
Recursive Definitions of Monadic Functions

Alexander Krauss
Technische Universitt Mnchen, Institut fr Informatik

http://www.in.tum.de/~krauss

Abstract

Using standard domain-theoretic fixed-points, we present an approach for defining re-
cursive functions that are formulated in monadic style. The method works both in the
simple option monad and the state-exception monad of Isabelle/HOL’s imperative pro-
gramming extension, which results in a convenient definition principle for imperative pro-
grams, which were previously hard to define.

For such monadic functions, the recursion equation can always be derived without
preconditions, even if the function is partial. The construction is easy to automate, and
convenient induction principles can be derived automatically.

1 Introduction

Tool support for non-primitive recursion in interactive theorem provers has made good progress
in the last years. Although the base logic of most proof assistants has no support for general
recursion or partial functions, tools exist to reduce such definitions to more basic principles in
an automated and mostly transparent way [23, 2, 17, 5].

This paper discusses a class of definitions which are not yet supported by any existing tool:
imperative computations wrapped up in a state monad. These functions present a challenge,
since the actual structure of the recursion is not directly visible from the definition itself, but
depends on the implicit state argument. Before considering imperative programs, we first
develop our approach in the simpler option monad. The method can then be extended to state
monads without much difficulty.

1.1 Notation

We work in the setting of Isabelle/HOL [20], which implements a variant of classical higher-
order logic extended with type classes and overloading. Its syntax mostly conforms to standard
mathematical notation, except for a few idiosyncracies that arise from the generic nature of the
Isabelle system, notably the two versions of implication (−→ and =⇒) and universal quantifi-
cation (∀ and

∧
), corresponding to the meta and the object level. The reader can safely treat

them as interchangeable for the purpose of this paper. Function types are written using ⇒,
and other basic types include bool, nat and α list.

1.2 Function Definitions in Isabelle/HOL

To explain the problem, we briefly outline the state of the art concerning function definitions
in Isabelle/HOL [20]. The definition facilities (commonly called the function package [17, 16])
work as follows:

From the specification of a partial function given by a recursive equation f x = F f x, the
function package produces a total function f :: σ ⇒ τ, together with a domain predicate dom ::
σ ⇒ bool, which models the set of values x where the recursion terminates. For values outside
the domain, we can still write the term f x, but its value may be unknown or meaningless.

E. Komendantskaya, A. Bove, M. Niqui (eds.), PAR-10 (EPiC Series, vol. 5), pp. 1–13 1

http://www.in.tum.de/~krauss


Recursive Definitions of Monadic Functions Alexander Krauss

The original recursive specification is then derived as a theorem, constrained by the domain
condition:

dom x =⇒ f x = F f x

This condition can be removed by proving that the function is total, i.e., ∀ x . dom x. An
induction rule is also derived, which is guarded by the domain condition as well.

The use of a predicate to describe terminating inputs is shared by various related approaches
[9, 10, 6, 12]. In our classical simply-typed setting, it has the advantage that the function can
be used syntactically as if it were total. In particular, one can treat a total function as partial
temporarily, until its termination proof is finished and the predicate can be discarded. This
has proved very useful for nested recursion. However, for truly partial functions the domain
condition does not go away and has to be dealt with in proofs.

1.3 Imperative Functional Programs in Isabelle/HOL

Imperative HOL [7] is an extension of Isabelle/HOL which allows modeling and reasoning about
programs that manipulate a heap. It defines a type heap, which models a store where references
can be allocated and updated. (The details behind the type heap are omitted and can be safely
ignored.)

new-ref :: heap ⇒ α ref × heap
get-ref :: α ref ⇒ heap ⇒ α
set-ref :: α ref ⇒ α ⇒ heap ⇒ heap

Heap-modifying programs are modelled as monadic computations in the so-called heap monad :

datatype α Heap = Heap (heap ⇒ (α + exception) × heap)

return :: α ⇒ α Heap
return x = Heap (Pair (Inl x ))

�= :: α Heap ⇒ (α ⇒ β Heap) ⇒ β Heap
f �= g = Heap (λh . case exec f h of (Inl x , h ′) ⇒ exec (g x ) h ′ | (Inr exn , h ′) ⇒
(Inr exn , h ′))

where exec (Heap f ) = f. This is nothing more than a state-exception monad, whose state type
is heap. The singleton type exception is a simplistic way of modelling irrecoverable failure of the
computation. The primitive heap operations are straightforwardly lifted to monadic operations
with the following types:

Ref .new :: α ⇒ α ref Heap
Ref .lookup :: α ref ⇒ α Heap
Ref .update :: α ref ⇒ α ⇒ unit Heap

We abbreviate Ref .lookup r by !r and Ref .update r x by r := x. Moreover, we use a do-
notation similar to Haskell, i.e., do x ← f ; g x done abbreviates f �= (λx . g x ). For example,
here is a data type of heap-allocated linked lists, and a function traverse :: α node ⇒ α list
Heap that traverses a linked list and turns it into an ordinary list:

datatype α node = Empty | Node α (α node ref )

traverse Empty = return []
traverse (Node x r) = do tl ← !r ;

2



Recursive Definitions of Monadic Functions Alexander Krauss

xs ← traverse tl ;
return (x # xs)

done

The semantics of a monadic computation t is given by a relation [[t ]], where (h , h ′, y) ∈ [[ t ]]
expresses that if the computation is executed on heap h, then no exception occurs and y and
h ′ are the result value and the new heap, respectively.

By a slight extension of Isabelle’s code generator [13], the monadic terms can be translated
to ML (using imperative features) or Haskell (using the ST monad).

1.4 The Catch: Recursive Monadic Definitions

But there is a catch! While much of Isabelle’s reasoning infrastructure can be used for monadic
programs as well, the function package cannot cope with functions as simple as traverse above.

There are several aspects of the problem. First, the function package looks at the arguments
of the function to construct the domain predicate. However, the termination of the function
also depends on the heap, which is hidden behind the state monad and not a direct argument
of the function.

While this could be solved by breaking the monad abstraction and making the heap a normal
argument to the function (which would result in very messy code), the second problem is that
traverse is inherently partial, as the pointer structure on the heap may be cyclic. Thus, the
function package could only produce conditional equations, and one would lose the possibility
to use the code generator, which only works for unconditional equations. This limitation of
code generation also applies to other partial functions, but in Imperative HOL, where partiality
is ubiquitous, it is especially problematic.

The paper on Imperative HOL [7] already observes these shortcomings and provides a
workaround using a recursion combinator MREC that can express a common case of defi-
nitions, including traverse. However, the lack of tool support soon becomes a show-stopper as
soon as more complex function definitions are needed.

For example, in ongoing work, Bulwahn is formalizing an imperative version of unification.
Some of his functions do not fall under the scheme of MREC, and had to be defined manually in
a tedious and error-prone process. This paper aims to simplify this task by providing a simpler
approach and some automation.

1.5 A Solution using Domain Theory

The approach that we take is to abandon well-founded recursion for this task, and resort to
domain theory instead, which can express very general recursions over complete partial orders.

The central trick is that the heap monad can be turned into a pointed complete partial order
(pcpo) by using the exceptions as a bottom value. Then, any monadic expression built up from
pure terms and primitive operations, composed with return and bind operation is continuous
by construction. This means that the standard least fixed-point construction can be used to
obtain the function, and that the recursive equation can be derived without preconditions.

A well-developed formalization of domain-theoretic concepts is available with Isabelle/
HOLCF [19]. While we build on these concepts as a foundation, the constructions are not
exposed to the user.

3



Recursive Definitions of Monadic Functions Alexander Krauss

1.6 Related Work

The most closely related work is by Bertot and Komendantsky [5], who use fixed-points in flat
pcpos to define partial recursive functions in Coq [4], augmented with some classical axioms.
They also show that their extension preserves the possibility to extract programs from Coq
developments and provide a Coq command that automates the definition process.

This work builds on the same foundations, but goes beyond it in two points:

1. We manage to provide an induction principle, which enables reasoning about the function
without having to rely on the underlying iterative construction. This permits induction
proofs at a higher level of abstraction, which leads to simpler proofs.

2. By generalizing the approach slightly, we do not only deal with the flat domain of the
option type, but can also handle other situations such as the heap monad. This elegantly
solves the problem of making recursive definitions of programs in Imperative HOL.

Using the monad abstraction to encapsulate partiality is also not new: In the context
of constructive type theory, Capretta [8] and Megacz [18] describe monads that model non-
terminating computations coinductively. In a classical logic like Isabelle/HOL, however, the
much simpler option monad, which simply adds an extra element to express undefinedness, is
sufficient.

The rest of this paper is structured as follows. We first introduce the basic prelimi-
naries from Isabelle/HOLCF (Sect. 2). Then we show how recursive function definitions can
be automated in the option monad, which is the simplest setting for our approach (Sect.3).
Sect. 4 discusses the automated generation of induction rules from the general fixed-point in-
duction principle. Then we move back to the imperative heap monad (Sect. 5), which is the
original motivation for this work. It will be seen that the technique generalizes easily to that
more interesting case, and we present a more realistic example. We compare the method to the
domain-predicate-based approach and discuss limitations and other issues in Sect. 6.

2 Isabelle/HOL and Isabelle/HOLCF

Isabelle/HOLCF is a definitional extension of Isabelle/HOL with domain-theoretical concepts
from the LCF system [11]. Originally developed by Regensburger [22, 21], its design was later
improved by Müller et al. [19], notably by the consequent use of type classes. In recent years,
the library has been maintained and extended by Huffman [14, 15].

HOLCF defines a type class of complete partial orders (cpos) v, based on which the standard
notions of chain, (least) upper bounds, and continuity are defined as in Fig. 1. Note that the
expression

⊔
i . Y i only denotes a meaningful value if a least upper bound actually exists.

Otherwise its value is arbitrary. A cpo is pointed if it has a least element, written ⊥. Pointed
cpos are also called pcpos.

One of the basic results of domain theory is a fixed-point theorem, proving that continuous
functions always have a fixed-point that can be reached by iteration:

cont F =⇒ fixp F = F (fixp F ) (Fixp)

Here, fixp F = (
⊔

i . F i ⊥), and F i denotes iterated function application.
As one of its main features, HOLCF then introduces a type of continuous functions, written α

→ β. While this helps to automate many continuity proofs by turning them into type checking,

4



Recursive Definitions of Monadic Functions Alexander Krauss

chain :: (nat ⇒ α) ⇒ bool
chain Y ←→ (∀ i . Y i v Y (Suc i))

range :: (α ⇒ β) ⇒ β set
range f = {y . ∃ x . y = f x}
<| :: α set ⇒ α ⇒ bool
S <| x ←→ (∀ y . y ∈ S −→ y v x )

�| :: α set ⇒ α ⇒ bool
S �| x ←→ S <| x ∧ (∀ u . S <| u −→ x v u)⊔

:: α set ⇒ α
(
⊔

i . Y i) = (THE x . range Y �| x )

cont :: (α ⇒ β) ⇒ bool
cont f ←→ (∀Y . chain Y −→ range (λi . f (Y i)) �| f (

⊔
i . Y i))

Figure 1: Basic definitions of HOLCF

it also destroys the compatibility with regular Isabelle/HOL developments. Since we are trying
to simplify function definitions in HOL, we do not use the continuous function space.

More generally, while this work uses concepts from HOLCF, it is important to note that
this is completely transparent and just part of the internal construction. A user of our tool
does not have to know domain theory or its formalization in HOLCF.

3 Recursion in the Option Monad

This section shows how to define partial functions in the option monad. It mainly recalls the
standard fixed-point construction also used by Bertot and Komendantsky [5], and shows how
it is automated in Isabelle/HOL. Later we will generalize it to the heap monad.

We start from the standard option type in Isabelle/HOL, together with the monad opera-
tions:

datatype α option = None | Some α

return x = Some x

None �= f = None
Some y �= f = f y

This monad is known to Haskell programmers as the Maybe monad and models computations
with failure. However, it can also be regarded as a (flat) pcpo, where ⊥ = None.

This basically (ab)uses None as the result of a non-terminating computation. The fixed-
point law can thus be used to solve recursive equations f x = F f x, provided that the functional
involved is continuous:

1. Prove that the functional F is continuous.

2. Define f = fixp F.

3. Conclude the equation f x = F f x using the fixed-point theorem (Fixp).

5



Recursive Definitions of Monadic Functions Alexander Krauss

(
∧

y . cont (λx . f x y)) =⇒ cont f (Lam)
cont f =⇒ (

∧
y . cont (g y)) =⇒ cont (λx . do y ← f x ; g y x done) (Bind)

cont (λx . c) (Const)
cont (λf . f x ) (Rec)
cont f =⇒ cont g =⇒ cont (λx . if b then f x else g x ) (If)

Figure 2: Continuity rules

Now the primary observation is that if the function is written in monadic style, continuity
holds by construction and can be proved automatically following the term structure using the
rules given in Fig. 2.

Example 1. As an artificial example, assume some fixed function step :: nat ⇒ nat and assume
that we want to define a function trace :: nat ⇒ nat list that iterates the step function, until it
returns zero, keeping all even values in a list. Here is how the function could be written in ML.

fun trace n =

if n = 0 then []

else if even n then n :: trace (step n)

else trace (step n)

The function is partial and asserting this equation directly in Isabelle/HOL would be unsound.
However, we can define its monadic counterpart with return type nat list option: (Note that #
is Isabelle’s way of spelling the constructor for non-empty lists)

trace n =
(if n = 0 then return []
else do tl ← trace (step n);

(if even n then return (n # tl) else return tl)
done)

The following step-by-step proof shows that continuity of the functional is easily proved in
a completely syntax-directed way. The proof obligation is as follows.

1 . cont (λtrace n .
if n = 0 then return []
else do tl ← trace (step n);

(if even n then return (n # tl) else return tl)
done)

We first move the lambda bound argument out using rule (Lam):

1 .
∧

n . cont (λtrace. if n = 0 then return []
else do tl ← trace (step n);

(if even n then return (n # tl) else return tl)
done)

Applying rule (If), we obtain two subgoals:

1 .
∧

n . cont (λtrace. return [])
2 .

∧
n . cont (λtrace. do tl ← trace (step n);

(if even n then return (n # tl) else return tl)
done)

6



Recursive Definitions of Monadic Functions Alexander Krauss

The first goal is trivial as it contains no recursive call, and can be discharged with rule (Const).
The other goal contains a bind, and we decompose it using rule (Bind):

1 .
∧

n . cont (λtrace. trace (step n))
2 .

∧
n tl . cont (λtrace. if even n then return (n # tl) else return tl)

Now, the first goal is a recursive call, and we apply rule (Rec). The other goal is again trivially
solved using (Const).

4 Induction Rules for Partial Correctness

Defining the function and deriving the recursive equation is always just half of the problem,
since one wants to use induction to reason about the function. For total functions, the induction
principle is a consequence of the termination of the function. For partial functions, the function
package can generate a similar rule, using the domain predicate as a guard. In this section, we
show how to derive an induction rule for partial functions constructed as least fixed-points.

HOLCF provides a general fixed-point induction rule:

adm P =⇒ cont F =⇒ P ⊥ =⇒ (
∧

f . P f =⇒ P (F f )) =⇒ P (fixp F )

Besides continuity, which is already proved at definition time, the property P must hold for ⊥
and it must be admissible, which means that it can be transferred from chains to least upper
bounds:

adm P = (∀Y . chain Y −→ (∀ i . P (Y i)) −→ P (
⊔

i . Y i))

While this general rule can be used to reason about the function, it is somewhat abstract
and not very convenient to use. In particular, the admissibility condition must always be proved
when applying the rule. Although HOLCF can automate such proofs in some cases, we would
prefer to hide these inconvenient parts of domain theory completely.

4.1 Restriction to partial correctness

It turns out that there is an instance of the general rule which is easier to work with.
If we restrict ourselves to partial correctness properties, i.e., showing that the result of the

function, when it is defined, satisfies some predicate, then matters become straightforward.
More precisely, we replace the predicate P with the instance λf . ∀ x y . f x = Some y −→ Q
x y. Then the admissibility condition can be discharged once and for all, since this instance is
always admissible.

Thus, if f is the recursive function, and F is the corresponding functional, the following rule
can be derived.∧

f x y . (
∧

z r . f z = Some r =⇒ Q z r) =⇒ F f x = Some y =⇒ Q x y

f x = Some y =⇒ Q x y

Note that the statement of this rule makes no mentioning of the iterative fixed-point con-
struction. Presenting this rule to the user hides the details of this construction, which allows
reasoning on a more abstract level.

7



Recursive Definitions of Monadic Functions Alexander Krauss

Example 2. For example, the instance for trace is as follows:∧
trace n ys .

(
∧

z r . trace z = Some r =⇒ Q z r) =⇒
(if n = 0 then return []
else do tl ← trace (step n);

(if even n then return (n # tl) else return
tl)

done) =
Some ys =⇒
Q n ys

trace n = Some ys =⇒ Q n ys

4.2 Induction Rule Refinement

The raw induction rule as shown above can still be improved. First, the control flow in the
definition gives rise to three cases, one for n = 0, one for even n, and one for ¬ even n. Second,
the sequencing using �= can be decomposed, since the whole expression is only defined when
all relevant subexpressions are defined. Moreover, the induction hypothesis is likely to be only
useful to prove that the recursive call satisfies the property Q. The rule that a user would like
to see is roughly the following:

Q 0 []∧
n tl . n 6= 0 =⇒ Q (step n) tl =⇒ even n =⇒ Q n (n

# tl)∧
n tl . n 6= 0 =⇒ Q (step n) tl =⇒ ¬ even n =⇒ Q n

tl

trace n = Some ys =⇒ Q n ys

To arrive at this simpler form, the following steps are necessary:

1. Decompose the program structure by splitting the function body into smaller steps:

• A premise (t �= (λx . f x )) = Some y is replaced by t = Some x and f x = Some y

• A premise Some t = Some y (which arises from a return statement) is replaced by
t = y.

• Conditionals like (if b then x else x ′) = Some y are split up into two cases, with
premises b and ¬ b.

2. Use the induction hypothesis to replace premises of the form f z = Some r by Q z r. When
all occurrences of f are replaced, the general induction hypothesis can be discarded.

3. Clean up the context by substituting premises of the form v = t where v is a variable.

8



Recursive Definitions of Monadic Functions Alexander Krauss

5 Recursion in the Heap Monad

We now move from the option monad to the more interesting heap monad. In fact, not much
of the process has to be adapted.

The heap pcpo. Unlike the option pcpo, the heap pcpo is not flat, since its values represent
state transformations. The order is defined as Heap f v Heap g ←→ (∀ h . f h = bot ∨ f
h = g h), where bot = (Inr Exn , h0) for some arbitrary but fixed heap h0. This implies
⊥ = Heap (λh . bot).

Recursive definitions. After proving continuity of �=, which is tedious but straightforward,
the definition process remains the same as for the option monad. We automatically prove
continuity of the functional by applying the rules from Fig. 2 in a syntax-directed way.
After that, the function can be defined as a fixed-point.

Induction rule generation. In the induction rule, the condition f x = Some y is replaced
with its counterpart for heap-manipulating programs, the condition (h , h ′, y) ∈ [[ f x ]]
(cf. Sect. 1.3). The inductive property Q now also refers to the heap before and after the
computation. As in the option case, we must prove that this partial correctness property
is always admissible:

adm (λf . ∀ x h h ′ y . (h , h ′, y) ∈ [[ f x ]] −→ Q x h h ′ y)

Induction rule refinement. In the refinement process, the program structure is decomposed
as described above. For the primitive heap operations, additional refinement steps are
added, which replace them by their counterparts with explicit heap. For example, the
premise (h , h ′, y) ∈ [[ !r ]] is replaced by y = get-ref r h and h ′ = h.

Example 3. The refined induction rule for traverse has the following form:∧
h ′. Q Empty h ′ h ′ []∧
h1 h2 x ′ r n . Q (get-ref r h1) h1 h2 n =⇒ Q (Node x ′ r) h1 h2 (x ′ # n)

(h , h ′, y) ∈ [[ traverse x ]] =⇒ Q x h h ′ y

Example 4. We now discuss a more realistic example that arises in the formalization of an
imperative unification algorithm mentioned previously. We refer to Baader and Nipkow [1,
ch. 4.8]. for a textbook description of imperative unification. To avoid expensive allocations, the
algorithm keeps track of substitutions by directly updating references in the terms themselves.

In the formalization, heap-allocated mutable terms consist of variables, constants and binary
applications:

datatype α rtrm = Var α (α rtrm ref option) | Const α | App (α rtrm ref ) (α
rtrm ref )

The type argument α is only used for names. Note that variables carry an optional reference
cell, which is used to mark that a variable has already been assigned some other term. Applying
a substitution for that variable only requires an update of the relevant reference, which also
affects other occurrences of the same variable, since the reference is shared. A value of None
means that the variable is unassigned.

We will only show a simple part of the unification algorithm, namely the function occurs,
which checks if a variable r1 appears in some term r2:

9



Recursive Definitions of Monadic Functions Alexander Krauss

occurs r1 r2 =
do t ← !r2;

(case t of
Var n σ ⇒

if r1 = r2 then return True
else case σ of None ⇒ return False | Some r ′⇒ occurs r1 r ′

| Const n ⇒ return False
| App r3 r4 ⇒ do b ← occurs r1 r3;

(if b then return True else occurs r1 r4)
done)

done

This is a simple recursive traversal of r2, except that in the variable case, the traversal continues
if the variable has already been instantiated. Since the term on the heap may contain cycles the
function can diverge. Also note that the check r1 = r2 is a pointer equality test, not structural
equality.

To formulate the correctness property of such a function, it is convenient to re-state the
property “r1 occurs in r2” as an inductive relation occurs-in :: heap ⇒ α rtrm ⇒ α rtrm ⇒
bool. Then, the crucial property connects occurs and occurs-in:

(h , h ′, b) ∈ [[ occurs r1 r2 ]] =⇒ get-ref r1 h = Var c None =⇒ occurs-in h r1 r2

= b

Note that there is no assumption that the pointer structures are acyclic, which is implicit in
the assumption that the call to occurs terminates and returns b. As there is no structural
induction principle that can be used here, and we must use induction over the computation of
the function—in other words, fixed-point induction.

The induction rule produced by our prototype implementation is given below. With this
rule, the inductive proof of the correctness property is straightforward. Note how the premises
of the rule correspond to the cases in the function definition.∧

r1 h n σ. get-ref r1 h = Var n σ =⇒ P r1 r1 h h True∧
r1 r2 h n . r1 6= r2 =⇒ get-ref r2 h = Var n None =⇒ P r1 r2 h h False∧
r1 r2 h ′ y h n r ′.

r1 6= r2 =⇒ P r1 r ′ h h ′ y =⇒ get-ref r2 h = Var n (Some r ′) =⇒ P r1 r2 h h ′ y∧
r1 r2 h n . get-ref r2 h = Const n =⇒ P r1 r2 h h False∧
r1 r2 h ′ h r3 r4 b. get-ref r2 h = App r3 r4 =⇒ P r1 r3 h h ′ b =⇒ b =⇒ P r1

r2 h h ′ True∧
r1 r2 h ′′ y h r3 r4 h ′ b.

get-ref r2 h = App r3 r4 =⇒
P r1 r3 h h ′ b =⇒ ¬ b =⇒ P r1 r4 h ′ h ′′ y =⇒ P r1 r2 h h ′′ y

(y , r1, r2) ∈ [[ occurs h h ′ ]] =⇒ P h h ′ y r1 r2

While this rule looks intimidating at first, our (limited) practical experience suggests that there
is no way around it. Before automation was available, the definition of the function and the
proof of a similar induction rule took about 450 lines of very technical proof script, which is
more than the correctness proof itself. The situation for the rest of the imperative unification
algorithm is similar. With our new approach, these manual proofs are no longer needed.

10



Recursive Definitions of Monadic Functions Alexander Krauss

6 Discussion

Implementation. The implementation of our technique is still in a prototype stage. It
works well with the examples like the ones presented in this paper but lacks several user-
friendly features that would be needed for productive use, e.g., support for mutually recursive
definitions and pattern matching. Moreover, the HOLCF dependencies should be reduced to a
minimum.

Higher-order recursion. Currently, our approach expects a fixed set of constructs in monadic
terms: �=, conditionals, recursive calls, and constant expressions not involving recursive calls
(cf. the continuity rules in Fig. 2). This basically limits the functions that can be defined to a
first-order fragment, since recursive calls must be applied and cannot be passed to functionals
like map or fold. To support higher-order recursion, one must handle more constructs, such as
a monadic map combinator mapM. Then, a suitable continuity rule must be known to the tool,
and (optionally) a rule to be used in the induction rule refinement step. The format of such
rules is not yet entirely clear, and it is part of future work to see if this extension is possible
and helpful in practice.

Option type vs. domain predicate. With the ability to define non-terminating recursive
functions in the option monad, we effectively have a new and alternative technique for defining
partial functions. This raises the question about the relative merits of the two approaches, and
whether one should be preferred over the other. While this question can only be answered by
comparing the approaches in concrete applications, a few general things can be said:

• The main difference between the techniques is the format of the function itself: while
the function package produces a total function and a predicate dom that describes the
arguments x where f x “makes sense”, the option method produces a function that returns
an option type, where partiality is explicit in the result. As a price for this more accurate
model, the recursive equation must be written monadically, to deal with the bottom values
that may arise in recursive calls.

• The function package constrains the recursive equations with the domain predicate, whereas
the option method produces unconditional equations. Thus, partial functions defined us-
ing the option method can be used with Isabelle’s code generator.

• The function package provides special support for tail-recursive definitions. If the function
is tail-recursive, the unconditional specification can be derived as a theorem even for
partial functions.

The same functionality could be provided using the domain-theoretic approach: We choose
the identity monad (i.e., no monad at all), and take the flat pcpo where x v y = (x =
u ∨ x = y) where u is an arbitrary but fixed value. Since the bind operation (which is
just application) is not continuous, we cannot define arbitrary functions. We can however
define tail-recursive functions, since they can be written without bind. Thus, tail-recursion
can be seen as a special case of the monadic approach.

Other Applications. Up to now, only option and state-exception monads are supported
by our approach. The question arises whether our treatment can be transferred to recursive
definitions in other monads, e.g., continuation or resumption monads. This is the subject of
future work.

11



Recursive Definitions of Monadic Functions Alexander Krauss

However, even in the current state, the approach can be of use in scenarios other than
Imperative HOL: For example, Thiemann and Sternagel [24] use an error monad to formalize
a simple XML parser. Termination of the parser is irrelevant to the rest of their development,
so it is currently assumed as an axiom, in order to obtain unconditional equations. Using our
approach, these equations should come for free, but without axioms.

7 Conclusion

Monadic functions present a challenge to the automated definition mechanisms based on well-
founded recursion. We have shown that by using the fixed-point theorem for complete partial
orders, such definitions can be made with surprising ease and result in equations that need no
domain condition. Automatically generated custom induction rules make the resulting functions
convenient to use, without having to refer to the iterative construction used internally.

While it is perhaps not surprising that domain theory is up to this task, using it for monadic
definitions is particularly convenient, since conditions like continuity and admissibility hold by
construction, and the overhead of handling undefinedness is absorbed by the monad.

Acknowledgments I want to thank Lukas Bulwahn for many interesting discussions about
improving tool support for Imperative HOL, and for providing helpful feedback on a draft of
this paper and the implementation.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[2] G. Barthe, J. Forest, D. Pichardie, and V. Rusu. Defining and reasoning about recursive functions:
a practical tool for the Coq proof assistant. In M. Hagiya and P. Wadler, editors, Functional and
Logic Programming (FLOPS 2006), volume 3945 of Lecture Notes in Computer Science, pages 114
– 129. Springer Verlag, 2006.

[3] S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors. Theorem Proving in Higher Order
Logics (TPHOLs 2009), 22nd International Conference, Munich, Germany, August 2009, Pro-
ceedings, volume 5674 of Lecture Notes in Computer Science. Springer Verlag, 2009.

[4] Y. Bertot and P. Castéran. Interactive theorem proving and program development: Coq’Art: the
calculus of inductive constructions. Texts in theoretical computer science. Springer Verlag, 2004.

[5] Y. Bertot and V. Komendantsky. Fixed point semantics and partial recursion in Coq. In Principles
and practice of declarative programming (PPDP ’08), pages 89–96, New York, NY, USA, 2008.
ACM.

[6] A. Bove and V. Capretta. Modelling general recursion in type theory. Mathematical Structures in
Computer Science, 15(4):671–708, 2005.

[7] L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök, and J. Matthews. Imperative functional program-
ming in Isabelle/HOL. In O. Ait Mohamed, C. Muñoz, and S. Tahar, editors, Theorem Proving in
Higher Order Logics (TPHOLs 2008), volume 5170 of Lecture Notes in Computer Science, pages
134–149. Springer Verlag, 2008.

[8] V. Capretta. General recursion via coinductive types. Logical Methods in Computer Science,
1(2):1–18, 2005.

[9] R. L. Constable and N. P. Mendler. Recursive definitions in type theory. In R. Parikh, editor,
Logic of Programs, volume 193 of Lecture Notes in Computer Science, pages 61–78. Springer Verlag,
1985.

12



Recursive Definitions of Monadic Functions Alexander Krauss

[10] C. Dubois and V. Donzeau-Gouge. A step towards the mechanization of partial functions: domains
as inductive predicates. In CADE-15 Workshop on mechanization of partial functions, 1998.

[11] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised Logic of
Computation, volume 78 of Lecture Notes in Computer Science. Springer Verlag, 1979.

[12] D. Greve. Assuming termination. In ACL2 Workshop Proceedings, 2009.

[13] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In Functional
and Logic Programming (FLOPS 2010), LNCS. Springer, 2010. To appear.

[14] B. Huffman. Reasoning with powerdomains in Isabelle/HOLCF. In O. Ait Mohamed, C. Muñoz,
and S. Tahar, editors, TPHOLs 2008: Emerging Trends Proceedings, pages 45 –56, 2008. Depart-
ment of Electrical and Computer Engineering, Concordia University.

[15] B. Huffman. A purely definitional universal domain. In Berghofer et al. [3], pages 260–275.

[16] A. Krauss. Automating Recursive Definitions and Termination Proofs in Higher-Order Logic. PhD
thesis, Institut für Informatik, Technische Universität München, Germany, 2009.

[17] A. Krauss. Partial and nested recursive function definitions in higher-order logic. Journal of
Automated Reasoning, 44(4):303–336, 2010.

[18] A. Megacz. A coinductive monad for prop-bounded recursion. In A. Stump and H. Xi, editors,
Proceedings of the ACM Workshop Programming Languages meets Program Verification, PLPV
2007, pages 11–20, New York, NY, USA, 2007. ACM.

[19] O. Müller, T. Nipkow, D. von Oheimb, and O. Slotosch. HOLCF=HOL+LCF. Journal of Func-
tional Programming, 9(2):191–223, 1999.

[20] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of Lecture Notes in Computer Science. Springer Verlag, 2002.

[21] F. Regensburger. HOLCF: Eine konservative Erweiterung von HOL um LCF. PhD thesis, Tech-
nische Universität München, 1994.

[22] F. Regensburger. HOLCF: higher order logic of computable functions. In E. T. Schubert, P. J.
Windley, and J. Alves-Foss, editors, TPHOLs, volume 971 of Lecture Notes in Computer Science,
pages 293–307. Springer Verlag, 1995.

[23] K. Slind. Function definition in Higher-Order Logic. In J. von Wright, J. Grundy, and J. Harrison,
editors, Theorem Proving in Higher Order Logics (TPHOLs ’96), volume 1125 of Lecture Notes in
Computer Science, pages 381–397. Springer Verlag, 1996.

[24] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Berghofer et al.
[3], pages 452–468.

13


	Introduction
	Notation
	Function Definitions in Isabelle/HOL
	Imperative Functional Programs in Isabelle/HOL
	The Catch: Recursive Monadic Definitions
	A Solution using Domain Theory
	Related Work

	Isabelle/HOL and Isabelle/HOLCF
	Recursion in the Option Monad
	Induction Rules for Partial Correctness
	Restriction to partial correctness
	Induction Rule Refinement

	Recursion in the Heap Monad
	Discussion
	Conclusion

