the intergenic reversal distance when the
genome pair was generated using only reversals, and the intergenic reversal and transposition
distance when the genome pair was generated using reversals and transpositions. These distances
were computed with the algorithms from Brito et al. [5].

Table 1 summarizes the results of the distance algorithms applied to the generated instances.
Each row shows the average results considering all instances for a fixed M and o.

The third to fifth columns show the results considering instances generated without the use
of the partitions, the columns correspond respectively to the average of the following values: the
minimum distance considering all orthologous assignments of a genome pair (Distance/Min.),
the average distance considering all orthologous assignments of a genome pair (Distance/Avg.),
and the time to calculate the distances for the assignments of a genome pair (Time/Distance).
The sixth to ninth columns show similar values for the case where the partition is used, in that
case an additional column shows the average time to produce the partitions for a genome pair
(Time/Partition).

Comparing the values of Table 1, we can see that the use of the partition algorithm not only
ensures an approximation, but also improves the practical results. With the only exception of
sets generated with 100 operations of reversal and transposition, the minimum distances are
lower with partition. Additionally, the average distances using partitions are lower in all cases.
The difference between the distances with and without partition is higher when fewer operations
were used to create the instances. The average distance was less than 2.2 times the number of
operations applied when o = 25 and gets closer to the number of operations for higher values of
o.
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Table 1: Distances for the SIRD (lines with M=R) and SIRTD (lines with M=RT) problems.
Each line shows the average distances (minimum and average of all orthologous assignments)
and the average execution times (to calculate the distances or the partitions) for the instances
generated with o operations of the correspondent problem.

M o
Without Partition With Partition

Distance Time Distance Time
Min. Avg. Distance Min. Avg. Partition Distance

R 25 82.90 91.70 0.07 57.68 54.20 0.10 0.03
R 50 91.58 97.78 0.11 81.59 78.50 0.14 0.06
R 75 95.17 100.18 0.11 91.45 88.44 0.20 0.08
R 100 96.88 101.28 0.11 96.05 93.02 0.19 0.09

RT 25 80.76 89.09 0.05 54.85 52.10 0.09 0.02
RT 50 89.93 95.40 0.06 79.81 76.97 0.15 0.04
RT 75 93.96 97.97 0.06 90.79 87.84 0.15 0.05
RT 100 95.96 99.13 0.06 96.04 93.02 0.18 0.06

Looking at the running time, we see that considering the time to generate the partitions and
to calculate the distances, the case using the partition is slower than the case without partition.
However, in most cases, the running time for distances considering the partition is lower than
the running time for distances that do not consider the partition, so increasing the number of
orthologous assignments used will have a lower impact on time using the partition.

5 Conclusion

We defined the Signed Intergenic Reversal Distance (SIRD) and the Signed Intergenic Reversal
and Transposition Distance (SIRTD) problems. Besides, we defined the Signed Minimum
Common Intergenic String Partition (SMCISP) problem, and showed that it is related to the
distances problems. Using that relation and adapting algorithms for the unsigned versions of
the problems, we show a 8k-approximation for SIRD and a 9k-approximation for SIRTD, where
k is the maximum number of occurrences of a label in the strings.

Our practical tests show that even with the high approximation factor, the distances obtained
with the help of our partition algorithm are less than 2.2 times the number of operations applied
to produce the instances. Additionally, on average, distances using orthologous assignments that
take the partition algorithm into account are lower than distances using any random orthologous
assignment.

As future work, one can explore whether other techniques, such as heuristics to produce
the orthologous assignment [15] or algorithms using cycle decomposition [11, 12], can decrease
the values of the obtained distances. One can also consider the addition of non-conservative
events (that change the genetic content of the genomes), such as indels (insertion and deletion
of genetic material) [1].
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[5] Klairton Lima Brito, Géraldine Jean, Guillaume Fertin, Andre Rodrigues Oliveira, Ulisses Dias,
and Zanoni Dias. Sorting by Genome Rearrangements on both Gene Order and Intergenic Sizes.
Journal of Computational Biology, 27(2):156–174, 2020.

[6] Xin Chen, Jie Zheng, Zheng Fu, Peng Nan, Yang Zhong, Stefano Lonardi, and Tao Jiang. Assignment
of Orthologous Genes via Genome Rearrangement. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 2(4):302–315, 2005.

[7] Graham Cormode and S. Muthukrishnan. The string edit distance matching problem with moves.
ACM Transactions on Algorithms, 3(1):1–19, 2007.

[8] Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum Common String Partition Problem:
Hardness and Approximations. In Proceedings of the 15th International Symposium on Algorithms
and Computation (ISAAC’2004), pages 484–495. Springer Berlin Heidelberg, 2005.
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