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Abstract 
Magnetic flux leakage (MFL) signals are used to estimate the scale and form of faults 

caused by the decaying metal used to build oil and gas pipelines. These faults, such as 
rust, can have catastrophic consequences if left undetected and improperly treated, both 
in terms of environmental damage and loss of life, as well as millions of dollars in 
maintenance costs for the stakeholders. Machine learning algorithms have proven their 
ability to solve the problem by correctly recognizing and calculating the scale and form 
of certain defects. The nonparametric and Bayesian approach to regression known as 
Gaussian process regression (GPR) is gaining popularity in machine learning. The 
optimization of GPR was carried out in this report using noisy and noiseless MFL signal 
measurements. The tune-able hyper-parameters were subjected to GPR optimization. 
Root mean square error (RMSE) error was used to calculate the output. In this research, 
the Quasi-Newton Method (QNM), an automated methodology for optimizing 
nonparametric regression analysis, was used to refine the GPR model. The optimization 
results are then compared to GPR analysis with default parameters, and it has been shown 
that QNM effectively optimizes the GPR while producing lower RMSE scores on all 
datasets. The ideal inferred parameter set can be used to train the GPR model for better 
output outcomes in determining oil and gas pipeline defects. 

1 Introduction 
Energy business involves the vital part of the transportation of gas and oil from the extraction sites 

of remote areas to the consumer. The means of this transportation industry are of various kinds (e.g., 
trucks, trains, and ships) for these products, but the safest one is the pipelines. One such example is 
Canada where pipelines are used as a transportation medium for 97% of the natural gas as well as the 
production of crude [1]. 
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There are, however, certain drawbacks of these pipelines of oil and gas. They, for example, use 
delicate pathways that cross through nearby urban areas, or from fragile ecosystems which can increase 
the danger associated with any transportation failure or spillage of fuel spillage. These pipelines are 
comprised of many components and are laid over a longer stretch of distances increasing their failure 
potential. Due to their system’s complexity, it is very difficult to inspect them, requiring extremely 
sophisticated technology. Generally, this inspection is comprised of an analysis of the scans from the 
walls of pipelines to recognize patterns for defect detection.  

The magnetic flux leakage (MFL) inspection techniques are useful for acquiring high-resolution 
images and/or signals for detecting any anomalies and indications of defects in the interior wall of the 
pipeline so they can be duly reported [2]. This evaluation must be routinely done for integrity and to 
avoid any catastrophic failure or pipeline leak resulting in unfavorable effects from environmental 
damage. Due to the outrageous expense involved in shutting off a pipeline when the inspection is being 
done, autonomous operational devices called pipeline inspection gauges (PIGs) are designed which 
propel by the normal flow in the transport pipeline [3]. Another name for PIGs is “in-line-inspection 
(ILI)” tools. This ILI tool has the function to magnetize the wall of the pipeline during its travels down 
along the pipe. To measure the intensity of magnetic flux along the wall of this pipe for a localized 
leakage, coil sensors or Hall effect are used. Irregularities may occur in the magnetic field due to the 
defects present in the pipeline wall, for whose detection a regular sequential arrangement round the 
inner circumference lining of the wall of the pipe, these sensors are placed in the form of an array. So 
MFL testing is done based on the magnetic field detection from a pipe wall leakage in the subsurface 
flaws and the vicinity of the surface [4-7].  

This stored data of the magnetic images is later analyzed offline. The pipeline operators have more 
interest in the degree and the location of different defects that may excessively affect the operation and 
the integrity of this pipeline. Some such defects are faulty welds, fatigue, deformation, buckles, hairline 
cracks, delamination, dents, and corrosion. The pipeline operator uses these results for determining the 
priority from replacement and repair. Typically, nondestructive testing (NDT) technicians are the 
human operators who do the image analysis part manually in the procedure of inspection which due to 
its nature is thus error-prone and inherently slow. To automate this inspection process, the industry is 
highly motivated for using such methods as machine learning. When identification of these defects has 
been done, another vital problem arises, which involves the assessment of the severity or size of this 
defect (sizing) [7]. For determining the safety of a pipe and for accurate calculation of operating 
pressure (MAOP) the use of ‘estimated defect depths’ is made for the flowing gas or oil through the 
pipeline [8]. There are various previous studies done for the use of the MFL technique in sizing and 
defect detection [9,10]. Machine learning has previously been used for this purpose, which does the 
evaluation of multilayer perceptron (MLP) use in weld joints of the pipelines for the pattern recognition 
of these MFL signals [11]. Approaches such as Inverse modeling are used for the defects in the shape 
construction [12]. An iterative method of inversion was proposed by Joshi et al. (2006) which made use 
of a “radial basis function neural network (RBFN)” and a multiresolution wavelet transforms for 
predicting the 3-D version of the defect in geometry by using measurements taken through MFL [13]. 

A domain adaptive finite impulse response-based wavelet transforms filtration framework to 
eliminate the seamless pipe noise from MFL signals was proposed by Afzal et al. (2002) and Han et al. 
(2006) [14,15]. The research articles [15] and [16] provide approaches that are wavelet-based for this 
problem in the case of both denoising and classifying. The finite impulse response filter is used in [17] 
in MFL inspection for presenting a method that is adaptive for the equalization of the channel (for 
compensating the sensors’ mismatch). The natural gas pipelines for transmission are inspected in MFL 
by a model-based evaluation technique called the probability of detection (POD) in [18]. 

It is a challenging task to accurately estimate the likelihood of failure due to the involvement of 
larger uncertainties in the associated parameters of the prediction models for burst failure. Since the gas 
and oil pipelines are complex and typically larger due to the presence of hundreds of segments of 
pipelines, it renders the physical probabilistic approach to be computationally intensive in terms of 
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application. It is not often feasible for the decision-making of maintenance to carry out an analysis of 
reliability for evaluation of every single pipeline present in the complex transmission network of natural 
gas and oil. A significant effort is made by the utilities that are responsible for the maintenance of 
pipelines for developing approaches that are sustainable, cost-efficient, and of higher quality. There is 
a need for a more robust technique to overcome the lack of computational efficiency in the existing 
approaches for predicting the risk in ratings and pipe failure in handling large complex networks of 
these pipelines. In replacement, a new approach that is computationally efficient and has the potential 
of risk determination for all the individual segments in a complex system of the network without 
distinctly executing exhaustive analyses that are physically based. In a broad variety of areas, machine 
learning approaches are used, such as automatic diagnosis processes, credit card fraud identification, 
stock market monitoring, biomedical signal processing, and text recognition, autonomous systems, etc. 
[19-22]. Traditional probabilistic physical analysis techniques, for the estimation of oil and gas pipeline 
failure estimation, are computationally expensive. Thus, alternatively, machine learning-based data-
driven approaches to predict the oil and gas defect sizes may help to overcome the extensive 
computational requirements.  

Machine learning is a modern research dimension that is currently in the phase of active 
development. Several algorithms have transpired in the last decade, such as k-nearest neighbors, support 
vector machine, and random forest, etc. [19]. For predicting the probable failure of pipes with active 
defects due to corrosion Anghel et al. (2009) developed an innovative kind of vector machine that is 
maximally supportive [23]. A classification reliability procedure was developed by the author that 
initiated a connection between artificial intelligence (AI) and the methods of reliability. The following 
approach has provided a simpler and propitious alternate method to prioritize these maintenance works. 
Huang and Burton (2019) used the applications of machine learning for classifying the failure modes 
of the concrete frames that are reinforced with that of the infill walls [24]. Winkler et al. (2018) used 
the decision-tree-based algorithms of machine learning for predicting the failures of water pipes [25]. 
For improving the model accuracy, boosting techniques and Bootstrap aggregation are utilized. A 
confusion method evaluates the performance of the model. Mangalathu and Jeon identified the modes 
of failure of the bridge columns that are reinforced circularly by utilizing the various algorithms of 
machine learning [26]. The authors did a comparison, by using an experimental dataset, of the efficiency 
of several 6 different algorithms of machine learning. The artificial neural networks among the six 
algorithms have imparted the best efficiency. Kiani et al. have studied the applications of the algorithms 
of machine learning for deriving the fragility curves [27]. Classification of masonry walls by using quite 
a limited dataset was done by Siam et al. with the help of a clustering algorithm. 

A data-driven technique was applied by Mangalathu et al. for the recognition of the modes of failure 
of the concrete shear walls, this was where these authors had used a variety of different models for 
boosting apart from other techniques of machine learning [28]. For the recognition of the failure modes, 
ten different input parameters are used for capturing the reinforcement, geometry, and material 
characteristics. The algorithm's efficiency in machine learning algorithms was established on the recall, 
global accuracy, and precision basis. This study has shown a positive result for the mode of failure for 
classifying which can be further applied over other various kinds of structures or infrastructures. Studies 
of Qi and Zhu, Yu et al., Zhang et al., and Jeon et al., gave other applications that are notable in machine 
learning [29-31]. Machine learning applications can solve complex problems even in the absence of 
explicit mechanical analysis, although, for determining the feasibility of various applications regarding 
the algorithms of machine learning, limited research has been done for the analysis of burst failure risk 
of the pipeline. These future pipe failure predictions might help the decision-makers in taking suitable 
intervention measures for avoiding any potential consequences of the burst failure. 

Even though several machine learning algorithms exist and can predict the dimensioning of oil and 
gas defects, findings have shown that GPR outperforms other ML algorithms. In this paper, we extend 
the previous work by examining the best possible parameters for improving the efficiency of GPR and 
establishing high-performance machine learning strategies for pipeline fault detection [32,33]. The 
aspect of this study was to consider success patterns, with different sets of parameters determined by 

Optimized Gaussian Process Regression for Prediction of Oil and Gas ... Aldosari et al.

13



measuring the performance of each mixture. A pre-recorded dataset of noisy and noiseless MFL signals 
was used in this analysis [34]. To reduce data dimensionality, indicative and distinguishing 
characteristics were first extracted from MFL signals; this, in turn, resulted in speeding up the learning 
process and improving the performance of the current system in terms of estimation accuracy. Statistical 
methods and polynomial series were used to extract advanced features from four MFL datasets, yielding 
a total of 33 features. The data was arranged as follows: 80% of the time is spent on teaching, and 20% 
on evaluation. The extracted features were fed into a Gaussian process regression (GPR) model. If 
correctly calibrated before training, the GPR may provide very satisfactory results for the detection of 
defects and the measurement of real defects with odd geometric arrangements. 

The following organization has been used in this paper; In Section 2, we provide the details about 
the utilized MFL signals dataset and adopted methodology. Section 3 consists of the experimental 
results for the real MFL data, and conclusions are in Section 4. 

2 Methodology 
2.1 Dataset 

Nondestructive Inspection (NDE) methods are frequently used to screen pipelines for potential 
defects. A magnetic sensor attached to an analysis computer is one such NDE instrument that is 
routinely sent to test oil and gas supply tubing. Magnetic sensors, spaced every 3 mm along the 
pipeline's circumference, are used to calculate MFL signals. This study used a pre-recorded MFL 
dataset of noiseless and noisy MFL signals at 3dB, 5dB, and 10dB signal-to-noise ratio (SNR) [34]. 
Since the amount of MFL data is too large, feature extraction techniques have been used to reduce the 
data's feature space. Using any of the derived functions, on the other hand, does not always result in 
stronger reliability test outcomes. The most important characteristics are thus selected and fed into the 
identifying and sizing units. 

2.2 Feature Extraction 
Feature extraction aims to reduce the size of the MFL data. The MFL signal is expressed in the 

axial, radial, and tangential dimensions. For each component, statistical and polynomial series are used 
as feature extraction methods. From original MFL signals, statistical characteristics of the integral 
normalized signal (INS), mean average (MA), maximum magnitude (MM), standard deviation (STD), 
and peak-to-peak distance (PPD) were derived, as well as polynomial rank 3, 6, and 6 series 
corresponding to the axial, radial, and tangential components, respectively. Polynomial coefficients 
make up the input characteristics, in addition to the five statistical characteristics. There are a total of 
33 functions because of this. 

2.3 Feature Reduction 
Many researchers have shown that individuals with different attributes may have differing degrees 

of discrimination capacity. In certain cases, using the whole collection of retained features in the 
training phase results in poor defect prediction accuracy. Certain attributes have the potential to be 
harmful. As a result, determining the main attributes that make the ML model perfect is a routine 
practice. Following that, analyses are carried out to assess the suitability of each element for the defect 
length prediction mission. The most appropriate features that yield the most effective defect 
convergence rate are then found using neighborhood component analysis (NCA) as an input function 
pattern for the ML model. The features with a weight close to 0 make little difference in calculating 
defect sizes. Furthermore, for assigning weights for the retained functions, a principal component 
analysis-based weight correlation technique is used. The highest-weighted attributes are then used to 
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train the model. From the axial, radial, and tangential elements, nine characteristics were chosen based 
on their weights: INS and PPD; INS, PPD, and MM; and INS, PPD, MM, and STD from x, y, and z 
components, respectively. 

2.4 Gaussian Process Regression 
Gaussian process regression (GPR) is the nonparametric and a Bayesian approach to the regression 

that is currently making waves in the field of machine learning. There are several benefits of the GPR, 
which works well on considerably small datasets and can provide predictions with their uncertainty 
measurements. In GPR, firstly, a Gaussian process prior is assumed, can then be made specific using a 
covariance function and a mean function. A Gaussian process is particularly similar to an infinite-
dimensional multivariate Gaussian distribution, where any dataset collection of the labels is distributed 
as joint Gaussian. Within this GP prior, prior knowledge can be incorporated about the space of the 
functions through the selection of the covariance and the mean functions. Gaussian noise that is 
identically distributed can also be incorporated independently with ease, to the labels by the summation 
of the label distribution and the noise distribution. A GPR algorithm predicts the outcome of Xnew 
given the new input vector Ynew and the training data. A linear regression model is  

X=YTβ+ε                                     (1) 

The data estimate the error variance ε∼N(0,σ2) and the coefficients. GPR models describe the response 
by using latent variables from a Gaussian process and explicit basis functions, G. The latent variable 
covariance function measures response smoothness, while basis functions project input x onto a p-
dimensional feature space. 

During the selection of the model, the mean function form and the covariance kernel function in the 
GP is chosen priorly. The function of mean is generally constant, either it is zero or it is the mean of the 
training dataset. The function of covariance kernel has many options: if the kernel properties are 
followed, it may have many forms. Some of the common kernel functions comprise linear, constant, 
Matern kernel, square exponential, and multiple kernels compositions. Other choices for the GP model 
can now be specified after the kernel function has been specified. For example, the variance of noise 
on the labels is taken as alpha, and training data mean or the zero is referred to as the constant mean 
function. 

By maximizing the likelihood of the log marginal of training data, the hyperparameters of the 
function of the covariance kernel can be tuned. Generally, a gradient-based optimizer is used for 
increasing the efficiency; if it is not specified above, then we use the default optimizer. The optimizer 
is restarted multiple times with varying initializations owing to the unlikeliness of the convexity of the 
log marginal. The training data and test data samples are filtered out of posterior distribution, to estimate 
predictive posterior distribution. As normal distribution can be explained by mean and covariance thus, 
we opt for the Gaussian processing prior. The following models are estimated to fit a GPR model from 
the data: 

• Covariance function parameterized in terms of kernel parameters. 

• Noise variance, and 

• Coefficient vector of fixed basis functions. 

The 'Sigma' consists of the initial value for noise standard deviation. When the optimization is 
ongoing, the GPR creates a vector of values from unconstrained initial parameters by utilizing the values 
obtained initially for the standard deviation of noise and the kernel parameters. 

Optimized Gaussian Process Regression for Prediction of Oil and Gas ... Aldosari et al.

15



2.5 Quasi-Newton Method Optimization 
Quasi-Newton Methods (QNMs) are generally a class of optimization methods that are used in Non-

Linear Programming when full Newton’s Methods are either too slow or not easy to use, such as finding 
the global minimum of a certain function which can be differentiated two times. Quasi-Newton Methods 
have definite benefits as compared to the full Newton's Method for the problems of non-linearity that 
are complex and expansive. These methods are thus imperfect and may have certain flaws which depend 
on the problem and the type of Quasi-Newton Method used. Despite this, apart from few simple 
problems, Quasi-Newton Methods are technically worthy. QNM are algorithms for discovering local 
maxima and minima and use Newton's approach to determine a function's stationary point. The first 
and second derivatives are used to determine the stationary point in Newton's technique. In higher 
dimensions, Newton's technique utilizes the gradient and Hessian matrix of second derivatives. 

In this study, the aim was to optimize GPR analysis for the prediction of oil and gas pipeline defects. 
For the said purpose, QNM optimization was used to find the best model parameters. In our previous 
paper, it was shown that GPR analysis has comparable results in comparison with other ML models. In 
this study, the results of optimized GPR analysis have been used with default GPR parameters. 

3 Results 
The dataset was divided in such a way that 80% of the data was used to train the GPR model and 

the remaining 20% to test the trained model. The results of the training set are presented only. Root 
mean square error (RMSE) has been used as a performance metric to calculate the performance of the 
model being practiced. 

The study aimed to optimize GPR analysis to find the best possible parameters yielding the lowest 
RMSE value corresponding to each investigated dataset to predict the oil and gas pipeline defects. The 
GPR was first trained on default parameters and then it was optimized using QNM optimizer. GPR was 
trained on the parameters mentioned in table 1 before optimization. The resulting RMSE scores yielded 
from default parameters are summarized in table 2. 

Parameter Parameter Option 
Method to estimate parameters Exact Gaussian process regression 
Explicit basis function Constant 
Noise standard deviation 2 
Covariance function Exponential 
Method for computing inter-point distances Fast 
Active set selection method Random selection 
The method used to make predictions Exact 

Table 1: PERFORMANCE RESULTS OF VARIOUS TRAINING FUNCTIONS 

To show that the QNM helps to identify the best possible parameters for the optimization of GPR 
analysis, the resulting RMSE values for each dataset are presented in table 2 corresponding to each 
dataset before and after optimization. 

Dataset Default Optimized 
Noiseless 0.2707 0.1371 
3 dB Noise 0.3161 0.2821 
5 dB Noise 0.3372 0.2909 
10 dB Noise 0.4062 0.3933 

Table 2: RMSE FOR DEFAULT AND OPTIMIZED GPR 
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From table 2, it can be seen that the QNM optimizer helps to improve the RMSE score for each 
dataset by finding the best parameters for GPR analysis. The optimizer yielded the parameters, as 
mentioned in table 3, after optimizing the GPR model corresponding to each dataset. 

 

Parameter Noiseless 0 dB 3 dB 10 dB 
Method to 

estimate 
parameters 

Fully 
independent 
conditional 
approximation 

Fully 
independent 
conditional 
approximation 

Fully 
independent 
conditional 
approximation 

Fully 
independent 
conditional 
approximation 

Explicit basis 
function 

Linear Linear  Linear  Pure Quadratic  

Noise 
standard 
deviation 

1.7 1.6 0.9 0.7 

Covariance 
function 

Matern Matern  Matern  Exponential 

Method for 
computing inter-
point distances 

Fast Accurate Accurate Accurate 

Active set 
selection method 

Random 
selection 

Differential 
entropy-based 
selection 

Differential 
entropy-based 
selection 

Sparse greedy 
matrix 
approximation 

The method 
used to make 
predictions 

Exact Exact  Exact  Fully 
independent 
conditional 
approximation 

Table 3: OPTIMIZED PARAMETERS FOR ALL DATASETS 

Figure 1 shows the performance comparison of GPR analysis for both default parameters and after 
optimization. It can be graphically visualized that in all datasets the optimization results yield better 
predictions in comparison with default GPR analysis. 

 

 
Figure 1: Performance comparison of default and optimized GPR analysis for all datasets 
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4 Conclusion 
The basic aim of this study was to determine the optimum configurations for GPR to estimate the 

defect sizing using MFL signals. The performance of the GPR has been investigated in terms of various 
training hyper-parameters. MFL signals from noisy and noiseless datasets were used to train and test 
the GPR model. The performance results of optimum parameter configurations are compared with 
results yielded from default parameters and it has been shown that the presented results outperform the 
default configuration. The performance of the presented approach should be compared with 
optimization algorithms. The presented values of parameters are identified Quasi-Newton optimizers 
for better performance results, however, in the future other optimization techniques may also be 
investigated for automatic optimization of GPR. The inferred optimum parameter selection can be used 
to train the GPR model for enhanced performance results for the estimation of oil and gas pipeline 
defects. 
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