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Abstract

Three connections between Dynamic Programming (DP) and Constraint Programming
(CP) have previously been explored in the literature: DP-based global constraints, DP-
like memoisation during tree search to avoid recomputing results, and subsumption of
both by bucket elimination. In this paper we propose a new connection: many discrete DP
algorithms can be directly modelled and solved as a constraint satisfaction problem (CSP)
without backtracking. This has applications including the design of monolithic CP models
for bilevel optimisation. We show that constraint filtering can occur between leader and
follower variables in such models, and demonstrate the method on network interdiction.

1 Introduction

Two major areas of research dealing with optimisation and decision making are Constraint Pro-
gramming (CP) and Dynamic Programming (DP). CP emerged in the 1990s from the field of
Artificial Intelligence, with roots in work from the 1970s. It has also been extended to Stochas-
tic Constraint Programming (SCP) to handle problems involving uncertainty. A constraint
satisfaction problem (CSP) is a triple (V,D,C) where V is a set of variables, D a set of their
domains, and C a set of constraints on the variables that specify the permitted combinations of
assignments of domain values to subsets of the variables, or alternatively the forbidden combina-
tions (the conflicts). CSPs are usually solved by constraint systems that alternate backtracking
with some form of constraint propagation, for example forward checking or arc-consistency. An
objective function can be defined on variables, leading to a constrained optimisation problem.

Dynamic Programming (DP) emerged in the 1950s from the field of Operations Research,
and is still indispensible for a wide range of modern, large-scale, deterministic and stochastic
problems. It is not easy to define concisely, being both a mathematical optimisation method
and a computer programming method. It is widely used in fields such as bioinformatics, con-
trol theory and economics. Its central idea is that some problems can be broken down into
subproblems that, if solved recursively, would recompute subproblem solutions many times. By
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recording such solutions, or computing them in a bottom-up manner, exponential savings can
be achieved.

CP and DP are distinct fields with different techniques, applications and research communi-
ties. Like Mathematical Programming, SAT and some other problem classes, CP has languages,
development tools and solvers. DP has few or none of these and is rather an approach and a
collection of techniques. But unifying distinct fields of research often leads to new insights and
techniques, and it is worth looking for ways of combining CP and DP. CP/OR integrations are
surveyed in [9, 10].

We know of three existing connections between the two fields. Firstly, the DP feature
of solving each subproblem once only has been emulated in CP [4] and in Constraint Logic
Programming languages including Picat [22], by remembering the results of subtree searches
via the technique of memoization (or tabulation) which remembers results so that they need
not be recomputed. This can improve search performance by several orders of magnitude.
Secondly, DP has been used to implement several efficient global constraints within CP systems
[18]. Thirdly, bucket elimination [6] is a very general framework that can model DP and CP
problems and others.

In this paper we explore a new connection between DP and CP: by explicitly representing
DP states as CP variables, we can implement a DP as a Constraint Satisfaction Problem
(CSP), which we call a Dynamic Program Encoding (DPE). A DPE is solved by constraint
propagation without backtracking and can form part of a larger constraint model, allowing
DP to be seamlessly integrated within CP. This includes Stochastic DP (SDP), allowing some
multistage stochastic optimisation problems to be modelled as CSPs. Furthermore, replacing
some constants by variables in a DPE parameterises it, leading to flexible global constraints
that can be called in multiple modes, and monolithic CP models for discrete bilevel optimisation
problems.

The paper is organised as follows. Section 2 describes the DPE and its applications. Section
3 describes parameterised DPEs and their applications. Section 4 considers the bilevel optimi-
sation application in detail, by modelling and solving a set of network interdiction problems.
Section 5 concludes the paper and discusses future directions.

2 The dynamic program encoding

In this section we define the DPE and demonstrate some of its applications. As mentioned in
Section 1 a DPE models every possible DP state by a CP variable, and the seed values and
recurrence relations are modelled by constraints. We illustrate this by examples.

2.1 DPE for Fibonacci numbers

Suppose we want to use CP to generate the nth Fibonacci number. Though very simple, this
example has been used many times. It illustrated the use of ILOG Script as an imperative
programming language in [1]. It was also used as an example of memoisation in (Constraint)
Logic Programming, for example in Picat [12]. Finally, it was used as an example of Constraint
Handling Rules [7], where a naive formulation takes exponential time because of repeated
recursive calls, but a better formulation takes linear time.

To find the nth Fibonacci number we need n states f1, l . . . , fn. We need seed values:

f1 = 1 f2 = 1
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and recurrence relations:

fi = fi−1 + fi−2 (i = 3, . . . , n)

If we create n real variables fi in a CP system, and post the seed values and recurrence
relations as seed constraints and recurrence constraints, all fi values are immediately computed
via constraint propagation. The 1st and 2nd constraints assign 1 to f1 and f2. As soon as the
3rd constraint is posted it assigns 2 to f3. In turn when the 4th constraint it assigns 3 to f4.
And so on until we obtain f10 = 55.

Of course we need not post the constraints in any particular order. If we post them in reverse
order they are suspended by the CP system until the seed constraints are posted, then woken in
the correct order (at least in some solvers such as Eclipse, which we use for this work). In this
way CP systems provide some support for DP implementation: we do not need to implement
a DP algorithm, merely describe its states. However, a DPE cannot handle billions or more
states because CP systems are not typically designed for such large applications.

It should be emphasised that this CSP is not recursive in any sense: it simply relates a set
of variables by constraints. Each value is computed only once (this is efficient: f100 is solved in
a small fraction of a second). This is equivalent to solving a DP by forward recursion.

We call such a CSP a Dynamic Program Encoding (DPE). DPEs are unlike the use of
memoisation in CP, where recursive solutions are stored and reused in a DP-like way. Memos are
invisible whereas DP state variables can interact with other problem variables via constraints.
Our modeling of DP states is similar to that used by Régin to implement a subset-sum global
constraint [18], which modelled the DP used earlier in [21] to implement the same constraint in
a CP system. However, the technique was presented as an approach to a (non-DP) technique for
encoding automata, rather than as a general CP/DP integration technique. [16] introduces a
decomposition of the grammar constraint. This decomposition is based on an approach similar
to DPE, it reduced the CYK parser to a SAT problem. The difference is that there is no direct
relation between the DP states and the CP variables and their approach does not work with
a generic DP algorithm. DPEs are also related in spirit, though not in detail, to the variable
redefinition approach used to integrate Mixed Integer Programming (MIP) and DP [14, 17].
This flow formulation represents DP states by vertices and decisions by a edges in a directed
acyclic graph (DAG), and are therefore less compact than ours. It requires search whereas
our DPE generates a solution purely by constraint propagation. We should also note that our
DPE can in principle be used in MIP, but this would probably require a large number of big-M
constraints causing inefficiency. CP is a much more suitable technology for the DPE because
of its greater expressiveness.

2.2 DPE for the change problem

Finding Fibonacci numbers is a trivial example that does not really require a shift to DP-style
thinking, as there is really only one algorithm. As a less obvious example consider the change
problem: find the minimum number of coins adding up to a given total S, given available
denominations d1 . . . dD. This is slightly different to the coins problem of [3], which is the same
as the change making problem of [8]. In that problem we must find a minimal set of coins that
can sum to all values ≤ S. In the change problem the solution for S might not contain all coins
in the solution for S − 1, so it is not necessarily a solution to the coins problem.

A constraint programmer might model the change problem in the following way:

min
∑
i

xi s.t.
∑
i

xidi = S

204



Dynamic Programming and Constraint Programming Prestwich, Rossi, Tarim and Visentin

where the xi are finite domain variables denoting the number of coins from denomination i.
This might require an exponential number of backtracks, but it is well-known that the problem
can be solved in pseudo-polynomial time by DP. Consider the following simple DP method that
takes O(S2) time (though there are more efficient methods taking O(S logS)). The seed value
is

n0 = 0

and the recurrence relation is:

ni = min


ni−d1

+ 1
...

ni−dD
+ 1

(i = 1, . . . , S)

This is not quite correct because the recurrence relation refers to n−1 . . . n1−M so we add further
seed values:

ni = S (i = −1, . . . , 1−M)

where M = maxi(di). S is used here as a large value that will never be chosen by the DP min
function.

We now use the DPE to model this DP as a CSP, leading to a backtrack-free CP model.
First create a CP variable for each DP state (these could be real or finite domain variables, and
here we use reals):

ni ∈ R (i = 0, . . . , S)

Then the seed values and recurrence relation can be written using arithmetic constraints:

n0 = 0
ni = min{ni−dk

+ 1 | k = 1, . . . , D}

The result of the DP computation is the value of nS . In a CP model the expression ni−d1
might

need to be replaced by nj where i, j, k are auxiliary variables related by additional constraints,
and we did this in our model. The model does not directly tell us how many coins of each
denomination should be used, but this can easily be reconstructed from the DP state variables.

2.3 Application to multistage stochastic optimisation

The DPE is not restricted to deterministic DP, and SDP can be modelled in the same way. As
an example we use a 3-period stochastic inventory control problem. At the start of each period
we must decide how many units of a product should be produced. If production takes place for
x units (x > 0) we incur a production cost c(x) which has a fixed and a variable component:

c(x) =

{
0 if x = 0
3 + 2x if x > 0

Production in each period cannot exceed 4 units. Demand in each period takes two possible
values: 1 or 2 with equal probability (0.5). Demand is observed in each period only after
production has occurred. After meeting the current period’s demand, a holding cost of 1 per
unit is incurred for any item carried over to the next period. Because of limited capacity, the
inventory at the end of each period cannot exceed 3 units. All demand should be met on time
(no backorders). Any units still in stock at the end of period 3 (the planning horizon) can be
salvaged at 2 per unit. The initial inventory is 1 unit.
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Define ft(i) as the minimum expected total cost incurred in periods t, t + 1, . . . , 3 when i
units of inventory are available at the start of period t. The aim is to compute f1(1). The DPE
model has variables

ft(i) ∈ R (t = 1, 2, i = 0, . . . , 3)

with constraints for t = 1, 2:

ft(i) = minx∈{0,...,4} | 2−i≤x≤4−i
{
c(x) + 1

2 (i + x− 1) + 1
2 (i + x− 2)+

1
2ft(1)(i + x− 1) + 1

2ft(1)(i + x− 2)
}

and for t = 3:

f3(i) = minx∈{0,...,4} | 2−i≤x≤4−i
{
c(x) + 1

2 (i + x− 1) + 1
2 (i + x− 2)+

1
22(i + x− 1) + 1

22(i + x− 2)
}

Again constraint propagation from the seed constraints immediately yields the result: f1(1) =
16.25. It is easy to generalise the model to arbitrary costs and number of time periods in a
constraint specification language. Stochastic DPEs can also be used as the basis for new global
constraints.

3 Parameterised DPEs

In a DPE some constants can be replaced by CP variables, creating a parameterised DPE . In
this section we discuss applications of this idea.

3.1 Parameterised Fibonacci numbers

Suppose we parameterise the DPE of Section 2.1 for the 10th Fibonacci number, replacing the
seed values by variables, then set f10 to some values and hope to infer (or at least constrain)
the seed values. (In Section 4 we parameterise constants in recurrence constraints.)

If we use real variables then all the constraints are suspended until further variables assign-
ment occur. However, if we use finite domain variables (say with domains 1–100) we immediately
obtain a solution without backtracking. Setting f10 = 55 (which is the correct value of the 10th
number) we obtain f1 = f2 = 1, and if we instead set f10 = 56 then CP detects failure without
backtracking. This example shows that using finite domain variables in a parameterised DPE
can be much more powerful than using real variables. However, parameterised DPEs are not
in general guaranteed to be solved without backtracking.

3.2 Parameterised change problem

The change problem DPE of Section 2.2 can be also parameterised. For example we could
replace the denomination constants by finite domain variables and assign a value to S, then
solve the resulting DPE to find a set of values leading to a given minimum total S. This is
similar to the currency design problem of [3] but, as with the change problem, it is not exactly
the same.

Parameterisation is not always trivial, and for this example we found it necessary to add
new variables and constraints. We model the DP states by finite domain variables:

ni ∈ {0, . . . , S} (i = 1−M, . . . , S)
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and add denomination variables:

dj ∈ {1, . . . ,M} (j = 1, . . . , D)

and auxiliary variables ai,j to represent ni−dj :

ai,j ∈ {0, . . . , S} (i = 1, . . . , S, j = 1, . . . , D)

which are useful for expressing the recurrence relations below. The auxiliary variables are
connected to the other variables via channeling constraints:

dj = x→ ai,j = ni−x (i = 1−M, . . . , S, j = 1, . . . , D, x = 1, . . . ,M)

A more compact way of expressing the channeling constraints would be via element constraints,
but this constraint must be posted with a list of integers whereas we require a list of finite domain
variables. This is one reason that the parameterisation is nontrivial. The seed values are:

n0 = 0
ni = S (i = 1−M, . . . ,−1)

The recurrence relation is expressed via the auxiliary variables:

ni = min{ai,j + 1 | j = 1, . . . , D} (i = 1−M, . . . , S}

One of the dj is set to 1 so that there is a solution for n1 (we choose j = 1):

d1 = 1

The final DP state variable must equal the total value:

nS = C

To break permutation symmetry and ensure that all denominations are distinct we strictly
order the dj :

dj < dj+1 (1 ≤ di < di+1 ≤ D)

As an example we set S = 55, C = 3, D = 5 and M = 19. We assign the dj variables, then
the ni, then the ai,j in ascending order of index, and choose smaller domain values first. This
and other models are implemented and executed in the Eclipse constraint logic programming
language [3]. In less than 1 second we find a solution for M = 19 with denominations 1, 16, 17,
18 and 19. This is correct: if denominations are limited to 1–19 we need at least 3 coins to total
55, and it is easily verified that 3 coins can total 55 with these denominations: 18+18+19 = 55.
It is also optimal: if we set M = 18 even 3 coins with maximum denomination 18 fail to total
55.

However, to show unsolvability by backtracking with M = 18 takes at least several hours
whereas a simple CP model (such as the model at the start of Section 2.2) would immediately
detect this by reasoning on bounds. We could channel the DPE to this CP model, but this
becomes slightly complicated and we shall not develop the problem further here. A simpler way
to detect unsolvability on this example is to add the implied constraint CdD ≥ S, and such
problem-specific approaches might be necessary complements to a DPE. These results indicate
that the level of consistency achieved by parameterised DPEs might low, though we expect
this to be very problem-dependent. An interesting direction for future research is to improve
constraint propagation for such models. This is discussed further in Section 4.6.
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3.3 Application to bilevel optimisation

In bilevel optimisation problems [5] there are two or more decision makers. In a two-player
Stackelberg game there is a leader (or outer , or upper-level) problem, and a follower (or inner ,
or lower-level) problem. The leader must optimise an objective, under the constraint that the
follower optimises a different objective. The two decision makers may have the same objective
function, or opposite objectives, or anything between. The leader is assumed to know the
follower’s objective and must optimise its objective in that knowledge. Though their relationship
is asymmetric, the leader and follower influence each other: the follower reacts to the leader’s
decisions, while the leader makes decisions taking the follower’s objective into account.

Stackelberg games originate from economic game theory and mathematical programming.
Applications include toll setting, structural optimization, defense applications, road network
planning, optimal chemical equilibria, environmental economics, and water resource manage-
ment. A standard mathematical formulation is:

min~x,~y F (~x, ~y)
s.t. ~y ∈ argmin~y{f(~x, ~y) | gj(~x, ~y) ≤ 0, j = 1 . . . J}

Gk(~x, ~y) ≤ 0, k = 1 . . .K
~x ∈ X, ~y ∈ Y

where ~x represents the leader decision variables and ~y the follower decision variables. The
condition ~y ∈ argmin~y forces ~y to be an optimal solution to the follower problem, and can be
considered as a computationally expensive constraint.

In a generalised Stackelberg competition model [19] there are multiple leaders and followers.
Leaders make their decisions independently of each other, then followers make their decisions
independently of each other. Several classes of such problems have known solution strategies
[13], but in the general case bilevel optimisation problems are considered hard to solve, and
discrete problems are a relatively unexplored class that are in NP or PSPACE. Evolutionary
algorithms are often used [20] but can be computationally expensive. Benders decomposition
is a natural approach, but it is not always possible to generate strong constraints because the
programmer is not free to choose the decomposition: the leader must be the Benders master
problem, and the follower must be the slave.

To the best of our knowledge CP has been applied to bilevel optimisation only once: a
scheduling problem in [2] that used a Benders decomposition-like approach. A point discussed
in that paper is optimistic and pessimistic cases when follower problems have multiple optimal
solutions. In the optimistic/pessimistic case the leader assumes that the follower will choose
the best/worst solution from the leader’s point of view. Our approach is like most others in
that it handles the easier optimistic case, but the difference is irrelevant to the bilevel problem
we tackle.

Parametrised DPEs have a natural application to bilevel optimisation, because a follower
problem can be thought of as a parameterised optimisation problem whose parameters are
chosen by the leader. Thus we have a method for modelling and solving discrete bilevel optimi-
sation problems in which the leader is a constraint program and the follower is a parameterised
dynamic program: we simply add a parameterised DPE for the follower to the leader’s CP.
Section 4 provides a detailed example.

4 Network interdiction

In this section we explore in detail an application of the DPE mentioned in Section 3.3: bilevel
optimisation. We use a particular and well-known example: network interdiction. In this
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class of problems the follower must move materiel through a (transportation, communication,
biological) network as quickly as possible, while the leader attempts to disrupt the follower’s
efforts by interdicting chosen arcs. Interdiction might completely destroy an arc, increase its
(fixed or expected) length, or reduce its capacity. Each arc has an associated interdiction cost
and the leader has a total interdiction budget.

4.1 The MXSP variant

In the Maximising the Shortest Path (MXSP) problem [11] the follower takes a shortest path
through a network which is a weighted digraph, but before that occurs the leader (the inter-
dictor) increases the length of certain edges by a given amount. Each edge interdiction has a
cost and the leader has a limited budget. The leader’s objective is to maximise the follower’s
minimum path length so the two decision makers are in conflict. Previous approaches to the
MXSP are discussed in [11], where it is also shown that the problem is NP-complete.

Let V be the vertices and E the edges of the graph (V,E). Let the length of edge (i, j) be ci,j
(0 ≤ ci,j <∞) which increases to ci,j +di,j (di,j > 0) on interdiction, let the cost of interdicting
edge (i, j) be ri,j , and let the total interdiction budget be r0. Define binary decision variables
xi,j such that xi,j = 1 iff edge (i, j) ∈ E is interdicted by the leader. All constants are assumed
to be integers, “r” stands for resource, and rk is typically a small integer indicating how many
weapons are needed to interdict the edge, so r0 is the total number of available weapons. We
assume that V contains an origin vertex s and a sink vertex t. Below we shall denote resource
rk for edge k = (i, j) by ri,j .

4.2 Shortest path DPEs

As the network has no negative cycles (there are no negative weights in the MXSP) we can
apply DP to find shortest paths in linear time, as follows. Define a DP state variable zi for
each vertex i ∈ V denoting the length of the longest path from i to t. For the follower shortest
path problem the seed value is

zt = 0

and the recurrence relation is

zj = min
i∈Pj

[zi + ci,j ] (∀j ∈ V \ {t})

where ci,j is the length of arc (i, j), and Pj = {(i, j) ∈ E} is the set of all (predecessor) edges
of j in the DAG. The length of the shortest path is then zs. This is an application of Dijkstra’s
algorithm.

4.3 Basic CP model for interdiction

We now parameterise the above DPE by making each arc length dependent on a binary inter-
diction variable xi,j :

zj = min
i∈Pj

[zi + ci,j + di,jxi,j ] (∀k, i)

with all xs,j = xi,t = 0 because these arcs are non-interdictable. Then our CP model for
network interdiction is simply:

max zs s.t.
zt = 0
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zj = mini∈Pj [zi + ci,j + di,jxi,j ] (∀k, i)∑
k=(i,j)∈E xi,jri,j ≤ r0

where the decision variables are x, z. We did not find it necessary to directly model the shortest
path computed by the follower, but this can easily be done. Alternatively, it can be inferred
from the z.

4.4 Improved CP model

Now that we have a monolithic (single-level) constraint model, we can apply standard CP
techniques to improve performance. We find it useful to define an additional set of variables z′

to complement the z, measuring the distance from the source to each node:

z′s = 0
z′j = mini∈Pj [z′i + cj,i + dj,ixj,i] (∀k, i)

This allows us to base constraints (see below) on the shortest path length that includes arc
(i, j) via the expression z′i + ci,j + di,jxi,j + zj .

1 We add a constraint

zs = z′t

as both measure the same shortest path length under any interdiction plan. We also add

zi + z′i ≥ zs (∀i 6= s, t)

We exploit a dominance by posting constraints to prevent the interdiction of any arc that can
not lead to a shortest path under the interdiction plan:

(zj + z′i + ci,j > zs)→ (xi,j = 0) (∀i, j)

We also post dominance constraints to exploit an interdiction version of the Floyd-Warshall
triple operation:

(ck,j ≥ ck,i + dk,ixk,i + ci,j + di,jxi,j)→ (xk,j = 0)

Using finite domain z, z′ variables improves performance because of bidirectional links in the
network. A small example illustrates how this helps. If we use real variables and post constraints
such as

x = min(y + 5, 5) y = min(x + 5, 5)

(similar to constraints for bidirectional arcs in our interdiction model) then the constraints are
simply suspended until x or y are assigned a value. But if x, y are finite domain variables then
the solver immediately infers x = y = 5 from these constraints. Along with the parameterised
Fibonacci model of Section 3 this is another example of the advantage of using finite domain
variables in a parameterised DEP.

4.5 Search strategy

Another aspect of CP that can have a large impact on performance is the choice of search
heuristics, especially the variable and value orderings. For the value ordering we choose 1 then
0. We use a dynamic variable ordering, choosing xi,j in ascending order of shortest path length
involving arc (i, j) using the mean of the lower and upper bound on z′i + ci,j + zj , breaking ties
randomly. These upper and lower bounds are extracted from the variable domains and change
during search.

1We could instead obtain these lengths by encoding the Floyd-Warshall algorithm, but that requires O(|V |3)
states whereas our z, z′ approach only requires O(|V |).
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Figure 1: Example of a 3× 4 network from [11].

4.6 Filtering between leader and follower

We use the basic model of Section 4.3 to illustrate an important aspect of our bilevel CP models:
that constraint filtering can occur between the leader and follower variables (which are x and
z respectively in this model).

For example suppose that during search the leader assigns xi′,j = 1 for some edge (i′, j),
and that i′ has the least lower bound for zi + ci,j + di,jxi,j among all i ∈ Pj . Then the lower
bound for zj is increased by filtering. If j has the same property with respect to some other
edge (k, j) then the lower bound for zk is also increased by filtering. By cascading through the
network this can increase the lower bound on zs. If this lower bound exceeds the upper bound
imposed by branch-and-bound then backtracking will occur. Moreover, a sufficiently powerful
filtering algorithm will detect this and remove value 1 from the domain of xi′,j .

This argument shows that a leader variable domain can be filtered by reasoning on the
follower’s optimality condition, which is encoded in the DPE. This was mentioned as a possible
direction for future research by [2], and it occurs naturally when we use a DPE with sufficiently
powerful filtering.

4.7 Experiments

An example of a network from [11] is shown in Figure 1, in which unbroken lines are interdictable
and dotted lines are length 0 and non-interdictable. They created instances using various
parameters. There are m×n “transshipment nodes” arranged in m rows and n columns, an arc
from the leftmost node s to each node in the first column, and an arc from each node in the last
column to the rightmost node t; the latter two sets are 0-length and non-interdictable. There
are also arcs between columns as shown. Each arc has a length which is a randomly generated
integer in the range 1–c, and this is increased by an integer d+ if the arc is interdicted. Each
arc also has an interdiction resource which is a randomly generated integer in the range 1–r,
representing the cost of interdiction. The total interdiction budget is r0.

We first consider their problems 13–20 which are also k-most-vital-arcs problems because all
arcs have the same interdiction cost of 1. Our results are shown in Table 1 with all figures means
over 10 runs (in the case indicated by “—” more than half of the instances took over an hour
to solve). Our results cannot be directly compared with those of [11] for several reasons: we
used 10 different randomly generated instances; they used the CPLEX version 6.5 MIP solver
whereas we used the Eclipse constraint solver; our machines are different. They did not specify
their machine but after a gap of 15 years ours, a 2.8 GHz Pentium 4 with 512 MB RAM, is
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CP
problem k m× n a d+ = 5 d+ = 10

13 5 7×7 188 1.9 5.5
14 10 7×7 188 87 298
15 5 8×8 238 3.5 12
16 10 8×8 238 284 8/10
17 5 9×9 312 10 40
18 10 9×9 312 1128 2/10
19 5 12×12 594 323 267
20 10 12×12 594 0/10 0/10

Table 1: k-most-vital-arcs results

likely to be several times faster. On the other hand, Eclipse is not the fastest CP solver while
CPLEX is a state-of-the-art MIP solver. However, we can compare results in an approximate
way.

[11] applied 3 algorithms to the above problems, which they called MXSP-D, Algorithm 1
and Algorithm 2. MXDP-D applies branch-and-bound to a MIP model created by combining
the dual of the follower problem with the leader problem; these models included variables
representing shortest paths, and flow-balance constraints. Algorithm 1 is a basic Benders
decomposition algorithm enhanced with supervalid inequalities. Algorithm 2 is based on an
alternative decomposition that reduces MXSP to a feasibility-seeking set-covering problem.
Algorithm 2 was motivated partly by the possibility for Algorithm 1 to terminate with an
incorrect result, depending on the size of d+, but it is also much more efficient. (They also
describe enhanced Algorithms 1E and 2E which include an optimality tolerance.)

MXSP-D and Algorithm 1 solved some but not all instances within 1 hour each, and took
mean times of approximately 1–1000 seconds on those they solved. Algorithm 2 solved all
instances, taking between 0.3 seconds on problem 13 to 447 seconds on problem 20 (its runtime
was independent of d+). Interestingly, both their algorithms and ours found problems 14 harder
than 15, 16 harder than 17, and 18 harder than 19.

We also tried the more general interdiction instances of [11]. Their problems 1–4 use m =
n = 10, r0 = 10, 20, 30, 40, random arc lengths in the range 1–c = 10, random interdiction
increases in the range 1–d = 10, and random resources in the range 1–r = 5. MXSP-D solved
problem 1 in 60 seconds and problem 2 in 651 seconds, but failed to solve problems 3 and 4
within an hour. Algorithm 1 only solved problem 1 in 219 seconds, but an enhancement solved
problems 1–3 in 3, 26 and 135 seconds respectively. An enhanced Algorithm 2 solved all four in
4, 29, 191 and 1349 seconds respectively. Ours solved problem 1 in 120 sec, problem 2 in 8/10
of cases, problem 3 in 1/10 of cases, and problem 4 in 0/10 of cases.

Our approach seems roughly comparable to the more basic MIP-based methods, but con-
siderably less efficient than the best ones. This might be due to the superiority of MIP over
CP on many classes of problem. On other problem classes CP is superior and we expect to find
bilevel problems on which our method is competitive, especially those with global constraints
in the leader problem. However, perhaps other CP researchers can improve our interdiction
method by adapting modeling techniques from [11], by finding better search heuristics, or by
using global constraints.
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5 Conclusion

We described a simple method called the DPE (dynamic program encoding) for modelling DP
in CP, which enables us to model and solve multi-stage stochastic optimisation problems and
bilevel optimisation problems in CP. Our treatment of network interdiction is, to the best of
our knowledge, only the second work on bilevel optimisation in CP. The pioneering work in
this area was that of [2] who modelled and solved a bilevel scheduling problem using a Benders
decomposition approach. They cited complexity results to predict that “no direct encoding
of discrete bilevel problems into CP or MIP can be expected”, but we have shown that it is
possible in the case of DP followers. They also proposed a direction for future work: filtering
the leader’s domain via inference on the follower’s optimality condition. Our technique achieves
this naturally as shown in Section 4.6.

The DPE has application to global constraints. These are one of CP’s most powerful features
and several are based on DP: see for example [18] for a discussion. Suppose a CP programmer
requires such a global constraint with variables replacing some of its parameters. Alternatively,
a DP-based global constraint for a new problem might be needed. Global constraints are
hard-wired into the CP system, and implementing new and more flexible global constraints is a
nontrivial task usually performed by CP system developers. But a DPE enables the programmer
to quickly implement such constraints.

Modelling DP as CP also has a software development advantage: it makes available for DP
development a variety of CP tools for specification, tracing, debugging and visualisation. In
fact all our models were implemented via the Kolmogorov constraint specification language
[15]. This kind of high-level programming support has not previously been provided for DP.

There are other possible uses which we hope to explore in future work. We shall model
and solve other bilevel problems, especially those for which CP has an advantage over MIP.
Explicitly representing DP states by CP variables also allows us to answer new types of query.
For example we could post constraints on different DP states in a parameterised DPE. Or we
could model two separate optimisation problems as parameterised DPEs, and relate them by
posting constraints on their DP states. This is not supported by the memoisation approach to
DP in CP.
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