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1 Motivation

Even with current automated reasoning technology, full functional verification requires human
interaction to guide the proof: assignments to ghost variables (e.g. [1]) or intermediate as-
sertions (e.g. [17]) need to be provided, and sometimes the prover’s deductions need to be
examined in detail (e.g. [1, §7],[13]). Indeed, some authors have argued that the developer’s
understanding will be necessary regardless of advances in automation (e.g. [17, §7.2][8, §4.3][2,
§1.2]).

For effective interaction, the user has to understand the generated verification conditions.
While it is possible to relate them back to the source code by suitable highlights and annotations
(e.g. [4, 9]), this approach does not cover the verification conditions themselves. For instance,
the conditions usually express side-effects in the program by substitutions (e.g. [4, §4.2]), which
in a weakest precondition calculus relate only loosely to a developer’s view on the code.

We therefore propose to design the Hoare logic and verification environment itself to increase
the developer’s understanding of the verification process. Taking lightweight separation [5, 6, 7]
as the basis, this paper presents a suite of verification tools developed around that method and
their application to case studies. Although the language treated is a C dialect with a finite byte-
addressed memory model, even involved algorithms like Schorr-Waite graph traversal lead to
natural and readable proof obligations. Since assertions employ classical first-order (or higher-
order) logic, existing automated reasoners apply. The tools are developed as a conservative
extension of Isabelle/HOL, which ensures their correctness.

2 Developer-Orientated Verification Conditions

Our approach obeys the following principles to achieve developer-oriented verification. While
some have been proposed in the literature individually, their combination leads to a verification
process that closely resembles stepping through a program using a symbolic debugger, thus
appealing to a developer’s natural understanding of the code.

Forward Reasoning Developers usually discuss their code in terms of its eventual execution:
they refer to parameters and the initial state, state transformations and computations, and
then deduce that the final result will be the one expected. Our Hoare logic and tool suite
consequently transform a statement’s pre-condition into a readable post-condition, with the
special characteristic that the result will not refer to the pre-state (except through logical
variables), but only to the “current” post-state of the execution. The user can then argue that
the generated post-condition implies the one given in the specification. While several studies
have recognized the benefits of forward reasoning (e.g. [10]), their employed logics lack the
other properties discussed below.

Classical (First-order) Logic Acceptance of verification can be increased by using a logic
that developers know from their education, i.e. classical first-order logic (or higher-order logic,
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if desired). As a by-product, effective reasoners become available. While recent studies have
shown that separation logic can be used for fully automatic proofs for particular classes of
algorithms [3], even slightly involved examples need interactive guidance [16], and for complex
algorithms, extensive manual proofs are required [14, 15, 11].

Support for Intuitive Disjointness Reasoning Developers usually find arguments about
the disjointness of memory regions “obvious” – they draw pointer diagrams and argue about
geometrical disjointness. Since lightweight separation supports such reasoning [6], the verifi-
cation tools preserve those parts of the pre-condition that “obviously” remain unchanged in
the computed post-condition, thus reflecting the developer’s understanding in this important
aspect. Contrary to other approaches (e.g. [4, §4.2]), the side-effects are thus removed, which
results in natural and readable post-conditions.

Natural Execution Paths Standard Hoare logics split verification conditions between differ-
ent execution paths, such that case distinctions, but also boolean short-circuit operators, induce
separate verification conditions. The developer, on the other hand, writes these constructs in
order to continue afterwards regardless of the encountered case. Instead of treating the execu-
tion paths separately, we therefore join their resulting post-conditions, unless the users chooses
splitting explicitly.

Guided Verification Verification condition generation usually reduces correctness to a (usu-
ally large) number of verification conditions in a black-box step. When automatic provers fail,
the user has to inspect them one-by-one nevertheless. We let the user guide the verification
process at the source-code level instead. Other studies that have suggested this approach (e.g.
[12]) have relied on backward-style Hoare rules, thus destroying the potential benefits.

3 Contributions

While the technical basis of lightweight separation – disjointness reasoning and automatic un-
folding of memory layouts – has been discussed before [5, 6], their direct application suggested
in [5] does not yield a practical verification environment. This paper discusses for the first time
the tools developed around the given basis.

Normal forms for assertions We reduce the reasoning to a normal form of assertions,
where all existentials – or ghost variables – are bound at the outermost level, intermediate
results are substituted eagerly, and assertions only refer to the current memory state. Forward
reasoning can then be expressed as an application a Hoare rule for the given programming
language construct, followed by the normalization of the obtained post-condition. A detailed
examination of normalization clarifies and facilitates the reasoning process discussed only loosely
in [5] and enables a more efficient implementation.

One-pass simplification of side-effects Using Isabelle’s simplifier directly for disjointness
reasoning [5] does not scale even to medium-sized examples. A new rewriting procedure has
been implemented which requires only one (top-down) pass through the assertion to remove all
side-effects and caches memory regions already located for later re-use.

Automatic proofs about accessed regions When users define a new predicate about
memory, they have to prove a theorem about the memory region it accesses [5]. The tool suite
provides tactics to perform these proofs automatically, including the case of recursive structures
such as linked lists or binary trees. Since the overhead for introducing new predicates is thus
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minimal, users are encouraged to employ application-specific abstractions in specifications and
proofs.

Guided Verification The step tool orchestrates the other tools during forward reasoning
and thus provides a convenient access point for the user. It simulates a debugger by continuing
until the next statement or some boolean condition is found. In the latter case, the user can
manipulate the pre-condition interactively (inside Isabelle) to exploit the information obtained
from the boolean test before proceeding. We will also discuss commonly occurring patterns of
reasoning that can serve as proof strategies for lightweight separation and enable, as a future
research direction, fully automatic verification.

4 Examples

We demonstrate that the goals of a developer-oriented Hoare logic have been fulfilled by ex-
amining the verification process, and most importantly the computed post-conditions, for a
number of examples: algorithms on linked lists (reverse, append); arrays (binary search, com-
prehension/filter); binary search trees; Schorr-Waite graph traversal.
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