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Abstract

This paper presents an algorithm that redirects proofs by contradiction. The input is a

refutation graph, as produced by an automatic theorem prover (e.g., E, SPASS, Vampire,

Z3); the output is a direct proof expressed in natural deduction extended with case analyses

and nested subproofs. The algorithm is implemented in Isabelle’s Sledgehammer, where

it enhances the legibility of machine-generated proofs.

1 Introduction

The proofs returned by automatic theorem provers (ATPs) are notoriously difficult to read. This

is an issue if an ATP solves an open mathematical problem (such as the Robbins conjecture

[11]), because users then certainly want to study the proof closely. But even in the context of

program verification, where users are normally satisfied with a “proved” or “disproved,” they

might still want to analyze proofs—for example, if they suspect errors in their axiom set.

Our interest in intelligible ATP proofs has a different origin. The tool Sledgehammer [19]

integrates ATPs with the proof assistant Isabelle/HOL [15]. Given an Isabelle conjecture,

Sledgehammer heuristically selects relevant lemmas from Isabelle’s libraries, translates them

along with the conjecture to first-order logic, and sends the resulting problem to state-of-the-art

provers such as E [24], SPASS [28], Vampire [22], and Z3 [5].

To guard against bugs in the ATPs and in Sledgehammer’s translation module, ATP proofs

are reconstructed in Isabelle. This is accomplished through either a single invocation of the

built-in resolution prover metis [8] or a structured Isar proof [20]. The latter option is useful

for larger proofs, which metis fails to re-find within a reasonable time. But most users find the

proofs unattractive and are disinclined to insert them in their theory text. As an illustration,

consider the conjecture length (tl xs)≤ length xs, which states that the tail of a list (the list from

which we remove its first element, or the empty list if the list is empty) is at most as long as the

full list. The proof found by Vampire, translated to Isar, is as follows:

proof neg_clausify

assume length (tl xs) 6≤ length xs

hence drop (length xs) (tl xs) 6= [] by (metis drop_eq_Nil)

hence tl (drop (length xs) xs) 6= [] by (metis drop_tl)

hence ∀u. xs @ u 6= xs ∨ tl u 6= [] by (metis append_eq_conv_conj)

hence tl [] 6= [] by (metis append_Nil2)

thus False by (metis tl.simps(1))

qed
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(The function drop n removes the first n elements from a list.) The neg_clausify proof method

puts the Isabelle conjecture into negated clause form to ensure that it has the same shape as

the corresponding ATP conjecture. The negation of the clause is introduced in the assume line,

and a sequence of intermediate facts each introduced by hence leads to a contradiction.

There is a considerable body of research about making resolution proofs intelligible. Early

work focused on translating detailed resolution proofs into natural deduction calculi [13, 21].

Although they are arguably more readable, these calculi operate at the logical level, whereas

humans reason mostly at the “assertion level,” invoking definitions and lemmas without provid-

ing the full logical details. A line of research focused on transforming natural deduction proofs

into assertion-level proofs [1, 7], culminating with the systems TRAMP [12] and Otterfier [31].

More related work includes the identification of obvious inferences [4,23], the successful trans-

formation of EQP’s proof of the Robbins conjecture using ILF [3], and more recently the use

of TPTP-based tools to present Mizar articles [27].

It would have been interesting to try out TRAMP and Otterfier, but these are large pieces

of unmaintained software that are hardly installable on modern machines and that only sup-

port older ATP systems. Regardless, the problem looks somewhat different in the context of

Sledgehammer. Because the provers are given hundreds of lemmas as axioms, they tend to find

short proofs with few lemmas. Moreover, Sledgehammer can coalesce consecutive inferences

if short proofs are desired. Replaying an inference is a minor issue, thanks to metis.

The first obstacle to readability is that the Isar proof, like the underlying ATP proof, is by

contradiction. This paper presents an algorithm for transforming proofs by contradiction into

direct proofs—or redirecting proofs—to improve intelligibility. Knuth, Larrabee, and Roberts

call the unnecessary use of proof by contradiction a sin against mathematical exposition [10,

§3]—but since redirection is always possible, what would a necessary use look like?

The redirection algorithm is not be tied to any one calculus or logic, as long as it admits

contraposition. In particular, it works on the Isar proofs generated by Sledgehammer or directly

on first-order TSTP proofs [26]. The direct proofs are expressed in a simple Isar-like syntax,

which can be regarded as natural deduction extended with case analyses and nested subproofs

(Section 2). The algorithm is first demonstrated on a few examples (Section 3) before it is

presented in more detail, both in prose and as Standard ML pseudocode (Section 4).

For examples with a simple linear structure, such as the Isar proof above, the proof can be

turned around by applying contraposition repeatedly:

proof –

have tl [] = [] by (metis tl.simps(1))

hence ∃u. xs @ u = xs ∧ tl u = [] by (metis append_Nil2)

hence tl (drop (length xs) xs) = [] by (metis append_eq_conv_conj)

hence drop (length xs) (tl xs) = [] by (metis drop_tl)

thus length (tl xs)≤ length xs by (metis drop_eq_Nil)

qed

The direct proof is easier to understand than the indirect one, even though it does not quite look

like a human-written proof—humans would most likely avoid the detour through drop.
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The approach works on arbitrary proofs by contradiction. A prototype demonstrated at

earlier workshops [18, 19] sometimes exhibited exponential behavior. This has been resolved:

Excluding a linear number of additional inferences that justify case analyses, each inference

in the proof by contradiction now gives rise to exactly one inference in the direct proof. The

algorithm can easily process proofs with hundreds or thousands of inferences.

The algorithm is implemented in Sledgehammer. It is also described in Section 6.8 of my

Ph.D. thesis [2], whose text largely forms the basis of this paper.

2 Proof Notations

Proof Graph. ATP proofs identify formulas by numbers. There may be several conjectures,

in which case they are interpreted disjunctively. The negated conjectures and user-provided

axioms are numbered 0, 1, 2, . . . , n− 1, and the derivations performed during proof search

(whether or not they participate in the final proof) are numbered sequentially from n. We

abstract the ATP proofs by ignoring the formulas and keeping only the numbers. We call

formulas atoms since we are not interested in their structure. The letters a, b denote atoms.

An atom is tainted if it is one of the negated conjectures or has been derived, directly or

indirectly, from a negated conjecture. For convenience, we relabel the ATP proof’s atoms so

that tainted atoms are decorated with a bar, denoting negation. Thus, if atom 3, corresponding

to the formula φ, is tainted, it is relabeled to 3, but it still stands for φ and is called an atom

despite the negative bar. After the relabeling, removing the bar negates the formula: 3 ≡ ¬φ.

A proof graph is a directed acyclic graph in which an edge a → a′ indicates that atom a is

used to derive atom a′. Proof graphs are required to have exactly one sink node, whose formula

is ⊥, and only one connected component. We adopt the convention that derived nodes appear

lower than their parent nodes in the graph and omit the arrowheads:

It is natural to write ⊥ rather than a numeric label for the sink node in examples.

In Sledgehammer, unary inferences are collapsed, and the first-order formulas are translated

back to HOL before the proof is redirected. This is outside the scope of this paper and is

explained in more detail in a companion paper [25].
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Isar Proofs. Proof graphs cannot represent proofs by case analysis and only serve for the

redirection algorithm’s input. We need more powerful notations for the output. Isar proofs

[14, §4; 29] are a linear representation of natural deduction proofs in the style of Jaśkowski [9].

Unlike Gentzen-style trees [6], they allow the sharing of common derivations. The proof on the

left-hand side is by contradiction; that on the right-hand side is the corresponding direct proof:

proof neg_clausify

assume 0

have 4 by (metis 1 2)

have 5 by (metis 3 4)

have 6 by (metis 0 4)

have 7 by (metis 0 5)

show ⊥ by (metis 6 7)

qed

proof –

have 4 by (metis 1 2)

have 5 by (metis 3 4)

have 6∨7 by metis

moreover

{ assume 6

have 0 by (metis 4 6) }

moreover

{ assume 7

have 0 by (metis 5 7) }

ultimately show 0 by metis

qed

Notice that the direct proof involves a 2-way case analysis on a disjunction. Generalized dis-

junctions of the form a1 ∨ ·· · ∨ am are called clauses and are denoted by the letters c, d, e.

Clauses are considered equal modulo associativity, commutativity, and idempotence. Sets of

clauses are denoted by Γ.

Proof redirection requires that inferences can be redirected using the contrapositive but oth-

erwise makes no assumptions about the proof calculus. Inferences that introduce new symbols

can also be redirected; for example, skolemization becomes “un-herbrandization” [25, §4].

Shorthand Proofs. The last proof format is an ad hoc shorthand notation for a subset of Isar.

In their simplest form, these shorthand proofs are a list of derivations c1, . . . ,cm ⊲ c whose

intuitive meaning is: “From the hypotheses c1 and . . . and cm, infer c.” The clauses on the

left-hand side are interpreted as a set Γ.

If a hypothesis ci is the previous derivation’s conclusion, we can omit it and write ◮ instead

of ⊲. This notation mimics Isar, with ⊲ for have or show and ◮ for hence or thus. Depending

on whether we use the abbreviated format, our running example becomes

1,2 ⊲ 4 1,2 ⊲ 4

3,4 ⊲ 5 3 ◮ 5

0,4 ⊲ 6 0,4 ⊲ 6

0,5 ⊲ 7 0,5 ⊲ 7

6,7 ⊲⊥ 6 ◮⊥

Each derivation Γ ⊲ c is essentially a sequent with Γ as the antecedent and c as the succedent.

For proofs by contradiction, the clauses in the antecedent are either the negated conjecture (0),
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atoms that correspond to background facts (1, 2, and 3), or atoms that were proved in preceding

sequents (4, 5, 6, and 7); the succedent of the last sequent is always ⊥.

Direct proofs can be presented in the same way, but the negated conjecture 0 may not

appear in any of the sequents’ antecedents, and the last sequent must have the conjecture 0 as

its succedent. In some of the direct proofs, it is useful to introduce case analyses. For example:

1,2 ⊲ 4

3 ◮ 5

⊲ 6∨7[
[6]

4 ◮ 0

[7]
5 ◮ 0

]

In general, case analysis blocks have the form




[c1]
Γ11 ⊲ d11

...

Γ1k1
⊲ d1k1

. . .

. . .

. . .

[cm]
Γm1 ⊲ dm1

...

Γmkm
⊲ dmkm




with the requirement that a sequent with the succedent c1 ∨ ·· · ∨ cm has been proved immedi-

ately above the case analysis. Each of the branches must also be a valid proof. The assumptions

[ci] may be used to discharge hypotheses in the same branch, as if they had been sequents ⊲ ci.

The case analysis will sometimes be regarded as a sequent

c1 ∨ ·· ·∨ cm,
⋃

i, j (Γij − ci −
⋃

j ′< j dij ′) ⊲ d1k1
∨ ·· ·∨dmkm

by ignoring its internal structure.

3 Examples of Proof Redirection

Before reviewing the redirection algorithm, we consider four examples of proofs by contradic-

tion and redirect them to produce a direct proof. The first example has a simple linear structure,

the second and third examples involve a “lasso,” and the last example has no apparent structure.

A Linear Proof. We start with a simple proof by contradiction expressed as a proof graph

and in our shorthand notation:

0,1 ⊲ 3

2,3 ⊲ 4

1,4 ⊲⊥
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We redirect the sequents using sequent-level contraposition to eliminate all taints (represented

as bars after the relabeling). This gives

1,3 ⊲ 0

2,4 ⊲ 3

1 ⊲ 4

We then obtain the direct proof by reversing the order of the sequents, and introduce ◮ wher-

ever possible:

proof –

have 4 by (metis 1)

hence 3 by (metis 2)

thus 0 by (metis 1)

qed

1 ⊲ 4

2 ◮ 3

1 ◮ 0

Lasso-Shaped Proofs. The next two examples look superficially like lassos but are of course

acyclic, as required of all proof graphs:

0 ⊲ 1

0 ⊲ 2

1 ⊲ 3

2 ⊲ 4

3,4 ⊲ 5

5 ⊲ 6

6 ⊲⊥

0 ⊲ 1

1 ⊲ 2

2 ⊲ 3

2 ⊲ 4

3 ⊲ 5

4 ⊲ 6

5,6 ⊲⊥

We start with the example on the left-hand side. Starting from ⊥, it is easy to redirect the stem:

⊲ 6

6 ⊲ 5

5 ⊲ 3∨4

When applying the contrapositive to eliminate the negations in 3,4 ⊲ 5, we obtain a disjunction

in the succedent: 5 ⊲ 3∨ 4. To continue from there, we introduce a case analysis. In each

branch, we can finish the proof:




[3]
3 ⊲ 1

1 ⊲ 0

[4]
4 ⊲ 2

2 ⊲ 0
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In the second lasso example, the cycle occurs near the end of the contradiction proof. A dis-

junction already arises when we redirect the last derivation. Naively finishing each branch

independently leads to a fair amount of duplication:

⊲ 5∨6


[5]
5 ⊲ 3

3 ⊲ 2

2 ⊲ 1

1 ⊲ 0

[6]
6 ⊲ 4

4 ⊲ 2

2 ⊲ 1

1 ⊲ 0




The key observation is that the two branches can share the last two inferences. This yields the

following proof (without and with ◮):

⊲ 5∨6


[5]
5 ⊲ 3

3 ⊲ 2

[6]
6 ⊲ 4

4 ⊲ 2




2 ⊲ 1

1 ⊲ 0

⊲ 5∨6


[5]
◮ 3

◮ 2

[6]
◮ 4

◮ 2




◮ 1

◮ 0

Here we were fortunate that the branches were joinable on the atom 2. To avoid duplication,

we must in general join on a disjunction a1 ∨ ·· ·∨am , as in the next example.

A Spaghetti Proof. The final example is diabolical (and slightly unrealistic, perhaps):

0 ⊲ 1

1 ⊲ 2

1 ⊲ 3

2,3 ⊲ 4

2,4 ⊲ 5

3,4 ⊲ 6

2,5,6 ⊲ 7

3,6 ⊲ 8

7,8 ⊲⊥

We start with the contrapositive of the last sequent:

⊲ 7∨8
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We perform a case analysis on 7∨8. Since we want to avoid duplication in the two branches,

we first determine which nodes are reachable in the refutation graph by navigating upward from

either 7 or 8 but not from both. The only such nodes here are 5, 7, and 8. In each branch, we

can perform derivations of the form Γ ⊲ b where Γ ∩ {5,7,8} 6= /0 without fearing duplication.

Following this rule, we can only perform one inference in the right branch before we must stop:

[8]
8 ⊲ 3∨6

Any further inferences would need to be repeated in the left branch, so it is indeed a good idea

to stop. The left branch starts as follows:

[7]
7 ⊲ 2∨5∨6

We would now like to perform the inference 5 ⊲ 2∨ 4. This would certainly not lead to any

duplication, because 5 is not reachable from 8 by navigating upward in the refutation graph.

However, we cannot discharge the hypothesis 5, having established only the disjunction 2∨5∨
6. We need a case analysis on the disjunction to proceed:

[
[5]

[2] 5 ⊲ 2∨4 [6]

]

The 2 and 6 subbranches are left alone, because there is no node that is reachable only from

2 or 6 but not from the other two nodes in {2,5,6} by navigating upward in the refutation graph.

Since only one branch is nontrivial, it is arguably more aesthetically pleasing to abbreviate the

entire case analysis to

2∨5∨6 ⊲ 2∨4∨6

Putting this all together, the outer case analysis becomes




[7]
◮ 2∨5∨6

◮ 2∨4∨6

[8]
◮ 3∨6




The left branch proves 2∨ 4∨ 6, the right branch proves 3∨ 6; hence, both branches together

prove 2∨3∨4∨6. Next, we perform the inference 6 ⊲ 3∨4. This requires a case analysis on

2∨3∨4∨6: [
[6]

[2] [3] [4] 6 ⊲ 3∨4

]

This proves 2∨ 3∨ 4. Since only one branch is nontrivial, we prefer to abbreviate the case

analysis to

2∨3∨4∨6 ⊲ 2∨3∨4
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It may help to think of such abbreviated inferences as instances of rewriting modulo associa-

tivity, commutativity, and idempotence. Here, 6 is rewritten to 3∨ 4 in 2∨ 3∨ 4∨ 6, resulting

in 2∨3∨4. Similarly, the sequent 4 ⊲ 2∨3 gives rise to the case analysis
[

[4]
[2] [3] 4 ⊲ 2∨3

]

which can be abbreviated as well. We are left with 2∨ 3. The rest is analogous to the second

lasso-shaped proof: [
[2]

2 ⊲ 1

[3]
3 ⊲ 1

]

1 ⊲ 0

Putting all of this together, we obtain the following proof, expressed in Isar and in shorthand.

The result is quite respectable, considering the spaghetti-like graph we started with:

proof –

have 7∨8 by metis

moreover

{ assume 7

hence 2∨5∨6 by metis

hence 2∨4∨6 by metis }

moreover

{ assume 8

hence 3∨6 by metis }

ultimately have 2∨3∨4∨6 by metis

hence 2∨3∨4 by metis

hence 2∨3 by metis

moreover

{ assume 2

hence 1 by metis }

moreover

{ assume 3

hence 1 by metis }

ultimately have 1 by metis

thus 0 by metis

qed

⊲ 7∨8


[7]
◮ 2∨5∨6

◮ 2∨4∨6

[8]
◮ 3∨6




◮ 2∨3∨4

◮ 2∨3[
[2]

◮ 1

[3]
◮ 1

]

◮ 0

4 The Redirection Algorithm

The process we applied in the examples above can be generalized into an algorithm. The

algorithm takes an arbitrary proof by contradiction expressed as a set of sequents as input, and

produces a proof in our Isar-like shorthand notation, with sequents and case analysis blocks.

The proof is constructed one inference at a time starting from ⊤ (the negation of ⊥) until the

conjecture—in general, the disjunction of the conjectures—is proved.
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Basic Concepts. A fundamental operation is sequent-level contraposition. Let a1, . . . ,am be

the untainted atoms and b1, . . . ,bn the tainted atoms of a proof by contradiction. The proof then

consists of the following three kinds of sequent (with n > 0):

a1, . . . ,am,b1, . . . ,bn ⊲⊥ a1, . . . ,am,b1, . . . ,bn ⊲ b a1, . . . ,am ⊲ a

Their contrapositives are, respectively,

a1, . . . ,am ⊲ b1 ∨ ·· ·∨bn a1, . . . ,am,b ⊲ b1 ∨ ·· ·∨bn a1, . . . ,am ⊲ a

We call the contrapositives of the sequents in the proof by contradiction the redirected sequents.

Based on the set of redirected sequents, we define the atomic inference graph (AIG) with,

for each redirected sequent Γ ⊲ c, an edge from each atom in Γ to each atom in c, and no

additional edges. The AIG encodes the order in which the atoms can be inferred in a direct

proof. Navigating forward (downward) in this graph along the unnegated tainted atoms bj

corresponds to navigating backward (upward) in the refutation graph along the bj’s.

Like the underlying refutation graph, the AIG is acyclic and connected. Potential cycles

would involve either only untainted atoms ai, only tainted atoms bj’s, or a mixture of both

kinds. A cycle ai1 → ··· → aik → ai1 is impossible, because the contrapositive leaves these

inferences unchanged and hence the cycle would need to occur in the (acyclic) refutation graph.

A cycle bj1 → ··· → bjk → bj1 is impossible, because the contrapositive turns all the edges

around and hence the reverse cycle would need to occur in the refutation graph. Finally, mixed

cycles necessarily involve an edge b → a, which is impossible because redirected sequents with

untained atoms a can only have untainted atoms as predecessors (cf. a1, . . . ,am ⊲ a).

Given a set of (tainted or untainted) atoms A, the zone of an atom a ∈ A with respect to A

is the set of possibly trivial descendants of a in the AIG that are not descendants of any of the

other atoms in A. As a trivial descendant of itself, a will either belong to its own zone or to no

zone all at (depending on whether it is a descendant of a node a′ ∈ A−{a}). Zones identify

inferences that can safely be performed inside a branch in a case analysis.

The Algorithm. The algorithm keeps track of the last-proved clause (initially ⊤), the set

of already proved atoms (initially the set of facts taken as axioms), and the set of remaining

sequents to use (initially all the redirected sequents provided as input). It performs these steps:

1. If there are no remaining sequents, stop.

2. If the last-proved clause is ⊤ or a single atom:

2.1. Pick a sequent Γ ⊲ c among the remaining sequents that can be proved using only

already proved atoms, preferring sequents with a single atom in their succedent.

2.2. Append Γ ⊲ c to the proof.

2.3. Make c the last-proved clause, add c to the already proved atoms if it is an atom,

and remove Γ ⊲ c from the remaining sequents.

2.4. Go to step 1.
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3. Otherwise, the last-proved succedent is of the form a1∨·· ·∨am. An m-way case analysis

is called for:1

3.1. Compute the zone of each atom ai with respect to {a1, . . . ,am}.

3.2. For each ai, compute the set Si of sequents Γ ⊲ c such that Γ consists only of

already proved atoms or atoms within ai’s zone.

3.3. Recursively invoke the algorithm m times, once for each ai, each time with ai as

the last-proved clause, ai added to the already proved atoms, and Si as the set of

remaining sequents. This step yields m (possibly empty) subproofs π1, . . . , πm.

3.4. Append the following case analysis block to the proof:[
[a1] · · · [am]
π1 · · · πm

]

3.5. Make the succedent b1 ∨ ·· ·∨bn of the case analysis block (regarded as a sequent)

the last-proved clause, add b1 to the already proved atoms if k = 1, and remove all

sequents belonging to any of the sets Si from the remaining sequents.

3.6. Go to step 1.

Whenever a redirected sequent is generated, it is removed from the set of remaining se-

quents. In step 3, the recursive calls operate on pairwise disjoint subsets Si of the remaining

sequents. Consequently, each redirected sequent appears at most once in the generated proof,

and the resulting direct proof contains the same number of inferences as the initial proof by

contradiction. In Isar, each case analysis is additionally justified by one metis inference.

In the degenerate case where no atoms are tainted (i.e., the proof exploits an inconsistency

in the axiom set), the generated proof is simply a linearization of the refutation graph, and the

last inference proves ⊥ (which is, unusually, untainted). To produce a syntactically valid Isar

proof, a trivial inference must be added to derive the conjecture from ⊥.

Pseudocode. To make the above description more concrete, the algorithm is presented in

Standard ML pseudocode below.2 The pseudocode is fairly faithful to the description above.

Atoms are represented by integers and literals by sets (lists) of integers. Go-to statements are

implemented by recursion, and the state is threaded through recursive calls as three arguments

(last, earlier, and seqs). One notable difference, justified by a desire to avoid code duplication,

is that the set of already proved atoms, called earlier, excludes the last-proved clause last.

Hence, we take last ∪ earlier to obtain the already proved atoms, where last is either the empty

list (representing ⊤) or a singleton list (representing a single atom).

Shorthand proofs are represented as lists of inferences:

datatype inference = Have of int list× int list | Cases of (int× inference list) list

1A generalization would be to perform a m′-way case analysis, with m′ < m, by keeping some disjunctions. For

example, we could perform a 3-way case analysis with a1 ∨ a2, a3, and a4 as the assumptions instead of breaking

all the disjunctions in a 4-way analysis. This could lead to nicer proofs if the disjuncts are carefully chosen.
2The actual ML code is distributed with Isabelle. A recent repository version is available at http://isabelle.

in.tum.de/repos/isabelle/file/e5303bd748f2/src/HOL/Tools/ATP/atp_proof_redirect.ML .

21

http://isabelle.in.tum.de/repos/isabelle/file/e5303bd748f2/src/HOL/Tools/ATP/atp_proof_redirect.ML
http://isabelle.in.tum.de/repos/isabelle/file/e5303bd748f2/src/HOL/Tools/ATP/atp_proof_redirect.ML


Redirecting Proofs by Contradiction J. C. Blanchette

The main function implementing the algorithm follows:

fun redirect last earlier seqs =
if null seqs then

[]
else if length last ≤ 1 then

let val provable = filter (fn (Γ, _)⇒ Γ ⊆ last ∪ earlier) seqs

val horn_provable = filter (fn (_, [_])⇒ true | _ ⇒ false) provable

val (Γ, c) = hd (horn_provable @ provable)
in Have (Γ, c) :: redirect c (last ∪ earlier) (seqs−{(Γ, c)}) end

else

let val zs = zones_of (length last) (map (descendants seqs) last)
val S = map (fn z ⇒ filter (fn (Γ, _)⇒Γ ⊆ earlier ∪ z) seqs) zs

val cases = map (fn (a, ss)⇒ (a, redirect [a] earlier ss)) (zip last S )
in Cases cases :: redirect (succedent_of_cases cases) earlier (seqs−

⋃
S ) end

The code uses familiar ML functions, such as map, filter, and zip. It also relies on a descendants

function that returns the descendants of the specified node in the AIG associated with seqs; its

definition is omitted. Finally, the code depends on the following straightforward functions:

fun zones_of 0 _ = []
| zones_of n (B :: Bs) = (B−

⋃
Bs) :: zones_of (n−1) (Bs @ [B])

fun succedent_of_inf (Have (_, c)) = c

| succedent_of_inf (Cases cases) = succedent_of_cases cases

and succedent_of_case (a, []) = [a]
| succedent_of_case (_, infs) = succedent_of_inf (last infs)

and succedent_of_cases cases =
⋃
(map succedent_of_case cases)

Correctness. It is not hard to convince ourselves that the proof output by redirect is correct

by inspecting the code. A Have (Γ, c) sequent is appended only if all the atoms in Γ have been

proved (or assumed) already, and a case analysis on a1∨·· ·∨am always follows a sequent with

the succedent a1∨·· ·∨am. Whenever a sequent is output, it is removed from seqs. The function

returns only if seqs is empty, at which point the conjecture must have been proved (except in

the degenerate case where the negated conjecture does not participate in the refutation).

Termination is not quite as obvious. The recursion is well-founded, because the pair

(length seqs, length last) becomes strictly smaller with respect to the lexicographic extension of

< on natural numbers for each of the three syntactic recursive calls.

• For the first recursive call, the list seqs − {(Γ, c)} is strictly shorter than seqs since

(Γ, c) ∈ seqs.

• The second call is performed for each branch of a case analysis; the ss argument is a (not

necessarily strict) subset of the caller’s seqs, and the list [a] is strictly shorter than last,

which has length 2 or more.
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• For the third call, the key property is that at least one of the zones is nonempty, from

which we obtain seqs−
⋃

S ⊂ seqs. If all the zones were empty, each atom ai would

be the descendant of at least one atom ai ′ in the AIG (with i ′ 6= i), which is impossible

because the AIG is acyclic.

As for run-time exceptions, the only worrisome construct is the hd call in redirect’s second

branch. We must convince ourselves that there exists at least one sequent (Γ, c) ∈ seqs such

that Γ ⊆ last ∪ earlier. Intuitively, this is unsurprising, because seqs is initialized from a well-

formed refutation graph: The nonexistence of such a sequent would indicate a gap or a cycle

in the refutation graph. More precisely, if there exist untainted atoms /∈ last ∪ earlier, these

can always be processed first; indeed, the preference for sequents with a single atom in their

succedent ensures that they are processed before the first case analysis. Otherwise:

• If last is [] (representing ⊤) or an untainted atom, the contrapositive a1, . . . ,am ⊲ b1 ∨
·· ·∨bn of the very last inference is applicable since it only depends on untainted atoms,

all of which have already been proved.

• Otherwise, last is a tainted atom b. The refutation graph must contain an inference

a1, . . . ,am,b1, . . . ,bn ⊲ b, whose redirected inference is a1, . . . ,am,b ⊲ b1∨·· ·∨bn. Since

it only depends on b and untainted atoms, it is applicable.

Inlining. As a postprocessing step, we can abbreviate case analyses in which only one branch

is nontrivial, transforming




[ci]
d11, . . . , d1k1

⊲ e1
...

[c1] · · · [ci−1] dn1, . . . , dnkn
⊲ en [ci+1] · · · [cm]


 into

d̃11, . . . , d̃1k1
⊲ ẽ1

...

d̃n1, . . . , d̃nkn
⊲ ẽn

where the function ˜ is the identity except for the assumption ci and the conclusions e1, . . . ,en:

c̃i = c1 ∨ ·· ·∨ cm ẽj = c1 ∨ ·· ·∨ ci−1 ∨ ej ∨ ci+1 ∨ ·· ·∨ cm

It is debatable whether such inlining is a good idea. The resulting proof has a simpler struc-

ture, with fewer nested proof blocks. However, these nested blocks can help make complex

proof more intelligible. Moreover, the n-fold repetition of the disjuncts c1, . . . ,ci−1,ci+1, . . . ,cm

clutters the proof and can slow it down.

The above procedure can be generalized to arbitrary case analysis blocks. I am grateful

to Konstantin Korovin for insights that lead me to realize this. We can rewrite an m-way case

analysis 


[c1]
Γ11 ⊲ e11

...

Γ1k1
⊲ e1k1

. . .

. . .

. . .

[cm]
Γm1 ⊲ em1

...

Γmkm
⊲ emkm
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into a sequence of m case analyses:




[ci]
Γi1 ⊲ ei1

...

[e1k1
] · · · [e(i−1)ki−1

] Γiki
⊲ eiki

[ci+1] · · · [cm]




Each of these has only one nontrivial branch and can be inlined, yielding a branch-free proof.

For the spaghetti proof of the previous section, this process yields

⊲ 7∨8

◮ 2∨5∨6∨8

◮ 2∨4∨6∨8

◮ 2∨3∨4∨6

◮ 2∨3∨4

◮ 2∨3

◮ 1∨3

◮ 1

◮ 0

The example shows clearly that we rapidly obtain large disjunctions. In practice, each of the

disjuncts would be an arbitrarily complex formula. Local definitions could be used to avoid

repeating the formulas, but the loss of modularity is deplorable. Indeed, similar concerns

about Hoare-style proof outlines for separation logic have lead to the development of ribbon

proofs [30], whose parallel ribbons evoke the branches of a case analysis.

If branch-free proofs are nonetheless desired, they can be generated more directly by iter-

atively “rewriting” the atoms, following a suggestion by Korovin. For example, starting from

the sequent ⊲ 7∨8, rewriting 7 would involve resolving ⊲ 7∨8 with 7 ⊲ 2∨5∨6, resulting in

2∨5∨6∨8. In general, rewriting a tainted atom bj within a sequent Γ ⊲ b1 ∨ ·· ·∨bn involves

resolving that sequent with the redirected sequent that has bj in its assumptions. To guarantee

that the procedure is linear, it suffices to rewrite atoms only if all their ancestors in the AIG

have already been rewritten, thereby preventing multiple rewrites of the same atom.

5 Conclusion

This paper presented an algorithm that transforms proofs by contradiction as returned by au-

tomatic theorem provers into direct proofs. It sometimes introduces case splits but avoids

duplicating inferences in the different branches of the split by joining again as early as possi-

ble. The resulting proofs are direct Isar proofs that have some of the structure Isabelle users

have come to expect. The described procedure is admittedly fairly straightforward; it would

not be surprising if it were part of folklore or a special case of existing work.

While the output is designed for replaying proofs, it also has a pedagogical value: Unlike

Isabelle’s automatic tactics, which are black boxes, the proofs delivered by Sledgehammer can
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be inspected and understood. The direct proof also forms a good basis for manual tuning.

Further steps toward robust, intelligible Isar proofs, are described in a companion paper [25].

In future work, I am interested in transformations that increase proof readability and in the

automatic discovery of concepts and lemmas, such as those available for Mizar proofs [16,17].
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