Automating Proof Steps of Progress Proofs: Comparing Vampire and Dafny

Sylvia Grewe¹, Sebastian Erdweg², and Mira Mezini¹,³

¹ TU Darmstadt, Germany
² TU Delft, Netherlands
³ Lancaster University, UK

Abstract

Developing provably sound type systems is a non-trivial task which, as of today, typically requires expert skills in formal methods and a considerable amount of time. Our Veritas [4] project aims at providing support for the development of soundness proofs of type systems and efficient type checker implementations from specifications of type systems. To this end, we investigate how to best automate typical steps within type soundness proofs.

In this paper, we focus on progress proofs for type systems of domain-specific languages. As a running example for such a type system, we model a subset SQL and augment it with a type system. We compare two different approaches for automating proof steps of the progress proofs for this type system against each other: firstly, our own tool Veritas, which translates proof goals and specifications automatically to TPTP [14] and calls Vampire [9] on them, and secondly, the programming language Dafny [7], which translates proof goals and specifications to the intermediate verification language Boogie 2 [6] and calls the SMT solver Z3 [10] on them. We find that Vampire and Dafny are equally well-suited for automatically proving simple steps within progress proofs.

1 Motivation

Consider developers or researchers who want to specify a programming language along with a type system for statically catching type errors in programs. To make sure that their type system operates as intended, they want to formally prove its soundness. Let us say that as soundness criterion they choose the standard syntactic approach of proving progress and preservation, as formalized and explained in detail in one of the standard books on type systems, Pierce’s “Types and Programming Languages” (TAPL [12]).¹ Let e → e' denote that an expression e evaluates in a single small step to an expression e'. Furthermore, let Γ ⊢ e : T denote a typing judgment which says that an expression e of the program is typable with type T under typing environment Γ which assigns variables to types. Then progress and preservation are defined as follows:

Definition 1 (Progress). If an expression e is not a value and ∅ ⊢ e : T holds for a type T, then there is an expression e' such that e → e'.

¹The notion of describing type soundness as progress and preservation was first articulated by Robert Harper. Wright and Felleise proposed a variant in 1994 [15].
Definition 2 (Preservation). If $\Gamma \vdash e : T$ holds for an expression e and a type T and if there is an e' such that $e \rightarrow e'$, then $\Gamma \vdash e' : T$ holds.

Intuitively, progress says that a well-typed program expression which is not yet fully evaluated can always take at least one other step, while preservation says that evaluation steps preserve the type of expressions. Together, progress and preservation say that well-typed programs do not get stuck.

What can our developers/researchers now do in order to formally prove these two properties for their type system? Obviously, they could choose the classical approach and develop proofs on paper. The effort of applying this approach varies: Our developers/researchers can choose themselves how many details of the proof they want to develop. However, independent of the level of details chosen, human errors in proofs on paper are very common, and it is generally hard to check whether such a proof is correct.

To help with the matter of making sure that a proof is correct, our developers/researchers could mechanize their proofs using an existing verification tool. Candidate verification tools include for example Isabelle/HOL [11], Coq [2], Dafny [7], and Twelf [1]. Isabelle/HOL and Coq are tools for general-purpose verification. Dafny and Twelf specialize on verification of programs and programming languages. They offer varying degrees of automation and support for proof development. However, all of these tools require that our developers translate their specification into the respective input language of the tool and then develop proofs using the respective language and concepts offered by the tool. The available tools offer good automation for some simple proof tasks, but typically cannot automatically prove properties whose proofs require any form of higher-order reasoning: In general, the proofs of inductive properties require applying the cut rule: proving an auxiliary fact (lemma) and applying it in the main proof. This fact makes the space for proof search infinitely large [13]. The proofs of our progress and preservation properties from above require induction as well as the application of the cut rule using various auxiliary lemmas. Hence, formalizing progress and preservation proofs in existing verification tools requires laying out the proof steps in detail, which typically is a very time-consuming task.

In earlier work, we proposed the design of Veritas [4], a tool which aims at providing as much support as possible for the development of mechanized progress and preservation proofs and the implementation of efficient type checker implementations from provably sound type system specifications. The verification part of Veritas aims at exploiting domain knowledge about the structure of progress and preservation proofs to break down the proofs to steps which existing automated theorem provers can solve. To this end, we investigate which typical steps occur in progress and preservation proofs, and which of these steps automated theorem provers can prove.

In this paper, we focus on progress proofs. We model a type system for a typed subset of SQL as a running example in two different systems, which can automate steps in proofs, and informally compare the two systems to each other: As first system, we choose Vampire [9] (versions 3.0 and 4.0), which is an automated theorem prover for first-order logic. We use our Veritas prototype to automatically translate from a specification language for language specifications (SPL) to TPTP [14]. As second system, we choose Dafny [7], which is a programming language with a high degree of support for automated verification that translates to Boogie 2 [6] and uses the SMT solver Z3 [10] in the background for proof tasks.

Disclaimer. Our comparison is not intended to be a general comparison between the two systems and their capabilities. Rather, we aim at comparing the two systems from a user’s perspective for a very specific task, namely proof steps in progress proofs of type systems.
2 Example Specification: Typed SQL

As a running example, we model a subset of SQL, a language for querying data bases. Traditionally, SQL is not statically typed. Hence, SQL queries can fail at run time, for example if a query attempts to access a non-existent attribute of a table in the database. We model a type system for SQL which is supposed to statically catch such errors. The subset of SQL we focus on consists of row selection based on simple selection predicates, projection on a single table, union, intersection, and difference of two tables.

We model our subset of SQL separately in Veritas and in Dafny.

2.1 Specification in Veritas

In Veritas, we use a core specification languages for language specifications called SPL. We implemented SPL in the language workbench Spoofax [8]. Our prototype of Veritas translates SPL specifications automatically to TPTP. We described part of our encoding in previous work presented at the 2nd Vampire Workshop [5]. Since then, we added additional constructs to SPL and improved some of the encodings. Notably, we added a translation to tff, the TPTP format for typed first-order logic, and improved the encodings of SPL types. We explain these changes here using excerpts of our running example. The full code of our example and the implementation of Veritas is available at https://github.com/stg-tud/type-pragmatics/tree/master/Veritas. For further details on our current encoding scheme and the specification of typed SQL, please refer to our recent paper “Exploration of Language Specifications by Compilation to First-order Logic” [3].

Tables. We model tables in SPL as lists of lists of rows. Since neither SPL nor Vampire supports lists directly, we use constructors of the form “nil” and “cons” to model lists with different element types.

```plaintext
open data Name // attribute and table names
data AttrL = aempty | acons(Name, AttrL) // attribute list

open data Val // cell values
data Row = rempty | rcons(Val, Row) // row of cell values
data RawTable = tempty | tcons(Row, RawTable) // list of rows
data Table = table(AttrL, RawTable) // header and body of a table
```

We model underspecified types via the keyword “open data”, which we introduced into SPL since our presentation at the 2nd Vampire Workshop [5]. For open data types, we explicitly assume that their domain is infinite. To this end, our translation to tff/TPTP adds additional axioms which specify that an open data type is isomorphic to natural numbers. For the open data type Name, this looks as follows:

\[
\forall n : \text{Name. initName} \neq \text{enumName}(n) \\
\forall n_1 : \text{Name}, n_2 : \text{Name. enumName}(n_1) = \text{enumName}(n_2) \implies n_1 = n_2
\]

For data types which are not open, we assume closedness, i.e. that each term of the given type is representable via the specified constructors. To this end, we add an additional domain axiom to the TPTP translation. For example, for the type AttrL:

\[
\forall a : \text{AttrL. a = aempty() } \lor (\exists n : \text{Name}, a' : \text{AttrL. a = acons(n, a')})
\]
Comparing Vampire and Dafny
Grewe, Erdweg, and Mezini

\[\text{data } \text{Exp} = \text{constant}(\text{Val}) \mid \text{lookup}(\text{Name}) \]
\[\text{// constants and attr. lookup} \]
\[\text{data } \text{Pred} = \text{ptrue} \mid \text{and}(\text{Pred}, \text{Pred}) \mid \text{not}(\text{Pred}) \]
\[\text{// predicates} \]
\[\text{\mid eq(Exp, Exp)} \mid \text{gt}(\text{Exp}, \text{Exp}) \mid \text{lt}(\text{Exp}, \text{Exp}) \]
\[\text{data } \text{Select} = \text{all()} \mid \text{some}(\text{AttrL}) \]
\[\text{// select all or some specific attributes} \]
\[\text{data } \text{Query} = \text{tvalue}((\text{Table})) \]
\[\text{// table values} \]
\[\text{\mid selectFromWhere(Select, Name, Pred)} \]
\[\text{// select from where} \]
\[\text{\mid union(Query, Query)} \mid \text{intersection(Query, Query)} \]
\[\text{// set ops} \]
\[\text{\mid difference(Query, Query)} \]

Figure 1: Part of the abstract syntax of SQL specified in SPL.

Next, we model auxiliary functions on tables. They define low level operations on tables, such as retrieving a particular column out of the table, attaching a column to the front of a table, etc. For example:

\[\text{function } \text{attachColToFrontRaw} : \text{RawTable RawTable } \rightarrow \text{RawTable} \]
\[\text{attachColToFrontRaw(tempty(), tempty()) } = \text{tempty} \]
\[\text{attachColToFrontRaw(tcons(rcons(f, rempty), rt1), tcons(r, rt2)) } = \]
\[\text{tcons(rcons(f, r), attachColToFrontRaw(rt1, rt2))} \]
\[\text{attachColToFrontRaw(rt1, rt2) } = \text{tcons(rempty, tempty)} \]

The function \text{attachColToFrontRaw} blindly assumes that it gets first a RawTable that consists of just a single column, and second another RawTable that has as many rows as the first one. If the arguments satisfy these conditions, the function will return a correct table where the single column of the argument is attached to the front of the table of the second argument. Otherwise, \text{attachColToFrontRaw} will return a “broken” RawTable, where the given rows do not all have equal length. It is the responsibility of the caller to make sure that \text{attachColToFrontRaw} receives “proper” arguments.

We translate functions such as \text{attachColToFrontRaw} like we described in our previous work [5]: We translate every function equation to an axiom in TPTP. Furthermore, we add an inversion axiom, which is typically very helpful in progress and preservation proofs.

SQL syntax. Figure 1 shows how we model the syntax of our subset of SQL in SPL. Constructor \text{selectFromWhere} models projection of all or some attributes of a named table, where each row is filtered using the predicate of the where-clause. We translate this syntax to TPTP as indicated above.

SQL reduction semantics. Figure 2 shows an excerpt of how we model the dynamic semantics of our subset of SQL, along with the signatures of the most important auxiliary functions. We modeled the dynamic semantics as a small-step structural operational semantics. The reduction function \text{reduce} takes a query and a table store (TStore), which maps table names to tables (Table).

The reduction function proceeds by pattern matching on the query. A table value (tvalue) is a normal form and cannot be reduced further. A \text{selectFromWhere} query is processed in three steps:

1. From-clause: Look up the table referred to by name in the query. Since the name may be unbound, the lookup yields a value of type OptTable. Reduction is stuck if no table was found. Otherwise, we receive the table through \text{getTable(mTable)}.
function \(\text{reduce} : \text{Query} \rightarrow \text{TStore} \rightarrow \text{OptQuery} \)

reduce \((\text{tvalue}(t), \text{ts})\) = noQuery

reduce(\(\text{selectFromWhere}(\text{sel}, \text{name}, \text{pred}), \text{ts}\)) =

\[
\begin{align*}
\text{let } & m\text{Table} = \text{lookupStore}(\text{name}, \text{ts}) \text{ in} \\
\text{if } & (\text{isSomeTable}(m\text{Table})) \\
& \text{then let } \text{filtered} = \text{filterTable}(\text{getTable}(m\text{Table}), \text{pred}) \text{ in} \\
& \text{let } m\text{projected} = \text{projectTable}(\text{sel}, \text{filtered}) \text{ in} \\
& \text{if } (\text{isSomeTable}(m\text{projected})) \\
& \text{then someQuery}(\text{tvalue}(\text{getTable}(m\text{projected}))) \\
& \text{else noQuery} \\
\text{else noQuery}
\end{align*}
\]

reduce(\(\text{union}(\text{tvalue}(\text{table}(\text{al1}, \text{rt1})), \text{tvalue}(\text{table}(\text{al2}, \text{rt2}))), \text{ts})\) =

\[
\begin{align*}
\text{let } & q2' = \text{reduce}(q2, \text{ts}) \text{ in} \\
\text{if } & (\text{isSomeQuery}(q2')) \\
& \text{then someQuery}(\text{union}(\text{tvalue}(t), \text{getQuery}(q2'))) \\
& \text{else noQuery}
\end{align*}
\]

reduce(\(\text{union}(\text{tvalue}(t), q2), \text{ts})\) =

\[
\begin{align*}
\text{let } & q1' = \text{reduce}(q1, \text{ts}) \text{ in} \\
\text{if } & (\text{isSomeQuery}(q1')) \\
& \text{then someQuery}(\text{union}(\text{getQuery}(q1'), q2)) \\
& \text{else noQuery}
\end{align*}
\]

...

function \(\text{filterTable} : \text{Table} \rightarrow \text{Pred} \rightarrow \text{Table} \)

function \(\text{projectTable} : \text{Select} \rightarrow \text{Table} \rightarrow \text{OptTable} \)

function \(\text{rawUnion} : \text{RawTable} \rightarrow \text{RawTable} \rightarrow \text{RawTable} \)

Figure 2: Part of the reduction semantics of SQL.

2. \textit{Where}-clause: Filter the table to discard all rows that do not conform to the predicate \(\text{pred} \). We use the auxiliary function \(\text{filterTable} \) whose signature is shown at the bottom of Figure 2. We modeled filtering such that it always yields a \text{RawTable} and cannot fail: We discard a row if the evaluation of \(\text{pred} \) fails. The type system will ensure that this can never actually happen within a well-typed query.

3. \textit{Select}-clause: Select the columns of the filtered table in accordance with the selection criteria \(\text{sel} \), using auxiliary function \(\text{selectTable} \). We modeled selection such that it fails if a non-existing column was required. Also here, the type system will ensure that this cannot happen within a well-typed query.

For \(\text{union} \) queries, \(\text{reduce} \) defines one contraction case and two congruence cases. For the union of two table values, we use the auxiliary function \(\text{rawUnion} \) that operates on header-less tables and constructs the union of the rows. In the two congruence cases of \(\text{union} \), we try to take a step on the right and left operand, respectively. The reduction of \(\text{intersection} \) and \(\text{difference} \) queries is defined analogously to \(\text{union} \).

When translating \(\text{reduce} \) to \text{tff/TPTP}, we first translate \(\text{let} \) and \(\text{if} \) as described in our previous work [5]: We translate a \(\text{let} \) as an implication, where the equation of the binding becomes a premise, and the body of the \(\text{let} \) a conclusion. Each \(\text{if} \) is translated as two axioms: one for the
Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

judgment tcheck(TTContext, Query, TT)

matchingAttrL(TT, al)
welltypedRawTable(TT, rt)

T-tvalue
TTC ⊢ tvalue(table(al, rt)) : TT

lookupContext(tn, TTC) = someTTType(TT)
tcheckPred(p, TT)
projecTypeType(sel, TT) = someTTType(TT2)

T-selectFromWhere
TTC ⊢ selectFromWhere(sel, tn, p) : TT2

TTC ⊢ q1 : TT
TTC ⊢ q2 : TT

T-union
TTC ⊢ union(q1, q2) : TT

...

function matchingAttrL : TType AttrL -> Bool
function welltypedRawTable : TType RawTable -> Bool
function tcheckPred : Pred TType -> Bool
function projectType : Select TType -> OptTType

Figure 3: Part of the typing rules of typed SQL.

then-branch, and one for the else-branch. Each of these two axioms is an implication, where the guard of the if (respectively, its negation) becomes a premise and the content of the branch the conclusion. We apply this translation exhaustively, i.e. the second equation of reduce in Figure 2 translates to three different axioms.

Typing. The static semantics of our variant of SQL ensures that well-typed queries do not get stuck but evaluate to table values. We define the type of an SQL query as the type of the table that the query evaluates to. The type of a table TT is a typed table schema that associates field types to attribute names. Type checking uses a table-type context TTC, which maps table names to table types.

Figure 3 shows an excerpt of the typing rules of SQL and the most important auxiliary functions used. The semantics of the inference-like notation is the semantics of an implication: Each new line represents part of a conjunction. The premises of the implication are above the line, the conclusion(s) below.

A table value has table type TT if the table’s attribute list and the attribute names within the table type match and if all rows in the table adhere to the table schema. The latter is checked by the function welltypedRawTable. A selectFromWhere query is well-typed if the table name tn is bound to TT in the table-type context TTC, the predicate pred is well-typed for TT, and the attribute selection selectType succeeds. Like the other set operations, a union query is well-typed if both subqueries have the same type. The typing rules for intersection and difference queries are defined analogously.

Naturally, we translate the inference rules from Figure 3 to implications in TPTP, where the
Comparing Vampire and Dafny
Grewe, Erdweg, and Mezini

meta-variables used in the inference rules become universally quantified variables.

2.2 Specification in Dafny

The specification of our typed subset of SQL in Dafny is very similar to the specification in Veritas. We show excerpts of our Dafny specification in this section - the full specification is available at http://bitbucket.org/cygne_noir/sql-dafny/. Occasionally, we use some convenience features that Dafny supports, but Veritas/Vampire does not - just like a Dafny user would. For example, we use the construct and helper functions for sequences that Dafny provides.

Thus, we specify for example tables as follows in Dafny:

```dabny
type AttrL = seq<string>
datatype Val = N(int) | S(string)
type Row = seq<Val>
type RawTable = seq<Row>
datatype Table = table(getAL: AttrL, getRaw: RawTable)
```

We do not bother with using Dafny’s generic constructs for parametrizing over the concrete type for attribute names or values of tables. Rather, we use Dafny’s built-in type string for attribute names, and define a small algebraic datatype for table values. In the proofs later, we will not have to reason about these types anyway. For lists of values and lists of rows, we use Dafny’s sequences. When specifying tables, Dafny allows us to directly specify destructors for the constructor arguments. Hence, we use destructors instead of the get... functions which we defined in our SPL specification of SQL in the remaining Dafny specification.

Using Dafny’s sequences and the functions defined on them, we model the `attachColToFrontRaw` function in Dafny as follows:

```dabny
function attachColToFrontRaw(rt1: RawTable, rt2: RawTable): RawTable
{
    if |rt1| == 0 && |rt2| == 0
        then []
    else if |rt1| > 0 && |rt1[0]| == 1 && |rt2| > 0
        then [[rt1[0][0]] + rt2[0]] + attachColToFrontRaw(rt1[1..], rt2[1..])
    else []
}
```

For modeling the syntax of SQL in Dafny, we also use Dafny’s `datatype` notation, so that the Dafny version of our SQL syntax looks almost like the SPL version from Figure 1. We define the semantics of SQL via a `function` and `match`-construct in Dafny (see Figure 4). The latter allows us to write case distinctions on the different constructors of our algebraic datatype for the syntax of SQL queries.

Dafny does not provide a notation for inference rules like SPL in Veritas, hence we model the type system for our subset of SQL via a predicate `typable`, which takes a table type context, a query, and a type as an argument. We show an excerpt in Figure 5.
function reduce(q: Query, ts: TStore): Option<Query>
{
 match q
 {
 case tvalue(t) => none
 case selectFromWhere(sel, ref, pred) =>
 if |ref| == 1 // currently, no Cartesian product supported
 then if lookupEnv(ref[0], ts).some?
 && projectTable(sel, filterTable(lookupEnv(ref[0], ts).get, pred)).some?
 then some(tvalue(projectTable(sel, filterTable(lookupEnv(ref[0], ts).get, pred)).get))
 else none
 else none
 case union(q1, q2) => if q1.tvalue? then
 if q2.tvalue?
 then some(tvalue(table(q1.getTable.getAL,
 rawUnion(q1.getTable.getRaw, q2.getTable.getRaw))))
 else if reduce(q2, ts).some? then some(union(q1, reduce(q2, ts).get)) else none
 else if reduce(q1, ts).some? then some(union(reduce(q1, ts).get, q2)) else none
 ... } ...
}

Figure 4: SQL reduction semantics in Dafny
	predicate typable(ttc: TTContext, q: Query, tt: TType)
{
 match q
 {
 case tvalue(t) => welltypedtable(tt, t)
 case selectFromWhere(sel, refs, p) => |refs| == 1 && lookupEnv(refs[0], ttc).some?
 && tcheckPred(p, lookupEnv(refs[0], ttc).get)
 && projectType(sel, lookupEnv(refs[0], ttc).get) == some(tt)
 case union(q1, q2) => typable(ttc, q1, tt) && typable(ttc, q2, tt)
 ... } ...
}

Figure 5: SQL type system in Dafny

3 Progress Proof

Next, we attempt to prove a progress theorem for SQL in both Veritas with Vampire and in Dafny. We do not focus on obtaining a complete proof, but rather on mechanizing individual steps of the proof, and on finding out which of these steps one or the other system can automatically prove.
Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

Here is the progress theorem for SQL in SPL notation:

\[
\begin{align*}
\text{goal} & \quad \neg\text{isValue}(q) \\
\text{TTC} & \vdash q : \text{TT} \\
\text{StoreContextConsistent}(TS, TTC) & \\
\end{align*}
\]

\[
\begin{align*}
\text{exists } q_0 & \\
\quad \text{reduce}(q, TS) = \text{someQuery}(q_0)
\end{align*}
\]

The progress theorem for SQL:

Predicate \text{StoreContextConsistent} specifies that the table store and the table type context involved need to contain the same table names, and that each table in the table store has to be well-typed with regard to the corresponding table type from the table type context.

In Dafny, we write the theorem in a slightly different way, which is semantically equivalent:

\[
\begin{align*}
\text{lemma } \text{progress}(ttc : \text{TTContext}, ts : \text{TStore}, q : \text{Query}) & \\
\text{requires } \text{StoreContextConsistent}(ts, ttc) & \\
\text{requires } \text{exists } tt : \text{typable}(ttc, q, tt) & \\
\text{ensures } \neg\text{isValue}(q) \lor \text{reduce}(q, ts).\text{some?}
\end{align*}
\]

Dafny treats lemmas similarly to functions: A proof of the lemma may call the lemma itself recursively, which corresponds to applying an induction hypothesis in an inductive prove. This is why the lemma uses parameters.

3.1 General Structure

The general structure of the proof of the progress theorem from above is a representative of the structure typical progress proofs: The proof proceeds by structural induction on the structure of a program expression, i.e. in this case, an SQL query.

This structure yields five induction cases:

1. \text{tvalue}(t): trivial (is a value)
2. \text{selectFromWhere}(sel, refs, p): most difficult case of the proof; directly requires 4 auxiliary lemmas, whose prove requires induction and further 7 auxiliary lemmas
3. \text{union}(q_1, q_2): proof via case distinction on the three different cases of union in the semantics, two of which are proved by simply applying the induction hypotheses
4. \text{intersection}(q_1, q_2): like union case
5. \text{difference}(q_1, q_2): like union case

In Veritas, we specify manually the five different induction cases, by simply copying the theorem 5 times, and adding a premise to each case which requires \(q \) to be of the desired shape. For the last 3 cases (the set operations), we add the induction hypotheses as axioms. Here, we fix the induction variables locally to represent the subqueries of the set operations. Note that if we did not explicitly do that, the induction hypotheses would universally quantify on any query, and would hence directly correspond to the theorem that we we want to prove (which would not correspond to a correct instantiation of the induction scheme we use!). For example, the union case looks like this in Veritas:

\[
\begin{align*}
\text{local } & \\
\text{consts } & q_1 : \text{Query} \\
& q_2 : \text{Query} \\
& TS : \text{TStore} \\
& TTC : \text{TTContext} \\
& TT : \text{TType}
\end{align*}
\]
Comparing Vampire and Dafny

Dafny provides support for automatically applying induction, which often works well for simple lemmas. However, for our progress theorem, Dafny does not seem to be able to figure out the induction scheme on its own (probably, because auxiliary lemmas need to be applied in the `selectFromWhere` case), which is why we have to specify induction manually here as well:

```dafny
match q {
  case tvalue(t) =>
  case selectFromWhere(sel, refs, p) =>
    if |refs| == 1 {
      ... 
    }
    else {}
  case union(q1, q2) =>
  case intersection(q1, q2) =>
  case difference(q1, q2) =>
}
```

3.2 The Easy Steps

Both Vampire and Dafny naturally prove the `tvalue(t)` case immediately automatically, since it only requires applying the definition of `isValue`.

The last three cases (the `set` cases) are proven automatically by Dafny. Vampire 4.0 in CASC mode also proves these three cases automatically, but requires between 76 and 83 seconds for
Comparing Vampire and Dafny

Grewe, Erdweg, and Mezini

the proof of each case\(^2\). Vampire 3.0 cannot prove the cases (given timeout was 120 seconds). If we manually split each set case into the three sub-cases given by the reduction semantics, Vampire 3.0 can prove each sub-case separately: Interestingly, Vampire 3.0 takes longest to solve the first sub-case (between 60 and 70 seconds), which does not require the application of an induction hypothesis and should hence be very easy to solve. The other two sub-cases always need below 5 seconds to be solved.

3.3 The More Difficult Steps

The selectFromWhere case is the most difficult case of the proof. Dafny can only prove it if we define and prove four additional auxiliary lemmas on properties of the auxiliary functions used in the reduction semantics:

\begin{verbatim}
lemma successfulLookup(ttc: TTContext, ts: TStore, ref: string)
 requires StoreContextConsistent(ts, ttc)
 requires lookupEnv(ref, ttc).some?
 ensures lookupEnv(ref, ts).some?

lemma welltypedLookup(ttc: TTContext, ts: TStore, ref: string)
 requires StoreContextConsistent(ts, ttc)
 requires lookupEnv(ref, ttc).some?
 requires lookupEnv(ref, ts).some?
 ensures welltypedtable(lookupEnv(ref, ttc).get, lookupEnv(ref, ts).get)

lemma projectTableProgress(s: Select, tt: TType, t: Table)
 requires welltypedtable(tt, t)
 requires projectType(s, tt).some?
 ensures projectTable(s, t).some?

lemma filterPreservesType(tt: TType, t: Table, p: Pred)
 requires welltypedtable(tt, t)
 ensures welltypedtable(tt, filterTable(t, p))
\end{verbatim}

Within the selectFromWhere proof case, we then have to apply these four lemmas in the correct order, instantiating them as the proof requires. This looks as follows in Dafny:

\begin{verbatim}
case selectFromWhere(sel, refs, p) =>
 if |refs| == 1
 {
 successfulLookup(ttc, ts, refs[0]);
 welltypedLookup(ttc, ts, refs[0]);
 var t := lookupEnv(refs[0], ts).get;
 var tt := lookupEnv(refs[0], ttc).get;
 filterPreservesType(tt, t, p);
 projectTableProgress(sel, tt, filterTable(t, p));
 } ...
\end{verbatim}

If we add the four lemmas as axioms in the selectFromWhere case in Veritas, neither Vampire 3.0 nor Vampire 4.0 can prove the case automatically (with a timeout of 120 seconds). Even adding the instantiations of the four lemmas which are needed as axioms does not help.

As for the proofs of the auxiliary lemmas itself, the ones that do not require induction or only require applying one additional other lemma can easily be proved by both Dafny and Vampire.

\(^2\)We used a MacBook Pro late 2012 with 2.9 GHz Intel Core i7 and 8GB RAM.
For instance, the proof of lemma `filterRowsPreservesTable` requires one additional lemma. As soon as this lemma is given, both Vampire 3.0/4.0 and Dafny prove `filterRowsPreservesTable` in under one second.

4 Discussion

For the simple and routine steps in our example progress proof, Vampire and Dafny are comparable regarding proof automation - even despite the fact that Dafny and Boogie 2 internally apply several custom reasoning techniques before calling Z3, which we do not (yet) apply in Veritas. Also, as opposed to Dafny, Veritas currently does not attempt the application of axiom selection strategies.

If the reasoning gets more complicated and requires auxiliary lemmas, Dafny strictly requires not only the auxiliary lemmas themselves, but also applying these lemmas in the correct instantiation and in the correct order to prove a goal. We had hoped that in this regard, applying Vampire for the steps in question could be “more user-friendly” as opposed to using Dafny, i.e. that the strategies in Vampire are able to prove a case if all necessary lemmas are given, even if neither the concrete instantiation of the lemmas nor the order in which they have to be applied are clear. So far, we could not find such a case. This may be due to the fact that we did not (yet) attempt to pre-select axioms or to provide any kind of prioritization hints to Vampire (e.g. marking axioms that represent lemmas as hypotheses etc.). In this regard, further investigation is required to give a definite answer whether Vampire is able to prove the more complicated proof steps automatically or not.

5 Conclusion and Future Work

For solving simple routine steps in progress proofs automatically, Vampire and Dafny appear equally well-suited – even if one does not apply any particular optimization strategies to the input problem. Simple routine steps seem to include steps that only require the application of one or two auxiliary lemmas/induction hypotheses or that can be solved by directly applying a definition from the original specification. For all other cases, both Vampire and Dafny require user interaction.

To study whether Vampire can prove more steps of typical progress proofs, it would be interesting to investigate the effect of applying further optimizations within our translations from SPL to TPTP. Optimizations could for example apply typical case distinction steps or axiom selection strategies before passing input problems to Vampire. Furthermore, one could experiment further with different options of configuring Vampire or with prioritizing lemmas as suggested above. Additionally, it would be interesting to extend the present comparison to include different or more complicated language specifications, and to include more theorem provers.

Acknowledgements

We thank the participants of the 3rd Vampire Workshop for helpful feedback and discussions. This work has been supported in part by the European Research Council, grant No. 321217.
Comparing Vampire and Dafny

Grewe, Erdweg, and Mezini

References