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Abstract

Single-cell RNA sequencing (scRNA-seq) provides expression profiles of individual cells
but fails to preserve crucial spatial information. On the other hand, Spatial Transcrip-
tomics technologies are able to analyze specific regions within tissue sections, but lack of
the capability to examine in single-cell resolution. To overcome these issues, we present
Single-cell and Spatial transcriptomics Alignment (SSA), a novel technique that employs an
optimal transport algorithm to assign individual cells from a scRNA-seq atlas to their spa-
tial locations in actual tissue based on their expression profiles. SSA has demonstrated su-
perior performance compared to existing methods SpaOTsc, Tangram, Seurat and DistMap
using 10 semi-simulated datasets generated from a high-resolution spatial transcriptomics
human breast cancer dataset with 100,064 cells. This advancement provides a refined tool
for researchers to delve deeper in understanding of the relationship between cellular spatial
organization and gene expression.

1 Introduction

Spatial transcriptomics (ST) that was first featured in 2020 [1] can both profile the transcrip-
tome of the cells and preserve its spatial information within tissue section. As the technology
underwent rapid development in recent years, spatial transcriptomics technologies have become
primary tools for biologists to understand cells, their microenvironments [2], tumor develop-
ment [3–6], and treatment response [7]. However, the technologies are still in early stage where
the assays can only measure small regions with mixtures of cells and are unable to provide
single-cell information. For example, high-resolution smFISH-based techniques such as seq-
FISH+ and ExM-MERFISH can only cover a small area of tissue, comprised of around 10,000
cells with a few dozens to a few hundreds of genes [8]. Platforms like 10x Visium [9] are re-
stricted to collective gene expression evaluations, in which each spatially pinpointed expression
profile is the average expression of many cells.
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One practical solution to the abovementioned challenge is to perform another single-cell
experiment and then map individual cells to spatial locations of the spatial data. Computational
methods to perform this task are commonly referred as spatial reconstruction of scRNA-seq
data. In this research, we focus only on methods which can output a mapping scheme between
individual cells and spatial locations. These methods can be classified into five main categories:
i) ad hoc scoring, ii) generative modeling, iii) shared latent space and iv) other techniques.

Methods in the first category generally measure similarity score between each cell and each
location based on gene expression and use the obtained score matrix as a mapping scheme. For
example, DistMap [10] binarizes both scRNA-seq and ST data before computing the Matthew
correlation coefficient (MCC) [11] matrix between cells and spots. Despite some initial success,
ad hoc scoring methods often requires binarization step which fails to capture quantitative
nuances of gene expression patterns.

Methods in the second category, including Seurat1 [12] and sstGPLVM [13], tend to use
probable statistical models to transform the data before measuring relationship between single-
cell data and spatial data. Seurat1 uses different techniques to infer expression of landmark
genes in scRNA-seq data and ST data, then it compares gene expression between cells and
locations to infer cells’ spatial locations. sstGPLVM is a generative model method that perform
cell-to-spot alignment based on shared latent space. The method uses black box variational
inference to estimate the joint Gaussian-based latent space between scRNA-seq and ST data,
then imputes missing data in gene expression and covariates and maps individual cells to spatial
locations. Generative modeling methods are usually biased because of strong assumptions made
about data distribution.

Methods in the third category are based on shared latent space between datasets without us-
ing generative modeling to build the mapping matrix, as Seurat3 [14] and Harmony [15]. Seurat3
performs canonical correlation analysis (CCA) [16] to project scRNA-seq and ST datasets into a
shared low-dimensional latent space, then selects pairs of mutual nearest neighbors (MNNs) [17]
and calculates their corresponding weight score to construct the mapping scheme. Harmony
implements an altered K-means algorithm [18] to cluster data projected by Principal Compo-
nent Analysis (PCA) [19] before using mixture models [20] to align scRNA-seq and ST data
in a common latent space. Overal, both generative modeling and shared latent space methods
require high quality of data to work on and they might not be robust to outliers.

Methods in the last category which are Tangram [21], SpaOTsc [22], Novosparc [23] follow
a variety of strategies. Tangram infers the mapping matrix of probability between cells and
locations by minimizing KL divergence between mapped and actual cell density in each location.
SpaOTsc constructs an optimal transport plan [24] from single cells to locations using two
gene expression dissimilarity matrices among cells, between cells and locations and a spatial
distance matrix of locations. Novosparc constructs neighborhood graphs for single cells and
spatial locations using gene expression distances and physical distances respectively. Then,
considering the spatial autocorrelation among cells, the method computes an optimal transport
to match between the two constructed graphs. Overall, these methods make extra assumptions
about expression correlation across cells or locations, which requires excessive computational
power to maintain. Therefore, methods in this category are usually slow on big datasets.

Here, we propose a new approach, SSA, that can accurately map scRNA-seq data to Spa-
tial transcriptomics spots. We formulate the cell-to-spot mapping as an optimal transport
problem and find the optimal mapping using the Sinkhorn algorithm [25]. We validate the
proposed method using semi-simulated datasets generated from a real high-resolution spatial
transcriptomics dataset with 100,064 cells. We compare the performance of our method with
04 state-of-the-art techniques. Our results show that the proposed approach outperforms all
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Figure 1: The overall pipeline of SSA. The input are scRNA-seq and ST gene expression
matrices. In scRNA-seq matrix, rows are genes and columns are cells/samples. For spot
expression matrix, rows are genes and columns are spots. The initial stage is gene selection
on the scRNA-seq data to get 5,000 genes with the highest variance, which are subsequently
used to subset two expression matrices. Following this, the Z-score scaling technique is used to
normalize and transform both filtered matrices. The next step involves calculating the Pearson’s
correlation between gene expression of cells and spots and transforming it into an expression
distance matrix. Finally, SSA leverages Sinkhorn algorithm to accurately map the cells onto
corresponding spots.

competing methods by having the highest accuracy.

2 Methods

Figure 1 shows the overall analysis pipeline of SSA. The input of SSA includes the expression
matrices of scRNA-seq (genes by cells) and ST (genes by spots). SSA first performs gene
selection on scRNA-seq data to keep genes with the highest variance and then applies the Z-
score scaling technique to transform both filtered scRNA-seq and spot expression matrices to
z-scores. The method then calculates Pearson’s correlation between gene expression of cells and
spots and transforms it into an expression distance matrix. Finally, SSA applies the Sinkhorn
algorithm to accurately map single-cells to spatial spots.

2.1 Feature Selection and Data Transformation

To efficiently perform cells-to-spots alignment, we need to remove genes that are uninformative
from both scRNA-seq and spatial transcriptomics data. We first compute the variance for each
gene in the scRNA-seq data and select 5,000 genes with the highest variance. We presume that
these selected genes also play a pivotal role in spot expression data. Then, we subset both
of the expression matrices using this gene set for consistency and comparative analysis. As a
result, we obtain two new scRNA-seq and spot expression matrices that have same genes.

For each of the obtained matrices, we use Z-score transformation to scale and center the
data. For each gene g, we determine the parameters µ and σ of the Gaussian distribution
using all expression values. Then, for each expression value xij in the gene g we calculate the
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Z-score using Zij = (xij − µj)/σj . This step helps to reduce the impact of outliers, noise and
technical variability in the gene expression data, which can improve the robustness of cells-to-
spots alignment algorithm. The outputs from this step are two matrices with expression values
are in Z-score scale.

2.2 Cell to Spot Alignment using Sinkhorn Algorithm

In this section, we will describe the main steps to perform cells-to-spots alignment using
Sinkhorn algorithm. Given two X and Y as the scaled scRNA-seq and ST matrices obtained
from the previous section. First, we calculate the pair wise Pearson’s correlation between cells

and spots, ρ(X,Y ) = Cov(X,Y )
σ(X)∗σ(Y ) where Cov(X,Y ) is the covariance between X and Y . Using

obtained cells/spots correlation matrix, we calculate the pair wise distance between cells and
spots D(X,Y ) = 1− |ρ(X,Y )|.

Given the distance matrix, we will use Sinkhorn algorithm to compute the optimal transport
plan from cells-to-spots. This step involves solving an optimization problem that seeks to find
the “cheapest” way to transport mass (in this case, expression profiles) from the cells to the
spots, where the “cost” of transporting mass is given by the distance matrix. In details, Sinkhorn
algorithm works as follows:

1. Initialization:

. A distance matrix D(X,Y ) (cost matrix) that represents distances between single
cells and spatial spots.

. Two probability vectors p and q that represent the expression distribution of single
cells and spatial spots respectively. Here, p are row-wise sum of gene expression
values for each cell in scRNA-seq data and q are row-wise sum of gene expression
values for each spot in ST data.

. A regularization term λ = 0.05.

. A kernel matrix K = e
−λ∗D(X,Y )
max(D(X,Y )

. Two vectors a ∈ Rm and b ∈ Rn with all entries equal to 1

2. Update:

Repeat until convergence:

. Update: b = q
KT a

. Update: a = p
Kb

3. Compute transport plan:

T = diag(a)Kdiag(b)

The output of the Sinkhorn algorithm is a matrix Tm×n where each value represents the
mass (expression value) of a cell transported to a spot. We then transform it into a probability
matrix with the same dimension and assign cells to spots based on the maximum probability.
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3 Results

In this section, we assess the performance of SSA in the following capabilities: (1) correctly
mapping cells to spatial locations, (2) correctly assigning cells to spatial locations within specific
cell types. We assess SSA performance against four state-of-the-art methods, SpaOTsc [22],
Tangram [21], Seurat [14] and DistMap [10] using 10 semi-simulated scRNA-seq datasets.

3.1 Data Preparation

This section presents the process of preparing data for our analyses. we download a high-
resolution spatial transcriptomics human breast cancers data from Gene Expression Omnibus
(GEO) under accession number GSE176078 [26]. This dataset contains 100,064 cells in which
cells expression profile, cells coordinates in real tissue and cells types are available. We transform
the high-resolution ST data into 01 low-resolution ST dataset and 10 scRNA-seq datasets.

First, we partition the spatial domain into a grid structure where each grid cell, or “spot”,
is larger than the spatial extent of individual cells. The location of each spot is determined by
averaging the 2-D coordinates of all cells falling within its boundaries, effectively representing
the centroid of cellular locations within each spot.

Second, the gene expression profile for each spot is generated by averaging the gene ex-
pression levels of all cells residing within the corresponding grid cell. In this manner, the
heterogeneity of gene expression at the cellular level is retained while transitioning to a coarser
spatial resolution. Each spot now serves as a representative transcriptomic snapshot of the
multiple individual cells within its confines. As a result, we was able to obtain an ST dataset
of 3,615 spots and the mapping of spatial location between cells and spots. The spatial tran-
scriptomic landscape of spots is shown in Figure 2. Here, we only use ST expression profile
to perform cells-to-spots alignment. We later use spatial mapping information a posteriori to
assess the performance of all methods.

Finally, we sub-sample the high-resolution ST data to get 10 equally smaller datasets and use
them as scRNA-seq datasets for analysis. For each dataset, we perform log transformation to
re-scale the data, i.e., log(A+1) where A is the expression matrix. We then use ST expression
profile and single-cell expression profile to perform cells-to-spots alignment. We keep spatial
mapping information as a posteriori to assess the performance of all methods.

3.2 SSA accurately maps cells to spot reference spatial locations

In ten datasets obtained from the previous section, the assignment of cells to respected spots
locations are known. We only use this information for validation of SSA and other methods.
For each dataset, we have scRNA-seq and ST expression matrices that serve as the inputs of
each cells-to-spots alignment method. After running each method, we have a table in which the
first column contain cells IDs and the second column has predicted spots IDs mapped to cells
in the first columns. In order to assess if the cells are accurately assigned to the true spots,
we measure the average Euclidean and Manhattan distances calculated from predicted spots
and true spots spatial location. Smaller distances indicate the better cells-to-spots alignment
results.

Table 1 shows average Euclidean distance values obtained for each method from ten datasets.
For each row, cells highlighted in bold have the lowest values. For each of the ten datasets
analyzed, the average Euclidean distance values obtained for SSA are substantially lower than
those of SpaoTsc, Tangram, Seurat and DistMap (p = 6.531 × 10−7 using Wilcoxon test)
demonstrating the SSA can accurately align cells back to the true spatial location in the tissue.

29



SSA: Single-cell and Spatial Alignment Tran et al.

−10

−5

0

5

10

15

−10 0 10
X Coordinates

Y
 C

oo
rd

in
at

es

Spatial Transcriptomes Lanscape

Figure 2: The spatial locations of simulated spots. The scatter plots show the x and y coordi-
nates of each spot. Each spot’s location is determined by averaging the 2-D coordinates of all
cells within its grid boundaries.

The average Euclidean distance values of SSA is 1.786 which is substantially lower than those of
other methods (2.976, 5.355, 11.957 and 144.133 for SpaoTsc, Tangram, Seurat and DistMap,
respectively). Especially, DistMap fails to align individual cells to spots in dataset 9 making
the average Euclidean distance is very high (1398.808).

Tables 2 shows average Manhattan distance obtained from SSA, SpaoTsc, Tangram, Seurat
and DistMap obtained from 10 datasets. Again, this metric confirms that SSA is the best among
the competing methods. The Manhattan distance values of SSA are significantly lower than
those of other methods (p = 6.534×10−7 using Wilcoxon test). The average Manhattan distance
values of SSA across all datasets is 2.257 while the average values of SpaoTsc, Tangram, Seurat
and DistMap are 3.784, 6.865, 15.152 and 175.116, respectively. Similar to result presented in
Table 1, DistMap unable to map cells in dataset 9 to a dedicated spots resulting in excessively
high distance (1697.566).
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Table 1: Comparisons using average Euclidean distance.

Datasets SSA SpaoTsc Tangram Seurat DistMap
Dataset-1 1.786 3.007 5.364 11.627 4.624
Dataset-2 1.802 2.977 5.365 12.057 4.718
Dataset-3 1.778 2.952 5.351 11.998 4.534
Dataset-4 1.818 2.955 5.291 11.821 5.345
Dataset-5 1.757 2.970 5.357 12.072 4.519
Dataset-6 1.738 2.944 5.376 11.806 4.804
Dataset-7 1.784 2.955 5.388 12.274 4.989
Dataset-8 1.799 2.991 5.296 11.751 4.484
Dataset-9 1.806 3.076 5.351 11.961 1398.808
Dataset-10 1.789 2.939 5.407 12.200 4.502

Table 2: Comparisons using average Manhattan distance.

Datasets SSA SpaoTsc Tangram Seurat DistMap
Dataset-1 2.259 3.819 6.878 14.769 5.839
Dataset-2 2.277 3.781 6.874 15.309 5.967
Dataset-3 2.245 3.755 6.862 15.179 5.727
Dataset-4 2.298 3.758 6.771 14.98 6.701
Dataset-5 2.227 3.778 6.858 15.333 5.705
Dataset-6 2.193 3.747 6.895 15.096 6.040
Dataset-7 2.252 3.750 6.925 15.603 6.279
Dataset-8 2.272 3.801 6.797 14.912 5.663
Dataset-9 2.280 3.918 6.858 15.229 1697.566
Dataset-10 2.263 3.736 6.930 15.11 5.677

3.3 SSA accurately maps cells to spatial location within cell types

In this section, we conduct another quantitatively evaluation of the SSA performance. We
compare the cells-to-spots alignment results of SSA and other methods using cell type level
Kullback-Leibler (KL) divergence (see Appendix A for more details). KL-divergence score is
a measure of how the probability distribution of predicted cells locations is different from the
ground truth. Given the true and predicted cells locations generated from SSA and other
methods, we calculate the KL-divergence score for all cells in the same cell type. The smaller
KL-divergence means the two distributions are very similar.

Figure 3 shows the box plots of KL-divergence scores calculated for each method across nine
cell types. Overall, KL-divergence scores calculated from SSA results are substantially lower
than those of SpaoTsc, Tangram, Seurat and DistMap across all cell types (p = 2.838 × 10−7

using Wilcoxon test). SSA KL-divergence scores are also significantly lower than the ones
produced from other methods in CAFs, PVL, B cells, T cells, Normal Epithelial cell type with
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Figure 3: The KL-divergence results generated from SSA and other methods respected to cell
types.

p-values of 3.4× 10−2, 2.6× 10−3, 3.7× 10−9, 3.8× 10−7 and 1.7× 10−2, respectively. Those
results show that SSA is not only capable of accurately aligning individual cells to spots on
entire dataset but also it can generate predicted spatial distribution that is closer to the true
distribution for a specific cell type.

4 Conclusion

In this article, we have introduced a novel computational tool, SSA, for alignment of individual
cells to physical spatial locations in a tissue based on scRNA-seq and ST data. SSA directly
projects individual cells to their spatial coordinates in tissue sections using Sinkhorn algorithm
and therefore takes full advantage of the scRNA-seq data. The contribution of SSA approach
is two folds. First, SSA accurately maps single-cells to spatial locations for the whole cells
population with very minimal differences in distance. Second, SSA efficiently reconstructs
a cellular spatial map within a specific cell type. Our extensive analysis shows that SSA
substantially outperforms existing state-of-the-art approaches in different benchmark scenarios.
SSA can be seamlessly incorporated into other analysis pipelines.

For future work, we plan to integrate this alignment technique with other techniques de-
veloped in our research lab for single-cell analysis to group cells with similar patterns together
before performing cells-to-spots alignment [27–31]. This will improve the process of finding cells
that have highly correlated expression profile with spots. We also plan to extend this work to
improve the data for data integration and pathway analysis [32–44], cancer research [45–52],
and space biology and drug development [53–58].
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A Evaluation metrics

KL-divergence measures how one probability distribution is different from a second, reference
probability distribution. Given two sets of true and predicted ST spatial coordinates. Each
point should represent the position of a cell. Here, we use two-dimensional kernel density
estimation (KDE) to estimate probability density function of cells locations. Given a set of
cells with coordinates {(x1, y1), (x2, y2), . . . , (xm, ym)}, the formula for KDE is as follows:

f(x, y) =
1

N

∑
j=1

Kh((x− xj), (y − yj)) (1)

where N is the total number of points, Kh is the kernel function with bandwidth h (in this case,
a 2D Gaussian kernel). We apply KDE on both true and predicted ST spatial coordinates of
cells to obtain two distributions P (i) and Q(i). Here, the KL divergence measures the distance
from the approximate distribution Q to the true distribution P . KL-divergence is defined
mathematically as below:

DKL(P ||Q) = Σi∈IP (x)log
P (i)

Q(i)
(2)

Where the “||” operator indicates “divergence” or Ps divergence from Q.
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