
The Turing O-Machine and the DIME Network 

Architecture:  

Injecting the Architectural Resiliency into 

Distributed Computing 

Rao Mikkilineni
1
, Albert Comparini

1
 and Giovanni Morana

2
 

1 
Kawa Objects Inc., Los Altos, CA, U.S.A. 

{rao, albert}@kawaobjects.com 
2
University of Catania, Catania, Italy 

giovanni.morana@dieei.unict.it 

Abstract 

Turing’s o-machine discussed in his PhD thesis can perform all of the usual 

operations of a Turing machine and in addition, when it is in a certain internal state, can 

also query an oracle for an answer to a specific question that dictates its further 

evolution. In his thesis, Turing said 'We shall not go any further into the nature of this 

oracle apart from saying that it cannot be a machine.’ There is a host of literature 

discussing the role of the oracle in AI, modeling brain, computing, and hyper-

computing machines. In this paper, we take a broader view of the oracle machine 

inspired by the genetic computing model of cellular organisms and the self-organizing 

fractal theory. We describe a specific software architecture implementation that 

circumvents the halting and un-decidability problems in a process workflow 

computation to introduce the architectural resiliency found in cellular organisms into 

distributed computing machines. A DIME (Distributed Intelligent Computing Element), 

recently introduced as the building block of the DIME computing model, exploits the 

concepts from Turing’s oracle machine and extends them to implement a recursive 

managed distributed computing network, which can be viewed as an interconnected 

group of such specialized oracle machines, referred to as a DIME network. The DIME 

network architecture provides the architectural resiliency through auto-failover; auto-

scaling; live-migration; and end-to-end transaction security assurance in a distributed 

system.  We demonstrate these characteristics using prototypes without the complexity 

introduced by hypervisors, virtual machines and other layers of ad-hoc management 

software in today’s distributed computing environments. 

1 Introduction 

“Let the whole outside world consist of a long paper tape. (John von Neumann, 1948)” -- Quote 

from Turing's Cathedral, by George Dyson, NY. Random House: 2012, p 64 

 

An important implication of Gödel’s incompleteness theorem (Gödel, 1931) is that it is not 

possible to have a finite description with the description itself as the proper part. In other words, it is 

not possible to read yourself or process yourself as a process.  However, as Turing (Turing, 1939) put 

mailto:rao,%20albert%7d@kawaobjects.com
mailto:giovanni.morana@dieei.unict.it


it beautifully, “the well-known theorem of Gödel (1931) shows that every system of logic is in a 

certain sense incomplete, but at the same time it indicates means whereby from a system L of logic a 

more complete system L_ may be obtained. By repeating the process we get a sequence L, L1 = L_, 

L2 = L_1 … each more complete than the preceding. A logic Lω may then be constructed in which 

the provable theorems are the totality of theorems provable with the help of the logics L, L1, L2, … 

Proceeding in this way we can associate a system of logic with any constructive ordinal. It may be 

asked whether such a sequence of logics of this kind is complete in the sense that to any problem A 

there corresponds an ordinal α such that A is solvable by means of the logic Lα.”  

This observation along with his introduction of the oracle-machine influenced many theoretical 

advances including the development of generalized recursion theory that extended the concept of an 

algorithm (Turing, 2004) (Feferman, 2006). “An o-machine is like a Turing machine (TM) except that 

the machine is endowed with an additional basic operation of a type that no Turing machine can 

simulate.” Turing called the new operation the ‘oracle’ and said that it works by ‘some unspecified 

means’. When the Turing machine is in a certain internal state, it can query the oracle for an answer to 

a specific question and act accordingly depending on the answer. The o-machine provides a 

generalization of the Turing machines to explore means to address the impact of Gödel’s 

incompleteness theorems and problems that are not explicitly computable but are limit computable 

using relative reducibility and relative computability (Soare, 2009). 

On the other hand, it seems as if, biology does not pay attention to Gödel’s incompleteness or un-

decidability theorems. As George Dyson (Dyson, 1997, p. 123) points out, a recursive computing 

model in the genome enables the beautiful unfolding of living organisms with self-configuration, self-

monitoring, self-protection, and self-healing properties. "The analog of software in the living world is 

not a self-reproducing organism, but a self-replicating molecule of DNA.  Self-replication and self-

reproduction have often been confused.  Biological organisms, even single-celled organisms, do not 

replicate themselves; they host the replication of genetic sequences that assist in reproducing an 

approximate likeness of themselves.  For all but the lowest organisms, there is a lengthy, recursive 

sequence of nested programs to unfold.  An elaborate self-extracting process restores entire directories 

of compressed genetic programs and reconstructs increasingly complicated levels of hardware on 

which the operating system runs."  

In discussing how a single celled egg gives rise to a complex, multi-billion-celled organism, Sean 

Carroll (Caroll, 2005) put it elegantly - "I will describe how regulatory DNA is organized into 

fantastic little devices that integrate information about position in the embryo and the time of 

development. The output of these devices is ultimately transformed into pieces of anatomy that make 

up animal forms. This regulatory DNA contains the instructions for building anatomy, and 

evolutionary changes within this regulatory DNA lead to diversity of form.” 

In this paper we argue that the DIME network architecture recently introduced (Mikkilineni, 2011) 

incorporates a “regulatory” function to exert external influence on a Turing machine while 

computation is still in progress (and has not halted yet), making it act more like an oracle-machine. A 

network of such “regulated” Turing machines acts like a managed recursive distributed computing 

engine with nested monitoring and control functions where each level is managed by the oracle-like 

machine at a higher level. We conclude that the DIME network architecture circumvents both the 

halting and un-decidability problems by pushing the knowledge about the context, constraints and 

control of the computation up the hierarchy which regulates the sequence of hierarchical and temporal 

events required to implement homeostasis and self-management of the computation. At the root level, 

the process workflow down the chain defines the stable computing patterns that execute the events to 

accomplish the system’s purpose and the goals specified at each level. The specification of the 

system’s purpose at the root level (initial conditions at t = 0) is regulated by an external agent in terms 

of the context and constraints that define the destiny of the process flow. This architecture, resembling 

the self-organizing fractal structure (Kurakin, 2011), (Kurakin, 2007) is suited to address some of the 

concerns currently afflicting distributed computing systems such as concurrency, mobility and 



synchronization. Further research is currently in progress to provide a way to implement features of π-

calculus (Milner, 1999), (Goyal & Mikkilineni, 2012) including mobility using the DIME network 

architecture.  

The goals of the distributed system determine the resource requirements and computational 

process definition of individual service components based on their priorities, workload characteristics 

and latency constraints. The overall system resiliency, efficiency and scalability depend upon the 

individual service component workload and latency characteristics of their interconnections that in 

turn depend on the placement of these components (configuration) and available resources. The 

resiliency (fault, configuration, accounting, performance and security often denoted by FCAPS) is 

measured with respect to a service’s tolerance to faults, fluctuations in contention for resources, 

performance fluctuations, security threats and changing system-wide priorities.  Efficiency depicts the 

optimal resource utilization.  Scaling addresses end-to-end resource provisioning and management 

with respect to increasing the number of computing elements required to meet service needs. 

The traditional resource (CPU, memory, network bandwidth, storage capacity, and throughput) 

management strategies limit the degree of resiliency, efficiency and scaling of distributed systems 

(where different service components are served by different resource containers such as a computing 

device with local resource management provided by a local operating system) in three different ways: 

1. The operating systems that manage local resources of the containers that host the service 

components not only do not have the visibility and control of system-wide service component 

resource requirement fluctuations at run-time, but often, they also do not have the capability 

to effectively resolve contention for resources among the many service components they 

serve. In order to compensate for this, various resource management services have been added 

to monitor and control the overall system resiliency, efficiency, and scaling, at the expense of 

increased complexity. In self-managing systems, increased complexity often results in phase 

transitions leading to simpler architectures (Kurakin, 2007), (Kurakin, 2011). 

2. The CAP theorem introduced by Eric Brewer (Brewer, 2000) which explores the tradeoffs 

between consistency, availability and partition tolerance, concludes that a replicated service 

can possess just two of the three. Here, availability assures that every request received by a 

non-failing node must result in a response and partition tolerance is defined by the criterion 

that the network will be allowed to arbitrarily lose many messages sent from one node to 

another. Every node receiving a request from a client must respond, even though arbitrary 

messages that are sent may be lost. The CAP theorem constrains the placement of the services 

components and hence affects the resiliency, efficiency and scaling of the distributed system 

transactions. Self-managing systems, however, institute system-wide policies to optimize the 

trade-off with monitoring and control of the system configurations in real-time using signaling 

and parallelism (Mikkilineni, 2011). 

3. The end-to-end transaction security depends on a host of security strategies deployed by the 

resource management systems managing various containers that host the services, without the 

awareness of system-wide service component requirements which are distributed across 

multiple containers and geographies. Self-managing systems on the other hand, implement 

effective system-wide monitoring and control to propagate required information to assure end-

to-end transaction security using signaling mechanisms. 

In short, system-wide resilient resource allocation and optimization (which should be treated as a 

management process of a meta-stable near-equilibrium state) is not possible without end-to-end 

service FCAPS management that matches system goals and priorities to resource allocations of 

distributed service components both at service initiation and during service execution stages. The 

distributed system development challenges and the shortcomings of current approaches using object, 

component, and service agent orientation are summarized in (Braubach & Pokahr, 2011) and some 



new paradigms are introduced such as active component paradigm to address the shortcomings. These 

authors identify the importance of FCAPS management mentioned above as non-functional properties 

like robustness and scalability. According to Braubach and Pokahr (Braubach & Pokahr, 2011) “Non-

functional characteristics are particularly demanding challenges because they are often cross-cutting 

concerns affecting various components of a system. Hence, they cannot be built into one central place, 

but abilities are needed to configure a system according to non-functional criteria.” They propose an 

active component paradigm that “brings together agents, services and components in order to build a 

world view that is able to naturally map existing distributed system classes into a unified conceptual 

representation.”   

While we agree with the need for a new approach, we follow a different route to argue that the 

recently introduced DIME computing model simulates a specialized oracle machine and the resulting 

DIME network architecture (we denote it by c-DNA for computing DNA to distinguish it from 

biological DNA) provides system-wide regulation of the distributed computing system using a 

network of such machines. This approach brings the architectural resiliency found in cellular 

organisms to design a new class of self-managing distributed systems. 

In section II, we discuss a specialized oracle inside the distributed intelligent computing element 

(DIME) addressing FCAPS of the computing element. We then propose a DIME network as an 

extension of the o-machine concept to a distributed computing network with nested regulatory 

function. In section III, we discuss the resulting managed recursive distributed computing engine 

nature of the DIME network where each level regulates the process flow in a lower level of the 

distributed computing network to assure that the system-wide goals are accomplished within the 

constraints specified. Regulation is carried out by monitoring and modifying, according to certain 

policies, the individual component goals at the node level, sub-network level and at the network level. 

In section IV, we present some observations based on our implementation of c-DNA and conclude 

with suggestions for future research.  

2 The Oracle Machine Like Character of DIME 

In its simplest form a DIME consists of a computing element called MICE (Managed Intelligent 

Computing Element); a regulator (or a policy manager determining the FCAPS behavior called an 

FCAPS manager in our previous work) designed to manage the life-process of the MICE; and two 

parallel communication channels. 

The MICEs are interconnected using a computing (data) channel to communicate and thus execute 

a networked computing workflow; and the regulators are networked using a signaling channel which 

overlays the computing channel executing a parallel management workflow (Mikkilineni, 2011). The 

regulator can be loaded with the specification and the run-time behavior of the computation that will 

be executed by the MICE under its control. Thus a computation consists of two parts: 

1. A regulation part that specifies the resources required, the purpose, run-time behavior and 

control function (the meta-model of computation) and 

2. An execution part that specifies the execution of the computation mixed with the 

communication with the oracle to accomplish the given purpose. 

The signaling channel overlaying the data channel in the c-DNA enables a group of DIMEs to be 

interconnected to form a managed DIME computing network or just DIME network.  

 

 

 

 



 

 
Figure 1 DIME acting like Oracle Machine. 

 

The c-DNA thus enables a network of DIMEs by integrating computing and communication 

abstractions in a single computing unit. It enables the creation of a network of MICEs executing a 

distributed computation and a network of managers that provide regulation of the distributed 

computing events. This allows the composition of hierarchical recursive (each node can itself be a 

sub-network) managed process implementation. A workflow is implemented as a set of tasks, 

arranged or organized in a directed acyclic graph (DAG) and executed by a managed network of 

DIMEs. These tasks, depending on the computation process requirements are programmed and 

executed as loadable modules in each DIME. The distributed software components along with 

associated profiles defining their use and management constraints are executed by DIMEs. The 

profiles are used as blueprints to setup, execute and control the down-stream DAG at each node based 

on global and local policies that depend on system-wide priorities, process resource utilization 

fluctuations and communication latency constraints.  
Figure 1 shows the anatomy of a DIME and also a network enabled DIME. The information in the 

regulator about the context and control of the computation in progress in the MICE allows run-time 
monitoring and control of the computational workflow being performed by the MICE network. The 
MICE network is the current von Neumann computing network that can be modeled by a Universal 
Turing Machine. The I/O redirection is under the influence of the FCAPS managers during run time 
providing the ability to reconfigure the MICE network at run time. The MICE and the regulator 
exchange policy related information while the computation is in progress to influence each other’s 
behavior and system-wide behavior to implement auto-failover, auto-scaling, live-migration, end-to-
end security assurance etc., which improve the architectural resiliency of the system. 

Goyal, in addition to showing that the DIME network implements the mobility feature of π-calculus 
(Goyal & Mikkilineni, 2012) also has developed a generic structure model for the DIME network using 
the π-calculus recursive operation (Goyal, 2012). We show his model in figure 2.  

 



 
Figure 2 A generic DIME where the MICE is a Turing node. 
 
The Regulator possesses a full set of capabilities to manage and control the execution in MICE, 

generate new DIME nodes and manage communication channels.  The management and execution 
control capabilities, for example, include FCAPS management, capability to provide environmental 
information, and signaling termination or completion.  Termination causes immediate (or halt (or 
abnormal exit)) of all activities while completion signals to the recipient MICE to continue till 
execution halts normally; additionally, upon post-completion signal receipt, the MICE does not accept 
any more input.  

Generation of a new DIME node accommodates passing of a Primary Information Packet (PIP), 
where the PIP consists of what is traditionally referred to as configuration information but can also 
include activity modification information. Thus, it is possible to create mutations, clones (identical) or 
distinct DIME nodes. Each dime node, except the start-up node, when created, by default, is provided 
with a set of communication channels with its direct ancestors and, thus, any node can also 

communicate with its direct descendants; The start-up DIME node only consists of the Regulator, r0, 

with access to a PIP; thus, with reference to Figure 2, the start-up DIME node consists only of the 
Regulator.  All DIME nodes, except the start-up DIME node, consist of the Regulator, a set of 
communication channels and MICE. At time of creation a node does not have default direct channels 
with aunts or n

th
 cousins where n represents natural numbers i.e., n>0).  A Regulator can create 

communication channels among any set of its descendant DIMEs and, thus, creates a network of 
interconnected nodes. The Regulator can also create or remove communication channels between it and 
its directly managed MICE or DIMEs; there must be at least one communication channel between two 
interconnected nodes or components.  We distinguish between two types of communication channels – 
control and data.  This use of communication channels is independent of their implementation. During 
execution, a regulator may pass, as just stated, environmental and control information to its descendants 
using Auxiliary Information Packets (AIP). The PIP is provided at node creation while an AIP is used 
during execution and lends dynamicity to DIMEs viz., their evolution during operation (for example, 
akin to “aging” in nature); both PIP and AIP may contain information used by a node to create 
descendants except that an AIP can dynamically alter the characteristics of the created descendants. 



Below we provide some formalism to the DIME network; some notational liberties have been 
taken. In traditional procedural languages, recursion is implemented by suspending the current iteration 
while the next iteration executes, while in π-calculus the recursive iterations operate concurrently. 

Let C, D, M, R represent a set of communication channels, DIME, Regulator and MICE nodes 

respectively.  

d
i
  =  ( r

i 
| {c

i
} | {m

i
} )  

where a Dime node, d
i 
,  is a set of concurrent processes r

i
 ∈ R , c

i
  ∈ C  and m

i
 ∈ M , 

{c
i
}and {m

i
} represents a set of channels and  Mice; the two set of communication channels of Figure 

2 are together represented by the set {c
i
} 

 !D =  <r0> [  | D | !D]   

where ‘!’ is the π-calculus recursion operator, ‘|’ represents concurrency, r0 represents the 

initial/root Regulator (at start-up); [⋯] represents option, and {⋯} represents a set.  
Thus, from the above we know that a DIME network consists of an initial (start-up) Regulator (the 

root regulator, r0 )  that may be connected through a set of communication channels and operate 

concurrently with a DIME network . We can visualize the DIME network from some node, d
i
 , created 

in the ith
 iteration as: 

 D—  | ( r
i 
| {c

i
} | {m

i
} ) | D

+   where D—  represent the ancestors and D
+

  the 

descendants. 

3 The Recursive Distributed Computing Engine Nature of c-

DNA and Self-Regulation of Process Flow 

As discussed above, the DIME network consists of a set of DIMEs endowed with communication 

channels among the MICEs and among the regulators. The DIME network thus provides a regulatory 

(or signaling) network overlay over the computing network. Figure 3 shows a simple DIME network. 

Each configuration in the evolution of the network represents a metastable state with fluctuations 

(caused by the indeterminism of interaction with the environment) around equilibrium. When the 

fluctuations exceed certain thresholds, policy management provides self-reconfiguration to create a 

new metastable equilibrium. Such a hierarchy resembles a single cell unfolding into a complex web of 

orchestrated workflows that regulate life described by Sean Carroll. 

 

The DIME network architecture (Mikkilineni, 2011) consists of four components: 

1. A DIME node which encapsulates the von Neumann computing element with self-

management of FCAPS, 

2. Signaling capability that enables intra-DIME and Inter-DIME communication and control, 

3. An infrastructure that allows implementing distributed service workflows as a set of tasks, 

arranged or organized in a DAG and executed by a managed network of DIMEs, and 

4. An infrastructure that assures DIME network management using the signaling network 

overlay over the computing workflow. 

 



 
 

Figure 3 A DIME network where the Turing Machine network is regulated by the Regulator 

network monitoring the heartbeat, security and other parameters. The metastable 

configurations and transitions are depicted in the graph. 

 

The self-management and task execution (using the DIME component MICE) are performed in 

parallel using the stored program control computing devices. The DIME encapsulates the 

“dispositional know-how.” Each DIME is programmable to control the MICE and provide continuous 

supervision of the execution of the programs executed by the MICE. The DIME FCAPS management 

allows modeling and representing dynamic behavior of each DIME, the state of the MICE and its 

evolution as a function of time based on both internal and external stimuli. The parallel management 

architecture allows the observer (a network or sub-network) to form a group that monitors and 

controls itself while facilitating the implementation of monitoring and control of the observed 

(environment that is external and influences the observer). Parallelism allows dynamic information 

flow both in the signaling channel and the external I/O channels of the Turing computing nodes 

represented by MICE. 

There are four special features of c-DNA that contribute to self-resiliency: 

1. Each MICE is controlled by the FCAPS policies set in each DIME and also those 

communicated by the regulator network (self-identity and self-management).  

2. All reads and writes are dynamically configurable based on the FCAPS policies (system-wide 

interaction).  

3. Each node itself can be a sub-network of DIMEs with goals set by the sub-network policies 

(hierarchical composition and nested scale-invariant structure- processes (Kurakin, 2007) 

(Kurakin, 2011)) 

4. The signaling abstractions (addressing, alerting, supervision and mediation) allow dynamic 

connection management to reconfigure the DIME network thus changing the policies and 

behavior at run-time. 



 

 
 

Figure 4 The c-DNA implementing LAMP services with auto-scaling. The response time is 

monitored periodically to add or remove additional DIMEs to maintain desired service levels. 

 

The DIME network infrastructure allows the instantiation of each DIME, loading of the FCAPS 

manager with regulation executable, loading of the MICE with the computational workflow 

executable and starting the computation. It also allows regulation at run-time with the signaling 

overlay network that allows sub-network and network-level FCAPS managers to implement policies 

at run-time. Figure 3 depicts a simple workflow controlling a set of fans based on the monitored value 

of the temperature in a distributed environment. The DIME infrastructure management and the 

domain workflow management are shown in the same figure.  

Currently, the c-DNA has been implemented in two instances (Mikkilineni & Seyler, 2011), 

(Mikkilineni, Morana, & Seyler, 2012), (Mikkilineni, Morana, Zito, & Di Sano, 2012), (Morana & 

Mikkilineni, 2011): 

1. Using the DIME computing model to provide FCAPS management to a Linux process. This 

approach allows any Linux executable to be endowed with self-management and signaling 

capability thus allowing self-repair, auto-scaling, dynamic performance monitoring and 

management, and end-to-end transaction FCAPS management in a distributed system.  

2. A native operating system to run in the next generation multi-core and many-core processor 

based computing devices to convert each core into a DME and implement managed 

workflows in a DIME network spanning across multiple computing devices and geographies 

with network-wide policies based on business priorities, workload fluctuations and latency 

constraints. 



Figures 4 shows the DIME implementation of Linux processes virtualization to implement a 

distributed Linux, Apache, MySQL, PHP platform with auto-scaling, auto-failover, performance 

optimization based on response time monitoring and end to end transaction security. In particular, the 

figure shows the c-DNA auto-scaling ability: when the response time of a web server hosted in 

APACHE exceeds a given threshold, the c-DNA creates an additional copy of it and configures the 

DNS server to perform load balancing. More details can be found in (Mikkilineni, Morana, Zito, & Di 

Sano, 2012). The DIME network architecture allowed Linux process virtualization without using 

Hypervisors or Virtual Machines. A video showing the auto-failover using DIME network 

architecture by converting a Linux process into a DIME is available at 

http://www.youtube.com/kawaobjects . 

A demo of the Parallax OS, implementing DIME network architecture in multi-core servers, is 

available at http://youtu.be/K0AxJPaA_RI . This last video shows state-aware fail-over, auto-scaling, 

and dynamic I/O reconfiguration. 

4 Conclusion 

As von Neumann (Aspray & Burks, 1989) put it “It is a theorem of Gödel that the description of 

an object is one class type higher than the object." Turing’s o-machine was designed to provide 

information that is not available in the computing algorithm executed by the TM. We take a similar 

approach in the DIME computing model by separating the execution and management of the 

computation. By implementing parallel management and choosing well specified managed DAGs 

defining system-wide goals, resources and constraints, the DIME computing model circumvents the 

thorny problems of decidability and halting by pushing them up the hierarchy to the root level where 

initial conditions (t = 0) and constraints define the process flow (which are often under the influence 

of an external agent). Using the same FCAPS management structure at the node, sub-network and at 

the network level (scale-invariance), the DIME network architecture provides a fractal (recursive) 

composition model to implement managed DAGs with both hierarchical and temporal event networks. 

The DIME computing model supports the genetic transactions of replication, repair, 

recombination and reconfiguration (Stanier & Moore, 2006), (Mikkilineni, 2011). The DIME 

computing model, we believe is an embodiment of the inspiration from the oracle-machine that 

Turing envisioned and goes a step further by integrating communication and computing to enable 

managed distributed computing to implement system-wide homeostasis. Each Turing machine 

(functioning as the MICE or the parallel FCAPS managers) is implemented using the von Neumann 

serial computing model, but they communicate using shared memory and operate in parallel. The 

introduction of signaling (using different communication channels such as shared memory, PCI-

Express or socket) allows a network-wide coordination and collaboration of the managers to 

orchestrate the global policies to implement the managed workflow using the MICE network. The 

oracle “network effect” provides a synergy that is greater than the sum of its parts by effectively using 

global knowledge. It is important to note that the oracle behavior in a DIME consists of the context 

sensitive wisdom of best practices and are not constrained by Turing machine implementations of 

algorithmic behavior in the spirit of Turing’s thesis. 

While there is a resurgence in the discussion of computing models (van Leeuwen & Wiedermann, 

2000), even a call for a Kuhnian paradigm shift to embrace new computing models (Wegner & 

Goldin, 2003), (Eberbach & Wegner, 2003), (Wegner & Eberbach, 2004), (Aho, 2010), (Denning, 

2011), (Goldin & Wegner, 2008) and rebuttals  (Cockshott & Michaelson, 2007), the DIME 

computing model takes a practical approach by implementing the oracle-like behavior in a Turing 

machine. It also exploits the parallelism and the integration of computing with communication 

http://www.youtube.com/kawaobjects
http://youtu.be/K0AxJPaA_RI


networks. Above all, it exploits the signaling abstractions to regulate the computing behavior based on 

its context that is the norm, not an exception, in living organisms. 

The introduction of a signaling network overlay over computing network adds a new dimension in 

distributed computing by incorporating the architectural resilience of cellular organisms into 

computing machines. It allows specification of equilibrium patterns in computation process flows, and 

monitor and control exceptions system-wide. It allows contention resolution based on system-wide 

view and eliminates race conditions and other common issues found in current ad-hoc distributed 

computing practices without a concrete computing model (such as a TM or an o-machine) serving as a 

solid foundation. In systems with strong dynamic coupling between various elements of the system, 

where each change in one element continually influences the other element’s direction of change, 

signaling in the computation model helps implement system-wide coordination and control based on 

global priorities, workload fluctuations and latency constraints. Signaling and the separation of 

specification and execution of a computation provide a mechanism to introduce self-replication, self-

repair, recombination and reconfiguration of computing network at run-time.  

The DIME network architecture comes close to what von Neumann was searching for in his Hixon 

lectures in 1948 (Aspray & Burks, 1989) “The basic principle of dealing with malfunctions in nature 

is to make their effect as unimportant as possible and to apply correctives, if they are necessary at all, 

at leisure. In our dealings with artificial automata, on the other hand, we require an immediate 

diagnosis. Therefore, we are trying to arrange the automata in such a manner that errors will become 

as conspicuous as possible, and intervention and correction follow immediately."  Comparing the 

computing machines and living organisms, he points out that the computing machines are not as fault 

tolerant as the living organisms.  He goes on to say "It's very likely that on the basis of philosophy that 

every error has to be caught, explained, and corrected, a system of the complexity of the living 

organism would not run for a millisecond.” The evolutionary history and the genetic transactions 

supported by the information flow in the DIME network architecture provide the infrastructure for 

autonomic distributed computing system design. 

Our prototypes demonstrate that c-DNA enables the self-management of a response to the 

ephemeral nature of distributed computing caused by the non-deterministic impact of environmental 

interaction with the system. It has also not escaped our attention that the theoretical landscape of 

computing models is filled with controversy. It is important to point out that we do not claim that 

DIME is precisely the o-machine that Turing proposed or that the Universal Turing machine (UTM) 

can or cannot do what a DIME network does. While communicating Turing machines are modeled by 

an UTM (Penrose, 1989), can the managed Turing machine networks also be modeled by the UTM? 

We only point out that the DIME is inspired by the oracle machine and implements at least some 

aspects of the architectural resiliency of cellular organisms in distributed computing infrastructure by 

introducing parallel management of both the computing elements and networks. While its feasibility 

has been demonstrated (Mikkilineni, Morana, & Seyler, 2012), the DIME network architecture is still 

in its infancy and presents an opportunity on the eve of Turing’s centenary celebration to further 

investigate its usefulness and theoretical soundness.  Only time will tell if c-DNA will be useful in 

mission critical environments. 

Acknowledgement 

The authors wish to express their gratitude to Daniele Zito and Marco Di Sano for their 

enthusiasm and effort in implementing the self-regulating Linux, Apache, MySQL, and PHP (LAMP) 

cloud using c-DNA thus eliminating the complexity of Hypervisors and Virtual Machines. The 

authors also are grateful to Ian Seyler for implementing the native operating system converting each 

core in a multi-core processor into a DIME to demonstrate system-wide resiliency in workflow 



execution spanning across multiple many-core processors, servers, and geographies. One of the 

authors (Rao Mikkilineni) is especially grateful to Pankaj Goyal for sharing his research results before 

publication and many valuable conversations. 

References 

Aho, A. (2010). Computation and Computational Thinking. Ubiquity Symposium 

(http://ubiquity.acm.org/symposia.cfm). ACM. 

Aspray, W., & Burks, A. (1989). Papers of John von Neumann on Computing and Computer Theory. 

Cambridge, MA: MIT Press. 

Braubach, L., & Pokahr, A. (2011). Addressing Challenges of Distributed Systems Using Active 

Components. In Intelligent Distributed Computing V. New York, NY: Springer. 

Brewer, E. A. (2000). Towards robust distributed systems. Proceedings of ACM symosium principles 

of distributed computing (PODC'00) (p. 7). New York: ACM Press. 

Caroll, S. B. (2005). The New Science of Evo Devo - Endless Forms Most Beautiful. New York, NY: 

W. W. Norton & Co. 

Cockshott, P., & Michaelson, G. (2007). Are There New Models of Computation? Reply to Wegner 

and Eberbach. Computer Journal, 5(2), 232-247. 

Denning, P. (2011). What Have We Said About Computation? Closing Statement. 

http://ubiquity.acm.org/symposia.cfm. ACM. 

Dyson, G. B. (1997). Darwin among the Machines, the evolution of global intelligence. Reading MA: 

Addison Wesley. 

Eberbach, E., & Wegner, P. (2003). Beyond Turing Machines. The Bulletin of the European 

Association for Theoretical Computer Science (EATCS Bulletin), 81(10), 279-304. 

Feferman, S. (2006). Turing’s Thesis. Notices of the AMS, 53(10), 2. 

Gödel, K. (1931). Monatshefte für Mathematic und Physik, 38, 173-198. 

Goldin, D., & Wegner, P. (2008). The Interactive Nature of Computing: Refuting the Strong Church-

Turing Thesis. Minds & Machines, 18, 17-38. 

Goyal, P. (2012, June). A Recursive Computing Model for DIME Network Architecture using π-

calculus. Private Communication. 

Goyal, P., & Mikkilineni, R. (2012). Implementing Managed Loosely-coupled Distributed Business 

Processes: A New Approach using DIME Networks. Enabling Technologies: Infrastructure 

for Collaborative Enterprises (WETICE), 2012 21st IEEE International Conference. 

Toulouse: IEEE. 

Kurakin, A. (2007). Retrieved from The universal principles of self-organization and the unity of 

Nature and knowledge: http://www.alexeikurakin.org/text/thesoft.pdf 

Kurakin, A. (2011). Theoretical Biology and Medical Modeling. Retrieved from 

http://www.tbiomed.com/content/8/1/4  

Mikkilineni, R. (2011). Designing a New Class of Distributed Systems. New York, NY: Springer. 

Mikkilineni, R., & Seyler, I. (2011). A New Operating System for Scalable, Distributed, and Parallel 

Computing. Parallel and Distributed Processing Workshops and Ph,d Forum (IPDPSW), 

2011 IEEE International Symposium on, (pp. 976-983). 

Mikkilineni, R., Morana, G., & Seyler, I. (2012). Implementing Distributed, Self-managing 

Computing Services Infrastructure using a Scalable, Parallel and Network-centric Computing 

Model. In M. Villari, C. I. Brandic, & F. Tusa, Achieving Federated and Self-Manageable 

Cloud Infrastructures: Theory and Practice (pp. 57-78). IGI Global. 



Mikkilineni, R., Morana, G., Zito, D., & Di Sano, M. (2012). Service Virtualization Using a Non-von 

Neumann Parallel, Distributed, and Scalable Computing Model. Journal of Computer 

Networks and Communications, 2012. 

Milner, R. (1999). Communicating and mobile systems: The pi-calculus. Cambridge, UK: Cambridge 

University Press. 

Morana, G., & Mikkilineni, R. (2011). Scaling and Self-repair of Linux Based Services Using a Novel 

Distributed Computing Model Exploiting Parallelism. 20th IEEE International Workshops 

on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE) (pp. 98-

103). IEEE. 

Penrose, R. (1989). The Emperor’s New Mind: Concerning Computers, Minds, And The Laws of 

Physics. Oxford, UK: Oxford University Press. 

Soare, R. (2009). Turing oracle machines, online computing, and three displacements in computability 

theory. Annals of Pure and Applied Logic, 160(3), 368-399. 

Stanier, P., & Moore, G. (2006). In P. Ferretti, A. Copp, C. Tickle, & G. (. Moore, Embryos, Genes 

and Birth Defects. (2nd Edition) (p. 5). London: John Wiley & Sons. 

Turing, A. M. (1939). Systems of logic defined by ordinals. Proc. Lond. Math. Soc., Ser. 2, 45, 161-

228. 

Turing, A. M. (2004). In B. J. Copeland (Ed.), The Essential Turing. Oxford, UK: Oxford University 

Press. 

van Leeuwen, J., & Wiedermann, J. (2000). The Turing machine paradigm in contemporary 

computing. In B. Enquist, & W. Schmidt, Mathematics Unlimited—2001 and Beyond.LNCS. 

New York, NY: Springer-Verlag. 

Wegner, P., & Eberbach, E. (2004). New Models of Computation. The Computer Journal, 47(1), 4-9. 

Wegner, P., & Goldin, D. (2003). Computation beyond Turing Machines: Seeking appropriate 

methods to model computing and human thought. Communications of the ACM, 46(4), 100. 

 

Dr. Rao Mikkilineni received his PhD from University of California, San Diego in 1972 working 

under the guidance of prof. Walter Kohn (Nobel Laureate 1998).  He later worked as a research 

associate at the University of Paris, Orsay, Courant Institute of Mathematical Sciences, New York and 

Columbia University, New York. 

He is currently the Founder and CTO of Kawa Objects Inc., California, a Silicon Valley startup 

developing next generation computing infrastructure.  His past experience includes working at AT&T 

Bell Labs, Bellcore, U S West, several startups and more recently at Hitachi Data Systems. 

Dr. Giovanni Morana received his PhD from University of Catania, Italy and is currently at the 

University of Catania. He has contributed many papers in grid computing, cloud computing and 

distributed systems management. 

Dr. Albert Comparini received his PhD from Yale University and is currently with Kawa Objects 

Inc. His past experience includes working at AT&T Bell Labs, Siemens and Infinion. 

Dr. Mikkilineni and Dr. Giovanni Morana co-chair the 2nd track on Convergence of Distributed 

Clouds, Grids and their Management in IEEE International WETICE Conference 


