Chang-Mundici construction of an enveloping unital lattice-group of a BL-algebra

Celestin Lele¹ and Jean B Nganou²

¹ Department of Mathematics and Computer Science, University of Dschang, Cameroon celestinlele@yahoo.com

² Department of Mathematics, University of Oregon, Eugene, OR 97403 nganou@uoregon.edu

Abstract

For any BL-algebra L, we construct an associated lattice ordered Abelian group G_L that coincides with the Chang's ℓ -group of an MV-algebra when the BL-algebra is an MV-algebra. We prove that the Chang's group of the MV-center of any BL-algebra L is a direct summand in G_L . We also find a direct description of the complement $\mathfrak{S}(L)$ of the Chang's group of the MV-center in terms of the filter of dense elements of L. Finally, we compute some examples of the group G_L .

1 Introduction

It is well known that the category of MV-algebras is equivalent to that of ℓ -groups with strong unit [2]. This equivalence, which depends in large part on the natural algebraic addition of MV-algebras has been an essential tool in the study of MV-algebras. On the other hand, MV-algebras are BL-algebras whose negations are involutions. Given that a proper algebraic addition is now available in BL-algebras [5], it is natural to consider some of the constructions of MV-algebras that rely on the addition within the BL-algebras framework. Undoubtably, the Chang-Mundici's ℓ -group of an MV-algebra is one of the most important such constructions [1, 2].

The main goal of the present work is to extend this construction to BL-algebras, by associating to each BL-algebra an ℓ -group with strong unit. More specifically, we introduce good sequences in any BL-algebra L and show that their set forms a commutative monoid $(M_L, +, 0)$. Mimicking the general construction due to Grothendieck of an Abelian group from a commutative monoid, we obtain a lattice ordered Abelian group with strong unit G_L , which we shall refer to as the Chang's ℓ -group of the BL-algebra. We show that the Chang's group of the MV-center of L is a direct summand in G_L , and that its complement $\mathfrak{S}(L)$ is an ideal of G_L . For BL-chains, we obtain that G_L is isomorphic to the lexicographic product of the Chang's group of the MV-center and $\mathfrak{S}(L)$. It turns out that the ℓ -group $\mathfrak{S}(L)$ can be directly constructed from the filter of dense elements of the BL-algebra L, thus generalizing the relationship between BL-algebras and negative cones of ℓ -groups [4].

2 Addition and Good Sequences in BL-algebras

The following natural commutative operation + was introduced in every BL-algebra [5]: For every $x, y \in L$,

$$x + y := (\bar{x} \to y) \land (\bar{y} \to x)$$

This addition is commutative, associative, has 0 for identity, and 1 as absorbing.

Definition 2.1. A BL-chain L is called *of cancellative type* if for every $x, y, z \in L$,

$$x + y = x + z$$
 and $x \otimes y = x \otimes z$ imply $y = z$.

A BL-algebra is called of cancellative type if it is a subdirect product of BL-chains of cancellative type.

N. Galatos, A. Kurz, C. Tsinakis (eds.), TACL 2013 (EPiC Series, vol. 25), pp. 167–170 167

A Chang-Mundici ℓ -group of a BL-algebra

Lele and Nganou

Examples of BL-algebras of cancellative type include MV-algebras, and product algebras.

Lemma 2.2. In every BL-algebra L, the following equation holds.

 $(x \otimes y) + ((x+y) \otimes z) = (x \otimes z) + ((x+z) \otimes y)$

The following definitions are motivated by similar concepts in MV-algebras.

Definition 2.3. Let *L* be a BL-algebra. A sequence $\mathbf{a} := (a_1, a_2, \ldots, a_n, \ldots)$ of elements of *L* is called a good sequence if for all $i, a_i + a_{i+1} = a_i$, and there exists an integer *n* such that $a_r = 0$ for all r > n. In this case, instead of writing $\mathbf{a} = (a_1, a_2, \ldots, a_n, 0, 0, \ldots)$, we will simply write $\mathbf{a} = (a_1, a_2, \ldots, a_n)$

Note that if, $\mathbf{a} = (a_1, a_2, \dots, a_n)$ is a good sequence, then $(\underbrace{1, \dots, 1}_{m's \ 1}, a_1, a_2, \dots, a_n)$ is again a good

sequence. The later will be denoted by $(1^m, a_1, a_2, \cdots, a_n)$. We define the addition of sequences as follows:

Definition 2.4. Let *L* be a BL-algebra and let $\mathbf{a} = (a_1, a_2, \dots, a_n, \dots)$, $\mathbf{b} = (b_1, b_2, \dots, b_n, \dots)$ be sequences in *L*. We define the sum of \mathbf{a} and \mathbf{b} by $\mathbf{a} + \mathbf{b} = (c_1, c_2, \dots, c_n, \dots)$ where $c_i := a_i + (a_{i-1} \otimes b_1) + \dots + (a_1 \otimes b_{i-1}) + b_i$.

Proposition 2.5. For every BL-algebra L, $(M_L, +, (0))$ is an Abelian monoid satisfying: for every $\mathbf{a}, \mathbf{b} \in M_L$,

 $\mathbf{a} + \mathbf{b} = (0)$ implies $\mathbf{a} = \mathbf{b} = (0)$

Using the Grothendieck construction of a group from a commutative monoid, we define on $M_L \times M_L$ the relation ~ by $(\mathbf{a}, \mathbf{b}) \sim (\mathbf{c}, \mathbf{d})$ if and only if there exists $\mathbf{k} \in M_L$ such that $\mathbf{a} + \mathbf{d} + \mathbf{k} = \mathbf{b} + \mathbf{c} + \mathbf{k}$. Then, it is easy to see that ~ is an equivalence relation on $M_L \times M_L$. Let $G_L = M_L \times M_L / \sim$ be the factor set of $M_L \times M_L$ by ~. If we denote the equivalence class of (\mathbf{a}, \mathbf{b}) by $[\mathbf{a}, \mathbf{b}]$, one has a well-defined operation + on G_L given by $[\mathbf{a}, \mathbf{b}] + [\mathbf{c}, \mathbf{d}] = [\mathbf{a} + \mathbf{c}, \mathbf{b} + \mathbf{d}]$. Moreover, $(G_L, +, [(0), (0)])$ is an Abelian group where $-[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$. We define \leq on the monoid $(M_L, +)$ by: $\mathbf{a}, \mathbf{b} \in M_L$; $\mathbf{a} \leq \mathbf{b}$ if $a_i \leq b_i$ for all *i*. It is clear that \leq is a partial order on M_L .

Proposition 2.6. Let \leq be the relation defined on G_L by $[\mathbf{a}, \mathbf{b}] \leq [\mathbf{c}, \mathbf{d}]$ if and only if there exists $\mathbf{k} \in M_L$ such that $\mathbf{a} + \mathbf{d} + \mathbf{k} \leq \mathbf{b} + \mathbf{c} + \mathbf{k}$.

Then \leq is a partial order relation on G_L that is translation invariant.

Theorem 2.7. For every BL-algebra L, the po-group G_L is a lattice ordered group where,

 $[\mathbf{a},\mathbf{b}] \vee [\mathbf{c},\mathbf{d}] = [(\mathbf{a}+\mathbf{d}) \vee (\mathbf{b}+\mathbf{c}), \mathbf{b}+\mathbf{d}] \quad \textit{and} \quad [\mathbf{a},\mathbf{b}] \wedge [\mathbf{c},\mathbf{d}] = [(\mathbf{a}+\mathbf{d}) \wedge (\mathbf{b}+\mathbf{c}), \mathbf{b}+\mathbf{d}]$

Furthermore, $u_L := [(1), (0)]$ is a strong unit of the ℓ -group G_L .

Remark 2.8. The standard proof of Theorem 2.7 for MV-algebras relies on the fact that if A is an MV-algebra, then $\mathbf{a} \leq \mathbf{b}$ in M_A if and only if there exists $\mathbf{c} \in M_A$ such that $\mathbf{b} = \mathbf{a} + \mathbf{c}$ [3, Prop. 2.3.2]. However, this condition does not hold for general BL-algebras, not even for those of cancellative type.

Theorem 2.9. Let L be a BL-algebra whose MV-center is denoted by A with Chang-Muncidi's group G_A . Then, there exists an ideal $\mathfrak{S}(L)$ of G_L such that

$$G_L = G_A \oplus \mathfrak{S}(L)$$

In particular, the Chang's ℓ -group G_A of A is a direct summand of G_L .

Corollary 2.10. Let L be a BL-algebra whose MV-center is A, then; There exists an ordered-preserving group isomorphism (o-isomorphism) from G_L onto $G_A \times_{lex} \mathfrak{S}(L)$ (the lexicographic product), where $\mathfrak{S}(L)$ is the lattice ordered group above. A Chang-Mundici ℓ -group of a BL-algebra

For BL-algebras of cancellative type, several aspects of the construction can be simplified as we will see next.

Proposition 2.11. If L is a BL-algebra of cancellative type, then $(M_L, +)$ is a cancellative monoid, that is for every good sequences $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in L such that $\mathbf{a} + \mathbf{c} = \mathbf{b} + \mathbf{c}$, then $\mathbf{a} = \mathbf{b}$.

Corollary 2.12. For every BL-algebra L of cancellative type, $(M_L, +, \leq)$ is submonoid of the positive cone of G_L and the restriction of the order of G_L to M_L coincides with \leq .

Corollary 2.13. A BL-algebra of cancellative type is an MV-algebra if and only if $\mathfrak{S}(L) = 0$.

3 Examples and alternate descriptions

This section is devoted to computations of the Chang's ℓ -group of some of the most important BL-algebras.

Remark 3.1. Suppose that *L* is a BL-chain, then every element $[\mathbf{a}, \mathbf{b}] \in G_L$ has the form $[(1^p, a), (1^q, b)]$ with $p, q \ge 0, a \ne 0$ and $b \ne 0$. In addition, for a BL-chain *L*, the ℓ -group $\mathfrak{S}(L)$ can be described as follows. $\mathfrak{S}(L) = \{[(a), (b)] : a, b \in L \text{ and } \overline{\overline{a}} = \overline{\overline{b}}\} = \{[(a), (b)] : a, b \in L \text{ and } \overline{\overline{a}} = \overline{b}\}.$

Proposition 3.2. The Chang's l-group of any linearly ordered Gödel algebra is isomorphic to the o-group \mathbb{Z} .

Lemma 3.3. 1. If L is linearly ordered BL-algebra, then G_L is an o-group. 2. If L is a BL-algebra of cancellative type so that G_L is an o-group, then L is a BL-chain.

Corollary 3.4. For every BL-chain L,

$$G_L \cong G_A \times_{lex} \mathfrak{S}(L)$$

Proposition 3.5. Let L = [0, 1] with the product structure. Then G_L is isomorphic to $\mathbb{Z} \times_{lex} \mathbb{R}_+$.

Proposition 3.6. If L is a product BL-chain, then the Chang's ℓ -group of L is naturally isomorphic to $\mathbb{Z} \times_{lex} \mathfrak{H}(L)$, where $\mathfrak{H}(L)$ is the o-group whose negative cone is L.

Proposition 3.7. For every BL-algebra L of finite order, $G_L = G_{MV(L)}$.

Corollary 3.8. A BL-algebra of finite order is of cancellative type if and only if it is an MV-algebra.

Corollary 3.9. For every Gödel-Dummit algebra H, G_H is equal to the Chang's group of its Boolean center MV(H).

As observed in Theorem 2.9, the Chang's group of a BL-algebra is built up of two essential pieces: the Chang's group of its MV-center and the ideal $\mathfrak{S}(L)$. Therefore, in order to understand the Chang's group of a general BL-algebra, it is enough to understand the group $\mathfrak{S}(L)$. To each filter F of a BLalgebra L, one can associate an Abelian group G_F whose elements are of the form [a, b] with $a, b \in F$ and [a, b] = [x, y] if and only if there exists $t \in F$ such that $a \otimes y \otimes t = x \otimes b \otimes t$. In addition $(G_F, +, -, 0)$ is an Abelian group where:

$$[a,b] +_G [c,d] = [a \otimes c, b \otimes d], - [a,b] = [b,a], 0_G = [1,1]$$

On the other hand, consider on G_F the order \leq defined by $[a, b] \leq [x, y]$ if and only if there exists $t \in F$ such that $a \otimes y \otimes t \leq x \otimes b \otimes t$.

Proposition 3.10. Let L be a BL-algebra L and F a filter of L, then $\mathfrak{G}_F := (G_F, +, -, 0, \leq)$ is a lattice-ordered Abelian group with:

 $[a,b] \lor [x,y] = [(a \otimes y) \lor (x \otimes b), b \otimes y]$ and $[a,b] \land [x,y] = [(a \otimes y) \land (x \otimes b), b \otimes y]$

A Chang-Mundici ℓ -group of a BL-algebra

Lele and Nganou

For every BL-algebra L, consider the set F(L) of dense elements in L, that is:

$$F(L) = \{x \in L : \bar{x} = 0\}$$

Then it is readily seen that F(L) is a filter of L. For BL-algebras of cancellative type, the following result provides a direct description of the group $\mathfrak{S}(L)$ in terms of group of the filter F(L).

Proposition 3.11. For every BL-algebra of cancellative type L,

 $\mathfrak{G}_{F(L)} \cong \mathfrak{S}(L)$

Since there are important classes of algebras generalizing BL-algebras (e.g. MTL-algebras, residuated lattices), our future work will investigate the generalization of the constructions obtained here to these classes.

References

- R. Cignoli, D. Mundici, An elementary proof of Chang's completeness theorem for the infinitevalued calculus of Lukasiewicz, *Studia Logica*, (special issue on the treatment of uncertain information)58(1998) 79-97.
- [2] R. Cignoli, D. Mundici, An elementary presentation of the equivalence between MV-algebras and *l*-groups with strong units, *Studia Logica*, special issue on Many-valued logics 61(1998) 49-64.
- [3] R. Cignoli, I. D'Ottaviano, D. Mundici, Algebraic foundations of many-valued reasoning, *Kluwer Academic, Dordrecht* (2000).
- [4] Cignoli, R., A. Torrens, An algebraic analysis of product logic, *Mult.-Valued Log.* 5 (2000) 45-65.
- [5] C. Lele, J.B. Nganou, Algebraic Addition in BL-algebras, submitted