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Abstract

The study of infectious diseases in humans has become increasingly important in public
health. This paper extends the SEIR model to include unreported COVID-19 cases (U)
and environmental white noise. Dynamic analysis is conducted based on the variation of
the environment. The ergodicity and stationary distribution criteria are discussed. Using a
Lyapunov function, we write down some sufficient conditions for disease extinction. With
different intensities of stochastic noises, we calculate the threshold of extinction for the
stochastic epidemic system. In order to control the spread of disease, the stochastic noise
plays an important role. A numerical simulation and a fit to real data have shown that
the model and theoretical results are valid.
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1 Introduction

In order to prevent the spread of this infectious disease in communities, immediate actions,
as well as intensive research, are necessary [1, 2]. On December 8, 2019, several Coronavirus
cases were reported in Wuhan, China. It was previously unknown that Coronaviruses could
infect humans. Even so, it has been found to cause widespread autoimmune reactions in some
patients for unknown reasons [3]. In addition to causing human-to-human infections, the virus
eventually caused a global pandemic. According to epidemiological studies [4], coughing or
sneezing is the main route of transmission for COVID-19.

Due to the fact that this pandemic was a new disease, its spread and mortality were un-
known, it also attracted the attention of researchers from a variety of fields. In order to figure
out the transmission dynamics of the disease and predict its development among different popu-
lations, epidemiologists, statisticians, and mathematicians developed models. Infectious disease
modeling plays a crucial role in disease control. Literature has described and investigated a va-
riety of epidemic models. In [5] the authors considered the dynamics of a SIR-based COVID-19
model with linear incidence rates, nonlinear removal rates, and public awareness. Ziren et al.
[6] presented an analysis of the SEIR model for spreading COVID-19 based on the unreported
infected population and dynamic parameters. Authors of [7] investigated SEIR epidemic models
with vaccination, time delays, and stochastic perturbations by including white noise in some
parameters.
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Furthermore, the transmission of COVID-19 is disturbed by various random factors in the
environment. A number of environmental factors influence the spread of the new strain of Coro-
navirus COVID-19 to humans, including humidity, precipitation, temperature, and awareness of
people. An increasing number of researches consider environmental noise and study stochastic
models for COVID-19 [8]. In fact, environment disturbances have an important effect on the
evolution of infectious diseases [9, 10], and Gaussian white noise is usually selected as an ap-
propriate representation of environmental fluctuations. There are different possible approaches
to include random effects in the model, both from a biological and from a mathematical per-
spective. For instance, Liu et al. [11] and Luo et al. [12] proved that a large disturbance of
white noise can lead infectious diseases to extinction. A large number of works indicate that
stochastic disturbance can suppress disease outbreak [13].

This study extends the analysis to the Susceptible-Exposed-Infectious-Unreported-Removed
(SEIUR) model for COVID-19 infectious diseases with stochastic perturbations and discusses
its qualitative behavior. The model is verified by curvetting or real observations in UAE, using
least-squares approach. In Section 2, we provide a stochastic mathematical model for COVID-
19 governed by the SEIUR model. In Section 3, we investigate the stochastic analysis for the
model with its qualitative behavior. The final section provides some numerical simulations and
concluding remarks.

2 The Model

Despite being applicable to most infectious diseases, SEIR has some shortcomings when applied
to COVID-19 data. COVID-19 can also be transmitted by those who are exposed to it. During
incubation, SEIR assumes that members of the E compartment are infected but not infectious,
so-called unreported cases. This paper proposes a piecewise SEIUR model; Figure 1 illustrates
it. First, the model assumes that susceptible individuals are born at the rate η(S;E; I;U ;R);
this rate is a function of the densities of susceptible, exposed, infected, unreported cases, and
recovered individuals. The proportion of exposure to infected is f ∈ (0, 1), and the proportion
of exposed to unreported cases is (1− f). The model is as follows:

dS(t)

dt
= η − βS(t)E(t) − µS(t)

dE(t)

dt
= βS(t)E(t) − (σ + µ)E(t)

dI(t)

dt
= σfE(t) − (γ + µ)I(t)

dU(t)

dt
= σ(1 − f)E(t)− (γ + µ)U(t)

dR(t)

dt
= γ(I(t) + U(t))− µR(t).

(1)

The parameters in (1) are summarized in Table 1. We explore the qualitative behavior of
system (1) by studying the local stability of the disease-free equilibrium (DFE) and the endemic
equilibrium (EE). The DFE is E0 = (S0, E0, I0, U0, R0) = ( ηµ , 0, 0, 0, 0). However, the EE

E∗ = (S∗, E∗, I∗, U∗, R∗), where S∗ =
σ + µ

β
, E∗ =

µ

β
[R0 − 1], I∗ =

σµf(R0 − 1)

β(γ + µ)
, U∗ =

σµ(1 − f)(R0 − 1)

β(γ + µ)
, R∗ =

γσ(R0 − 1)

β(γ + µ)
. By using the next-generation matrix (NGM) [18], we
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Table 1: Description of model (1) parameters.

Parameters Description

η rate of newborn in the population
β contact/transmission rate
µ mortality rate
σ incubation period
f the proportion of exposure to infected
γ the recovery rate

Figure 1: Scheme of SEIUR model (1).

calculate the basic reproduction number R0 =
βS0

σ + µ
=

βη

µ(σ + µ)
.

The transmission of diseases is disturbed by numerous random factors in the environment.
Taking this into thoughts empowers to show uncertainty into deterministic natural models to
uncover the natural inconstancy impact, whether it could be an environmental perturbation
in parameter or random noise within the differential systems. Therefore, we assume that the
stochastic perturbations are of the white noise type which are directly proportional to S(t),
E(t), I(t), U(t) and R(t) in model (1) respectively [15, 16]. Thus, we propose a stochastic
model of the following form

dS(t) = [η − βS(t)E(t) − µS(t)]dt+ ψ1SdW1

dE(t) = [βS(t)E(t) − (σ + µ)E(t)]dt + ψ2EdW2

dI(t) = [σfE(t)− (γ + µ)I(t)]dt+ ψ3IdW3

dU(t) = [σ(1 − f)E(t)− (γ + µ)U(t)]dt+ ψ4UdW4

dR(t) = [γ(I(t) + U(t))− µR(t)]dt+ ψ5RdW5.

(2)

Subject to the following initial conditions:

S(χ) = ζ1(χ), E(χ) = ζ2(χ), I(χ) = ζ3(χ), U(χ) = ζ4(χ), R(χ) = ζ5(χ). (3)

ζi(0) > 0 and ζi(χ), i = 1, . . . , 5, are nonnegative continuous initial functions, where ψi, i =
1, . . . , 5 are the intensities of white noise. Wi(t), i = 1, . . . , 5 stand for the independent Brownian
motions defined on a complete probability space (Ω,M, {M}t≥0, P ) with a filtration {Mt}t≥0

satisfying the usual conditions.
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3 Main Results

Theorem 1. For any initial value (S(0), E(0), I(0), U(0), R(0)) ∈ R
5
+, there is a unique positive

solution (S(t), E(t), I(t), U(t), R(t)) for system (2) on t ≥ 0 and the solution will remain in R
5
+

with probability one.

Proof. Since the system coefficients (2) satisfy linear growth and Lipschitzian conditions we can
show that system (2) has a global positive solution. Therefore, we need to establish a Lyapunov
function, so we define

K(S,E, I, U,R) = K(.) = (S − 1− lnS) + (E − 1− lnE) + (I − 1− ln I) + (U − 1− lnU)

+ (R − 1− lnR).

(4)

By Itô’s formula on K

dK(.) = LKdt+ ψ1(S − 1)dW1(t) + ψ2(E − 1)dW2(t) + ψ3(I − 1)dW3(t)

+ ψ4(U − 1)dW4(t) + ψ5(R − 1)dW5(t).
(5)

Such that

LK = η − µS −
η

S
+ βE − µE − βS − µI −

σfE

I
− µU − σ(1− f)− µR−

γI

R

−
γU

R
+ 5µ+ σ + 2γ +

ψ2
1 + ψ2

2 + ψ2
3 + ψ2

4 + ψ2
5

2

≤ η + 5µ+ σ + 2γ + β(E − S)− µ(S + E + I + U +R) +
ψ2
1 + ψ2

2 + ψ2
3 + ψ2

4 + ψ2
5

2
≤ H.

(6)

Such that H is a positive constant. Hence, LK is bounded. The rest of the proof is standard
[7], so it is omitted.

In the next theorem, we focus on the existence of stationary distribution of model (2).
From biological point of view, stationary distribution can be assumed as a weak stability of
the system, in which the infection is persistent in the time mean sense. Let V (t) is a regular
time-homogenous Markov process in R

d, defined by the stochastic differential equation

dV (t) = g(V (t))dt +

d
∑

s=1

fs(V (t))dWs(t). (7)

Such that, the diffusion matrix of the process V (t) is

Π(v) = (ςij(v)), ςij(v) =

d
∑

s=1

f is(y)f
j
s (v).

Lemma 1. [14]. The Markov process V (t) has a unique ergodic stationary distribution π(.) if
there exist a bounded domain N ⊂ R

d with regular boundary ∆ and

C1: there is a positive number M such that
∑d

i,j=1 ςij(v)ξiξj ≥ M|ξ|2, v ∈ N , ξ ∈ R
d.

C2: there exists a nonnegative C2-function D̃ such that LD̃ is negative for any R
d \ N .
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Assume that

Rs
0 =

ηβγσ2(1 − f)

σ̂1σ̂2σ̂3σ̂4σ̂5
. (8)

Where σ̂1 = σ + µ+
ψ2
2

2
; σ̂2 = γ + µ+

ψ2
3

2
; σ̂3 = γ + µ+

ψ2
4

2
; σ̂4 = µ+

ψ2
5

2
and σ̂5 = µ+

ψ2
1

2
.

Theorem 2. If Rs
0 > 1, then there exists a unique stationary distribution for system (2) and

it has the ergodic property.

Proof. To verify condition (C.1) of Lemma 1, the diffusion matrix of system (2) is given by

Z =













ψ2
1S

2 0 0 0 0
0 ψ2

2E
2 0 0 0

0 0 ψ2
3I

2 0 0
0 0 0 ψ2

4U
2 0

0 0 0 0 ψ2
5R

2













. (9)

Apparently, the matrix Z is positive definite for any compact subset of R5
+, so the condition

(C.1) in Lemma 1 holds.

To verify the second condition, we establish a C2−function D : R5
+ → R as follows:

D(S,E, I, U,R) =F (− lnS − ν1 lnE − ν2 ln I − ν3 lnU − ν4 lnR)− lnS − lnE − lnR

+
1

1 + θ
(S + E + I + U +R)θ+1 = FD1 +D2 +D3.

(10)

Such that ν1 = ηβγσ2(1−f)
σ2
1
σ2σ3σ4

, ν2 = ηβγσ2(1−f)
σ1σ2

2
σ3σ4

, ν3 = ηβγσ2(1−f)
σ1σ2σ2

3
σ4

and ν4 = ηβγσ2(1−f)
σ1σ2σ3σ2

4

, and θ > 1

is a contant satisfying η − θ
2 (ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4 ∨ ψ5). In addition F > 0 is a sufficiently large

number satisfying −FΨ+ E1 ≤ −2, where Ψ = ηβγσ2(1−f)
σ̂1σ̂2σ̂3σ̂4

− (µ+
ψ2

1

2 ) > 0 and

E1 = sup
(S,E,I,U,R)∈R

5
+

{

−
1

4
[µ−

θ

2
(ψ2

1 ∨ ψ
2
2 ∨ ψ

2
3 ∨ ψ

2
4 ∨ ψ

2
5)]E

θ+1 + 3µ+ σ +
ψ2
1 + ψ2

2 + ψ2
5

2
+ E2

}

E2 = sup
(S,E,I,U,R)∈R

5
+

{

η(S + E + I + U +R)θ −
1

2
[µ−

θ

2
(ψ2

1 ∨ ψ
2
2 ∨ ψ

2
3 ∨ ψ

2
4 ∨ ψ

2
5)]

× (Sθ+1 + Eθ+1 + Iθ+1 + Uθ+1 +Rθ+1)
}

.

E3 = sup
(S,E,I,U,R)∈R

5
+

{

−
1

4
[µ−

θ

2
(ψ2

1 ∨ ψ
2
2 ∨ ψ

2
3 ∨ ψ

2
4 ∨ ψ

2
5)](S

θ+1 + Eθ+1 + Iθ+1 + Uθ+1 +Rθ+1)

−
1

4
[µ−

θ

2
(ψ2

1 ∨ ψ
2
2 ∨ ψ

2
3 ∨ ψ

2
4 ∨ ψ

2
5)]E

θ+1 −
η

S
+ 3µ+ σ +

ψ2
1 + ψ2

2 + ψ2
5

2

The function D(S,E, I, U,R) is continuous and ‖(S,E, I, U,R)‖ → ∞. Thus, it has a minimum
point (S(0), E(0), I(0), U(0), R(0)) in the interior of R5

+. Hence, we define D̃ : R5
+ → R+ as:

D̃ = D(S,E, I, U,R)−D(S(0), E(0), I(0), U(0), R(0)), where (S,E, I, U,R) ∈ ( 1ρ , ρ)× ( 1ρ , ρ)×

( 1ρ , ρ) × ( 1ρ , ρ) × ( 1ρ , ρ) and ρ > 1 is a sufficiently large integer. Let D1 = − lnS − ν1 lnE −
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ν2 ln I − ν3 lnU − ν4 lnR, by applying Itô’s formula to D1, we get

LD1 =−
η

S
+ βE + µ− ν1βS + ν1(σ + µ)−

ν2σfE

I
+ ν2(γ + µ)−

ν3σ(1 − f)E

U

+ ν3(γ + µ)−
ν4(I + U)

R
+ ν4µ+

ψ2
1

2
+
ν1ψ

2
2

2
+
ν2ψ

2
3

2
+
ν3ψ

2
4

2
+
ν4ψ

2
5

2

≤− 5 5
√

ηβγσ2(1− f)ν1ν2ν3ν4 + µ+ βE +
ψ2
1

2
+ ν1(σ + µ+

ψ2
2

2
) + ν2(γ + µ+

ψ2
3

2
)

+ ν3(γ + µ+
ψ2
4

2
) + ν4(µ+

ψ2
5

2
) ≤ −

ηβγσ2(1− f)

σ̂1σ̂2σ̂3σ̂4
+ µ+ βE +

ψ2
1

2
= −Ψ+ βE.

(11)

Let D2 = − lnS − lnE − lnR, one can get

LD2 = −
η

S
+ βE + 2µ− βS + (σ + µ)−

γ(I + U)

R
+
ψ2
1 + ψ2

2 + ψ2
5

2
. (12)

Similarly, assume that D3 = 1
1+θ (S + E + I + U +R)θ+1, by Itô’s formula, we have

LD3 =(S + E + I + U +R)θ[η − µ(S + E + I + U +R)] +
θ

2
(S + E + I + U +R)θ−1

× [ψ2
1S

2 + ψ2
2E

2 + ψ2
3I

2 + ψ2
4U

2 + ψ2
5R

2]

≤(S + E + I + U +R)θ[η − µ(S + E + I + U +R)] +
θ

2
(S + E + I + U +R)θ+1

× (ψ2
1 ∨ ψ

2
2 ∨ ψ

2
3 ∨ ψ

2
4 ∨ ψ

2
5)

≤η(S + E + I + U +R)θ − (S + E + I + U +R)θ+1(µ−
θ

2
(ψ2

1 ∨ ψ
2
2 ∨ ψ

2
3 ∨ ψ

2
4 ∨ ψ

2
5))

≤E2 −
1

2
[µ−

θ

2
(ψ2

1 ∨ ψ
2
2 ∨ ψ

2
3 ∨ ψ

2
4 ∨ ψ

2
5)](S + E + I + U +R)θ+1

≤E2 −
1

2
[µ−

θ

2
(ψ2

1 ∨ ψ
2
2 ∨ ψ

2
3 ∨ ψ

2
4 ∨ ψ

2
5)](S

θ+1 + Eθ+1 + Iθ+1 + Uθ+1 +Rθ+1).

(13)

From equations (11-13), we obtain

LD̃ ≤− FΨ+ 2FβE −
1

2
[µ−

θ

2
(ψ2

1 ∨ ψ2
2 ∨ ψ2

3 ∨ ψ2
4 ∨ ψ2

5)](S
θ+1 + E

θ+1 + I
θ+1 + U

θ+1 +R
θ+1)

−
η

S
+ 3µ− βS + σ −

γ(I + U)

R
+
ψ2

1 + ψ2
2 + ψ2

5

2
+ E2

≤− FΨ+ 2FβE −
1

4
[µ−

θ

2
(ψ2

1 ∨ ψ2
2 ∨ ψ2

3 ∨ ψ2
4 ∨ ψ2

5)](S
θ+1 + E

θ+1 + I
θ+1 + U

θ+1 +R
θ+1)

−
1

4
[µ−

θ

2
(ψ2

1 ∨ ψ2
2 ∨ ψ2

3 ∨ ψ2
4 ∨ ψ2

5)]E
θ+1 −

η

S
+ 3µ− βS + σ −

γ(I + U)

R

+
ψ2

1 + ψ2
2 + ψ2

5

2
+ E2.

(14)

For ǫ > 0, we define a bounded set

N =
{

(S,E, I, U,R) ∈ R
5
+ : ǫ ≤ S ≤

1

ǫ
, : ǫ ≤ E ≤

1

ǫ
, : ǫ ≤ I ≤

1

ǫ
, : ǫ ≤ U ≤

1

ǫ
, : ǫ ≤ R ≤

1

ǫ2

}
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From Lemma 1, we will verify that LD̃ ≤ −1 for all (S,E, I, U,R) ∈ R
5
+ \ Nǫ = ∪10

i=1Ni, where

N1 = {(S,E, I, U,R) ∈ R
5
+ : 0 < S < ǫ}, N2 = {(S, E, I,U,R) ∈ R

5
+ : 0 < E < ǫ},

N3 = {(S,E, I, U,R) ∈ R
5
+ : 0 < I < ǫ, R > ǫ

2}, N4 = {(S, E, I,U,R) ∈ R
5
+ : 0 < U < ǫ,R > ǫ

2}

N5 = {(S,E, I, U,R) ∈ R
5
+ : 0 < R < ǫ

2
, I > ǫ}, N6 = {(S,E, I,U,R) ∈ R

5
+ : S >

1

ǫ
}

N7 = {(S,E, I, U,R) ∈ R
5
+ : E >

1

ǫ
}, N8 = {(S, E, I,U,R) ∈ R

5
+ : I >

1

ǫ
}

N9 = {(S,E, I, U,R) ∈ R
5
+ : U >

1

ǫ
}, N10 = {(S, E, I,U,R) ∈ R

5
+ : R >

1

ǫ2
}

(15)

Let

G =2FβE −
1

4
[µ−

θ

2
(ψ2

1 ∨ ψ
2
2 ∨ ψ

2
3 ∨ ψ

2
4 ∨ ψ

2
5)](S

θ+1 + Eθ+1 + Iθ+1 + Uθ+1 +Rθ+1)

−
1

4
[µ−

θ

2
(ψ2

1 ∨ ψ
2
2 ∨ ψ

2
3 ∨ ψ

2
4 ∨ ψ

2
5)]E

θ+1 + 3µ+ σ +
ψ2
1 + ψ2

2 + ψ2
5

2
+ E2.

(16)

• Case I: for any (S,E, I, U,R) ∈ N1, we have

LD̃ ≤−
η

S
+ 2FβE −

1

4
[µ−

θ

2
(ψ2

1 ∨ ψ2
2 ∨ ψ2

3 ∨ ψ2
4 ∨ ψ2

5)](S
θ+1 +E

θ+1 + I
θ+1 + U

θ+1 +R
θ+1)

−
1

4
[µ−

θ

2
(ψ2

1 ∨ ψ2
2 ∨ ψ2

3 ∨ ψ2
4 ∨ ψ2

5)]E
θ+1 + 3µ− βS + σ −

γ(I + U)

R

+
ψ2

1 + ψ2
2 + ψ2

5

2
+ E2 ≤ −

η

S
+ G ≤ −

η

ǫ
+ G ≤ −1,

(17)

which is obtained as 0 < ǫ ≤
η

G + 1
.

• Case II: for any (S,E, I, U,R) ∈ N2, we have

LD̃ ≤− FΨ+ 2FβE −
1

4
[µ−

θ

2
(ψ2

1 ∨ ψ2
2 ∨ ψ2

3 ∨ ψ2
4 ∨ ψ2

5)]E
θ+1 + 3µ+ σ +

ψ2
1 + ψ2

2 + ψ2
5

2
+ E2

≤− FΨ+ 2FβE + E1 ≤ −FΨ+ 2Fβǫ+ E1 ≤ −1.

(18)

since −FΨ+ E1 ≤ −2 and −FΨ+ 2Fβǫ+ E1 ≤ −1.

• Case III: for any (S,E, I, U,R) ∈ N3, one obtains

LD̃ ≤−
γI

R
+ 2FβE −

1

4
[µ−

θ

2
(ψ2

1 ∨ ψ2
2 ∨ ψ2

3 ∨ ψ2
4 ∨ ψ2

5)](S
θ+1 +E

θ+1 + I
θ+1 + U

θ+1 +R
θ+1)

−
1

4
[µ−

θ

2
(ψ2

1 ∨ ψ2
2 ∨ ψ2

3 ∨ ψ2
4 ∨ ψ2

5)]E
θ+1 + 3µ− βS + σ −

η

S

+
ψ2

1 + ψ2
2 + ψ2

5

2
+ E2 ≤ −

γI

R
+ G ≤ −

γ

ǫ
+ G ≤ −1,

(19)

which is obtained as 0 < ǫ ≤
γ

G + 1
. In the same manner we can prove Case IV.
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• Case V: for any (S,E, I, U,R) ∈ N5, we get

LD̃ ≤−
γI

R
+ 2FβE −

1

4
[µ−

θ

2
(ψ2

1 ∨ ψ2
2 ∨ ψ2

3 ∨ ψ2
4 ∨ ψ2

5)](S
θ+1 +E

θ+1 + I
θ+1 + U

θ+1 +R
θ+1)

−
1

4
[µ−

θ

2
(ψ2

1 ∨ ψ2
2 ∨ ψ2

3 ∨ ψ2
4 ∨ ψ2

5)]E
θ+1 + 3µ− βS + σ −

η

S

+
ψ2

1 + ψ2
2 + ψ2

5

2
+ E2 ≤ −

γ

ǫ3
+ G ≤ −1,

(20)

which is obtained as 0 < ǫ ≤ 3

√

γ

G + 1
.

• Case VI: for any (S,E, I, U,R) ∈ N6, we have

LD̃ ≤ −
µ

4
Sθ+1 + E3 ≤ E3 −

µ

4
ǫ−(θ+1) ≤ −1, (21)

where 0 < ǫ ≤
[ µ

4(E3 + 1)

]1/(θ+1)

. Cases VII, VIII and IX are the same as Case VI.

• Case X: for any (S,E, I, U,R) ∈ N10, one obtains

LD̃ ≤ −
µ

4
Rθ+1 + E3 ≤ E3 −

µ

4
ǫ−2(θ+1) ≤ −1, (22)

where 0 < ǫ ≤
[ µ

4(E3 + 1)

]1/2(θ+1)

.

Therefore, LD̃ ≤ −1 for all (S,E, I, U,R) ∈ N 10
ǫ . The condition (C.2) of Lemma 1 holds.

According to Lemma 1, system (2) has a unique stationary distribution and it has the ergodic
property. The conclusion is confirmed.

Herein, we mainly discuss the extinction of the disease under some conditions. To begin
with, we present the following lemmas [17].

Lemma 2. Assume that (S(0),E(0),I(0),U(0),R(0)) is the initial value for the solution of the
model (2), then

lim
t→∞

S(t)

t
= 0, lim

t→∞

E(t)

t
= 0, lim

t→∞

I(t)

t
= 0, lim

t→∞

U(t)

t
= 0, lim

t→∞

R(t)

t
= 0.

Lemma 3. Assume that µ > 1
2 (ψ

2
1 ∨ψ

2
2 ∨ψ

2
3 ∨ψ

2
4 ∨ψ

2
5), where (S(t),E(t),I(t),R(t),V(t)) is the

solution of (2) with initial value (S(0),E(0),I(0),U(0),R(0)), we have

lim
t→∞

∫ t

0 S(r)dW1(r)

t
= 0, lim

t→∞

∫ t

0 E(r)dW2(r)

t
= 0, lim

t→∞

∫ t

0 I(r)dW3(r)

t
= 0,

lim
t→∞

∫ t

0
U(r)dW4(r)

t
= 0, lim

t→∞

∫ t

0
R(r)dW5(r)

t
= 0.

(23)

It is easy to compute that the deterministic system (1) admits a disease-free equilibrium
point. For the stochastic system (2), we obtain a sufficient condition on the extinction of disease
in the following theorem.
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Theorem 3. Let (S(t), E(t), I(t), U(t), R(t)) be a solution of system (2) with initial value (3).
If Re

0 := βη

µ(σ+µ+
ψ2
2
2

)
< 1 and µ > 1

2 (ψ
2
1 ∨ ψ2

2 ∨ ψ2
3 ∨ ψ2

4 ∨ ψ2
5), then the disease will tend to

extinction with probability one, and the solution of system (2) satisfies: lim
t→∞

S(t) =
η

µ
and

lim
t→∞

E(t) = lim
t→∞

I(t) = lim
t→∞

U(t) = lim
t→∞

R(t) = 0.
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Figure 2: Stationary distribution: the simulation of the path S(t), E(t), I(t), U(t), R(t) for model
(2) with ψi = 0.1, i = 1, . . . , 5 (left); In the right banner, the intensities of white noise increased
to ψi = 0.2, i = 1, . . . , 5 for which the range of the stochastic perturbations increased. However,
the disease still persistent as Rs

0 > 1.

Proof. By taking the integration of the first equation of system (2), we have

S(t)− S(0)

t
= η − β〈S(t)〉〈E(t)〉 − µ〈S(t)〉+ ψ1

∫ t

0
S(r)dW1(r)

t
. (24)

Therefore,

〈S(t)〉 =
1

µ
[η − β〈S(t)〉〈E(t)〉 −

S(t)− S(0)

t
+ ψ1

∫ t

0 S(r)dW1(r)

t
]

≤
η

µ
+

1

µ
[ψ1

∫ t

0
S(r)dW1(r)

t
−
S(t)− S(0)

t
] :=

η

µ
+ Γ1(t).

(25)

Here, limt→∞ Γ1(t) = 0. Using Itô′s formula to the second equation of (2), we obtain:

d log(E(t)) = (βS(t)− (σ + µ+
ψ2
2

2
))dt+ ψ2dW2(t). (26)

By taking the integrating of equation (26) from 0 to t, we have

logE(t)

t
= β〈S(t)〉 − (σ + µ+

ψ2
2

2
) +

ψ2dW2(t)

t
+

logE(0)

t
, (27)

from (25) and (26), we get

logE(t)

t
≤ β

η

µ
+ βΓ1(t)− (σ + µ+

ψ2
2

2
) +

ψ2dW2(t)

t
+
E(0)

t

:= β
η

µ
− (σ + µ+

ψ2
2

2
) + βΓ1(t) + Γ2(t).

(28)
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Since limt→∞ Γ2(t) = 0 and if Re
0 < 1, we have

lim
t→∞

logE(t)

t
≤ β

η

µ
− (σ + µ) := (σ + µ+

ψ2
2

2
)(Re

0 − 1) < 0. (29)

Thus, limt→∞E(t) = 0. One may integrate the third, fourth and fifth equations of system (2),
we have

I(t)− I(0)

t
= σf〈E(t)〉 − (γ + µ)〈I(t)〉 + ψ3

∫ t

0
I(r)dW3(r)

t
.

U(t)− U(0)

t
= σ(1 − f)〈E(t)〉 − (γ + µ)〈U(t)〉+ ψ4

∫ t

0
U(r)dW4(r)

t
.

R(t)−R(0)

t
= γ〈I(t)〉+ γ〈U(t)〉 − µ〈R(t)〉+ ψ5

∫ t

0
R(r)dW5(r)

t
.

(30)

Therefore,

〈I(t)〉 =
1

(γ + µ)
[σf〈E(t)〉 + ψ3

∫ t

0 I(r)dW3(r)

t
−
I(t)− I(0)

t
] =

σf〈E(t)〉

(γ + µ)
+ Γ3(t). (31)

As limt→∞ Γ3(t) = 0 and if Re
0 < 1; then limt→∞ I(t) = 0. In the same manner we can show

that limt→∞ U(t) = limt→∞R(t) = 0. Hence, we have

d(S(t) + E(t) + I(t) + U(t) +R(t)) = [η − µ(S(t) + E(t) + I(t) + U(t) +R(t))]dt

+ ψ1S(t)dW1(t) + ψ2E(t)dW2(t) + ψ3I(t)dW3(t) + ψ4U(t)dW4(t) + ψ5R(t)dW5(t).

(32)

Thus, we can easily obtain

lim
t→∞

〈S(t) + E(t) + I(t) + U(t) +R(t)〉 =
η

µ
. (33)

4 Numerical Simulations and Concluding Remarks

We provide some numerical simulations for system (2), utilizing Milstein’s higher order method
[19], to illustrate the feasibility of our theoretical results. First, we examine the behavior of
the stochastic model (2) around E∗ with parameter values η = 0.4; β = 0.43905; µ = 0.275;
σ = 0.15; f = 0.8; γ = 0.5 and ψi = 0.1, i = 1, . . . , 5; such that Rs

0 > 1, and its corresponding
deterministic model. Figure 2 shows the impact of increasing the intensities of white noise, for
the which range of the stochastic perturbations increased. However, the disease still persistent
as Rs

0 > 1. Figures 3 and 4 illustrate the extinction criteria in two cases: namely when the
stochastic perturbations can eradicate the infectious disease such that Re

0 < 1; and the second
case when R0 < 1 such that the disease is wiped out in the deterministic model, apparently the
disease has decreased quickly with the increment of white noise intensity and they all eventually
be close to 0. Figure 5 shows the impact of the proportion of exposure to infected f , which
signifies that the number of Infected components increase as f increases (left); the the number
of unreported individuals decrease as f increases (right).
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Figure 3: Extinction: the simulation of the path S(t), E(t), I(t), U(t), R(t) for model (2) with
η = 0.4; β = 0.43905; µ = 0.275; σ = 0.15; f = 0.8; γ = 0.5 and ψi = 0.3, i = 1, . . . , 5 and
ψi = 0.1, i = 1, . . . , 5; such that Re

0 < 1 < R0, and its corresponding deterministic model. Which
illustrates the extinction of the disease when the white noise is relatively large, while the disease is
persistent in the undisturbed model.

To check the validity of system (1), we fitted real observations for the number of infected
cases of COVID-19 in the UAE from June 28, 2021 to August 10, 2021 using least square
approach ([7]). The objective function is defined by

ΦH(c) =

5
∑

i=1

M
∑

j=1

[xi(tj , c)−X i
j]
2hij . (34)

The variables S,E, I, U,R are represented by xi, i = 1, . . . , 5; and model parameters are repre-
sented by c. Consequently, we examine the optimum parameter ĉ satisfying Φ(ĉ) ≤ min

c
Φ(c) ≡
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Figure 4: Extinction: the simulation of the path S(t), E(t), I(t), U(t), R(t) for model (2) with
η = 0.4; β = 0.43905; µ = 0.4025; σ = 0.15; f = 0.8; γ = 0.5 and ψi = 0.1, i = 1, . . . , 5; such
that Re

0 < R0 < 1, and its corresponding deterministic model. the disease vanishes in the stochastic
model more rapidly than the undisturbed model because of the effect of stochastic perturbations.

max
c

L(c). Assume L(c) is the likelihood function. As a result, estimating the parameters in

system (1) is assumed to be an optimization problem; observations is sized in ten thousand

increments. The estimated parameters, from the data given in [7], are β̂ = 0.99, µ̂ = 0.4,
σ̂ = 0.6, so R̃0 = 1.23 > 1, see Figure 6.

We arrive at the following remarks.
Remark 1. According to Theorem 2, the disease will persist in the population (see, Figure
2). From the discussion above, we deduce that the epidemic disappears from the population if
the value of the noise is very large confirmed by Theorem 3, for which we deduce the threshold

parameter Re
0 :=

βη

µ(σ + µ+
ψ2

2

2 )
which less than the reproduction number for the deterministic

model. Thus, we can classify the extinction into two cases; case one the infection persists in
the deterministic model when R0 > 1. However, the infection dies as in the stochastic model as
Re

0 < 1, (see Figure 3). Case two; the disease can decrease more rapidly with the increment of
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Figure 5: The impact of the proportion of exposure to infected f , which indicates that the number
of Infected individuals increase as f increases (left banner); the number of unreported individuals
decrease as f increases (right banner).
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Figure 6: Fitted curve of model (1) and the confirmed COVID-19 cases in the UAE, using least
square approach such that R̃0 = 1.23 > 1

stochastic disturbance intensity when Re
0 < R0 < 1 (see Figure 4). And if the noise is relatively

weak, the pandemic persists.

Remark 2. SEIUR is a reliable model to use when dealing with COVID-19 data. The classical
SEIR model is extended here by including cases not officially reported in this study. With the
least-squares approach, the model is fitted to real observations in UAE from June 2021 to August
2021. New sufficient conditions for the stability of disease-free and endemic steady states have
been derived.

The effects of environmental noise and more sophisticated models with time delay will be
studied in the future [20].
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