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Abstract

This paper presents a parameterized technique for the inspection of Rewriting Logic
computations that allows the non-deterministic execution of a given rewrite theory to be
followed up in different ways. Starting from a selected state in the computation tree, the
exploration is driven by a user-defined, inspection criterion that specifies the exploration
mode. By selecting different inspection criteria, one can automatically derive useful debug-
ging facilities such as program steppers and more sophisticated dynamic trace slicers that
facilitate the detection of control and data dependencies across the computation tree. Our
methodology, which is implemented in the Anima graphical tool, allows users to capture the
impact of a given criterion, validate input data, and detect improper program behaviors.

1 Introduction

Program animation or stepping refers to the very common debugging technique of executing
code one step at a time, allowing the user to inspect the program state and related data
before and after the execution step. This allows the user to evaluate the effects of a given
statement or instruction in isolation and thereby gain insight into the program behavior (or
misbehavior). Nearly all modern IDEs, debuggers and testing tools currently support this mode
of execution optionally, where animation is achieved either by forcing execution breakpoints,
code instrumentation or instruction simulation.

Rewriting Logic (RWL) is a very general logical and semantic framework, which is particu-
larly suitable for formalizing highly concurrent, complex systems (e.g., biological systems [7] and
Web systems [2, 6]). RWL is efficiently implemented in the high-performance system Maude [9].
Roughly speaking, a rewriting logic theory seamlessly combines a term rewriting system (TRS),
together with an equational theory that may include equations and axioms (i.e., algebraic laws
such as commutativity, associativity, and unity) so that rewrite steps are performed modulo the
equations and axioms.

In recent years, debugging and optimization techniques based on RWL have received growing
attention [1, 13, 16, 17], but to the best of our knowledge, no practical animation tool for
RWL/Maude has been formally developed. To debug Maude programs, Maude has a basic
tracing facility that allows the user to advance through the program execution letting him/her
select the statements to be traced, except for the application of algebraic axioms that are not
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under user control and are never recorded as execution steps in the trace. All rewrite steps that
are obtained by applying the equations or rules for the selected function symbols are shown in
the output trace so that the only way to simplify the displayed view of the trace is by manually
fixing the traceable equations or rules. Thus, the trace is typically huge and incomplete, and
when the user detects an erroneous intermediate result, it is difficult to determine where the
incorrect inference started. Moreover, this trace is either directly displayed or written to a
file (in both cases, in plain text format) thus only being amenable for manual inspection by
the user. This is in contrast with the enriched traces described below, which are complete (all
execution steps are recorded by default) and can be sliced automatically so that they can be
dramatically simplified in order to facilitate a specific analysis. Also, the trace can be directly
displayed or delivered in its meta-level representation, which is very useful for further automated
manipulation.

Contributions. This paper presents the first parametric (forward) exploration technique for
RWL computations. Our technique is based on a generic animation algorithm that can be tuned
to work with different modalities, including incremental stepping and automated forward slicing.
The algorithm is fully general and can be applied for debugging as well as for optimizing any
RWL-based tool that manipulates RWL computations. Our formulation takes into account the
precise way in which Maude mechanizes the rewriting process and revisits all those rewrite steps
in an instrumented, fine-grained way where each small step corresponds to the application of
an equation, equational axiom, or rule. This allows us to explain the input execution trace with
regard to the set of symbols of interest (input symbols) by tracing them along the execution
trace so that, in the case of the forward slicing modality, all data that are not descendants of
the observed symbols are simply discarded.

Related Work. Program animators have existed since the early years of programming.
Although several steppers have been implemented in the functional programming community
(see [10] for references), none of these systems applies to the animation and forward slicing of
Maude computations. An algebraic stepper for Scheme is defined and formally proved in [10],
which is included in the DrScheme programming environment. The stepper reduces Scheme
programs to values (according to the reduction semantics of Scheme) and is useful for explaining
the semantics of linguistic facilities and for studying the behavior of small programs. It explains
a program’s execution as a sequence of reduction steps based on the ordinary laws of algebra for
the functional core of the language and more general algebraic laws for the rest of the language.
In order to discover all of the steps that occur during the program evaluation, the stepper
rewrites (or ”instruments”) the code. The inserted code uses a mechanism called “continuation
marks” to store information about the program’s execution as it is running and makes calls to
the stepper before, after, and during the evaluation of each program expression. Continuation
marks allow the stepper to reuse the underlying Scheme implementation without having to re-
implement the evaluator. The stepper’s implementation technique also applies to both ML and
Haskell since it supports states, continuations, multiple threads of control, and lazy evaluation
[10].

In [4, 5], an incremental, backward trace slicer was presented that generates a trace slice of
an execution trace T by tracing back a set of symbols of interest along (an instrumented version
of) T , while data that are not required to produce the target symbols are simply discarded. This
can be very helpful in debugging since any information that is not strictly needed to deliver
a critical part of the result is discarded, which helps answer the question of what program
components might affect a ‘selected computation”. However, for the dual problem of “what
program components might be affected by a selected computation”, a kind of forward expansion
is needed which has been overlooked to date.
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Plan of the paper. Section 2 recalls some fundamental notions of RWL, and Section 3
summarizes the rewriting modulo equational theories defined in Maude. Section 4 formulates
the exploration as a parameterized procedure that is completely controlled by the user, while
Section 5 formalizes three different inspection techniques that are obtained as an instance of
the generic scheme. Finally, Section 6 reports on a prototypical implementation of the proposed
techniques, and Section 7 concludes.

2 Preliminaries

Let us recall some important notions that are relevant to this work. We assume some basic
knowledge of term rewriting [18] and Rewriting Logic [14]. Some familiarity with the Maude
language [9] is also required.

We consider an order-sorted signature Σ, with a finite poset of sorts (S,<) that models the
usual subsort relation [9]. We assume an S-sorted family V = {Vs}s∈S of disjoint variable sets.
τ(Σ,V)s and τ(Σ)s are the sets of terms and ground terms of sort s, respectively. We write
τ(Σ,V) and τ(Σ) for the corresponding term algebras. The set of variables that occur in a term
t is denoted by Var(t). In order to simplify the presentation, we often disregard sorts when no
confusion can arise.

A position w in a term t is represented by a sequence of natural numbers that addresses
a subterm of t (Λ denotes the empty sequence, i.e., the root position). By notation w1.w2,
we denote the concatenation of positions (sequences) w1 and w2. Positions are ordered by the
prefix ordering; that is, given the positions w1 and w2, w1 ≤ w2 if there exists a position u such
that w1.u = w2.

Given a term t, we let Pos(t) denote the set of positions of t. By t|w, we denote the subterm
of t at position w, and t[s]w specifies the result of replacing the subterm t|w by the term s.

A substitution σ ≡ {x1/t1, x2/t2, . . .} is a mapping from the set of variables V to the set of
terms τ(Σ,V) which is equal to the identity almost everywhere except over a set of variables
{x1, . . . , xn}. The domain of σ is the set Dom(σ) = {x ∈ V | xσ 6= x}. By id we denote the
identity substitution. The application of a substitution σ to a term t, denoted tσ, is defined by
induction on the structure of terms:

tσ =

{
xσ if t = x, x ∈ V
f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn), n ≥ 0

For any substitution σ and set of variables V , σ |̀V denotes the substitution obtained from σ
by restricting its domain to V (i.e., σ |̀V (x) = xσ if x ∈ V , otherwise σ |̀V (x) = x). Given two
terms s and t, a substitution σ is a matcher of t in s, if sσ = t. The term t is an instance of
the term s, iff there exists a matcher σ of t in s. By matchs(t), we denote the function that
returns a matcher of t in s if such a matcher exists.

A (labelled) equation is an expression of the form [l] : λ = ρ, where λ, ρ ∈ τ(Σ,V), V ar(ρ) ⊆
V ar(λ), and l is a label, i.e., a name that identifies the equation. A (labelled) rewrite rule is
an expression of the form [l] : λ → ρ, where λ, ρ ∈ τ(Σ,V), V ar(ρ) ⊆ V ar(λ), and l is a label.
When no confusion can arise, rule and equation labels are often omitted. The term λ (resp., ρ)
is called left-hand side (resp. right-hand side) of the rule λ→ ρ (resp. equation λ = ρ).
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3 Rewriting Modulo Equational Theories

An order-sorted equational theory is a pair E = (Σ,∆∪B), where Σ is an order-sorted signature,
∆ is a collection of (oriented) equations, and B is a collection of equational axioms (i.e., algebraic
laws such as associativity, commutativity, and unity) that can be associated with any binary
operator of Σ. The equational theory E induces a congruence relation on the term algebra
τ(Σ,V), which is denoted by =E . A rewrite theory is a triple R = (Σ,∆ ∪ B,R), where
(Σ,∆ ∪B) is an order-sorted equational theory, and R is a set of rewrite rules.

Example 3.1
The following rewrite theory, encoded in Maude, specifies a close variant of the fault-tolerant
client-server communication protocol of [15].

mod CLIENT-SERVER-TRANSF is inc INT + QID .
sorts Content State Msg Cli Serv Addressee

Sender Data CliName ServName Question Answer .
subsort Msg Cli Serv < State .
subsort Addressee Sender CliName ServName < Qid .
subsort Question Answer Data < Nat .

ops Srv Srv-A Srv-B Cli Cli-A Cli-B : -> Qid .
op null : -> State .
op _&_ : State State -> State [assoc comm id: null] .
op _<-_ : Addressee Content -> Msg .
op {_,_} : Sender Data -> Content .
op [_,_,_,_] : CliName ServName Question Answer -> Cli .
op na : -> Answer .
op [_] : ServName -> Serv [ctor] .
op f : ServName CliName Data -> Data .

vars C S Addr : Qid .
vars Q D A : Nat .
var CNT : [Content] .

eq [succ] : f(S, C, Q) = s(Q) .

rl [req] : [C, S, Q, na] =>
[C, S, Q, na] & S <- {C, Q} .

rl [reply] : S <- {C, Q} & [S] =>
[S] & C <- {S, f(S, C, Q)} .

rl [rec] : C <- {S, D} & [C, S, Q, A] =>
[C, S, Q, A] .

rl [dupl] : (Addr <- CNT) =>
(Addr <- CNT) & (Addr <- CNT) .

rl [loss] : (Addr <- CNT) => null .
endm

The specification models an environment where several clients and servers coexist. Each
server can serve many clients, while, for the sake of simplicity, we assume that each client
communicates with a single server.

The names of clients and servers belong to the sort Qid. Clients are represented as 4-tuples
of the form [C, S, Q, D], where C is the client’s name, S is the name of the server it wants to
communicate with, Q is a natural number that identifies a client request, and D is either a natural
number that represents the server response, or the constant value na (not available) when the
response has not been yet received. Servers are stateless and are represented as structures [S],
with S being the server’s name. All messages are represented as pairs of the form Addr <- CNT,
where Addr is the addressee’s name, and CNT stands for the message contents. Such contents
are pairs {Addr,N}, with Addr being the sender’s name and N being a number that represents
either a request or a response.

The server S uses a function f (only known to the server itself) that, given a question Q

from client C, the call f(S, C, Q) computes the answer s(Q) where s(Q) is the successor of Q. This
function is specified by means of the equation succ.

Program states are formalized as a soup (multiset) of clients, servers, and messages, whereas
the system behavior is formalized through five rewrite rules that model a faulty communication
environment in which messages can arrive out of order, can be duplicated, and can be lost.
Specifically, the rule req allows a client C to send a message with request Q to the server S.
The rule reply lets the server S consume the client request Q and send a response message
that is computed by means of the function f. The rule rec specifies the client reception of a
server response D that should be stored in the client data structure. Indeed, the right-hand
side [C, S, Q, A] of the rule includes an intentional, barely perceptible bug that does not let the
client structure be correctly updated with the incoming response D. The correct right-hand side
should be [C, S, Q, D]. Finally, the rules dupl and loss model the faulty environment and have
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the obvious meaning: messages can either be duplicated or lost.

Given a rewrite theory (Σ, E,R), with E = ∆ ∪ B, the rewriting modulo E relation (in
symbols, →R/E) can be defined by lifting the usual rewrite relation on terms [12] to the E-
congruence classes [t]E on the term algebra τ(Σ,V) that are induced by =E [8]; that is, [t]E
is the class of all terms that are equal to t modulo E. Unfortunately, →R/E is in general
undecidable since a rewrite step t →R/E t′ involves searching through the possibly infinite
equivalence classes [t]E and [t′]E .

The exploration technique formalized in this work is formulated by considering the precise
way in which Maude proves the rewrite steps (see Section 5.2 in [9]). Actually, the Maude
interpreter implements rewriting modulo E by means of two much simpler relations, namely
→∆,B and →R,B . These allow rewrite rules and equations to be intermixed in the rewriting
process by simply using an algorithm of matching modulo B. We define →R∪∆,B as →R,B

∪ →∆,B . Roughly speaking, the relation →∆,B uses the equations of ∆ (oriented from left
to right) as simplification rules: thus, for any term t, by repeatedly applying the equations as
simplification rules, we eventually reach a normalized term t↓∆ to which no further equations
can be applied. The term t ↓∆ is called a canonical form of t w.r.t. ∆. On the other hand,
the relation →R,B implements rewriting with the rules of R, which might be non-terminating
and non-confluent, whereas ∆ is required to be terminating and Church-Rosser modulo B in
order to guarantee the existence and unicity (modulo B) of a canonical form w.r.t. ∆ for any
term [9].

Formally, →R,B and →∆,B are defined as follows: given a rewrite rule r = (λ → ρ) ∈ R
(resp., an equation e = (λ = ρ) ∈ ∆), a substitution σ, a term t, and a position w of t,

t
r,σ,w→R,B t′ (resp., t

e,σ,w→∆,B t′) iff λσ =B t|w and t′ = t[ρσ]w. When no confusion can arise, we

simply write t→R,B t′ (resp. t→∆,Bt
′) instead of t

r,σ,w→R,B t′ (resp. t
e,σ,w→∆,B t′).

Under appropriate conditions on the rewrite theory, a rewrite step modulo E on a term t can
be implemented without loss of completeness by applying the following rewrite strategy [11]:
(i) reduce t w.r.t. →∆,B until the canonical form t ↓∆ is reached; (ii) rewrite t ↓∆ w.r.t. →R,B .

A computation C in the rewrite theory (Σ,∆ ∪B,R) is a rewrite sequence

s0 →∗∆,B s0↓∆→R,B s1 →∗∆,B s1↓∆ . . .

that interleaves →∆,B rewrite steps and →R,B rewrite steps following the strategy mentioned
above. Terms that appear in computations are also called (program) states.

A computation tree TR(s) for a term s and a rewrite theory R is a tree-like representation
of all the possible computations in R that originate from the initial state s. More precisely,
TR(s) is a labelled tree whose root node label identifies the initial state s and whose edges are
labelled with rewrite steps of the form t →R∪∆,B t′ so that any node in TR(s) represents a
program state of a computation stemming from s.

Example 3.2

Consider the rewrite theory of Example 3.1 together with the initial state [Srv-A] & [Cli-A,

Srv-A,7,na] & [Cli-B,Srv-A,17,na]. In this case, the computation tree consists of several
infinite computations that start from the considered initial state and model interactions between
clients Cli-A and Cli-B and server Srv-A. The computed tree is depicted in the following picture
where, for the sake of simplicity, we only display the equations and rules that have been applied
at each rewrite step, while other information such as the computed substitution and the rewrite
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position are omitted in the depicted tree.
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[Srv-A] & [Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,17,na]
s0

req
[Srv-A] & (Srv-A <- {Cli-A,7}) & [Cli-A,Srv-
A,7,na] & [Cli-B,Srv-A,17,na]

s1 req
[Srv-A] & (Srv-A <- {Cli-B,17}) & [Cli-A,Srv
-A,7,na] & [Cli-B,Srv-A,17,na]

s2

reply
[Srv-A] & (Cli-A <- 
{Srv-A,f(Serv-A,Cli-
A,7)}) & [Cli-A,Srv-
A,7,na] & [Cli-B,Srv
-A,17,na]

s3 req/dupl
[Srv-A] & (Srv-A <- 
{Cli-A,7}) & (Srv-A 
<- {Cli-A,7}) & [Cli
-A,Srv-A,7,na] & [Cl
i-B,Srv-A,17,na]

s4 req
[Srv-A] & (Srv-A <- 
{Cli-A,7}) & (Srv-A 
<- {Cli-B,17}) & [Cl
i-A,Srv-A,7,na] & [C
li-B,Srv-A,17,na]

s5 loss
[Srv-A] & [Cli-A,Sr
v-A,7,na] & [Cli-B,
Srv-A,17,na]

s6

succ
[Srv-A] & (Cli-A <- 
{Srv-A,8}) & [Cli-A,
Srv-A,7,na] & [Cli-B
,Srv-A,17,na]

s7

Options

Given a computation C, it is always possible to expand C in an instrumented computation
Cinst in which each application of the matching modulo B algorithm is mimicked by the explicit
application of a suitable equational axiom, which is also oriented as a rewrite rule [3].

Also, typically hidden inside the B-matching algorithms, some flat/unflat transformations
allow terms that contain operators that obey associative-commutative axioms to be rewritten.
These transformations allow terms to be reordered and correctly parenthesized in order to
enable subsequent rewrite steps. Basically, this is achieved by producing a single, auxiliary
representative of their AC congruence class [3]. For example, consider a binary AC operator
f together with the standard lexicographic ordering over symbols. Given the B-equivalence
f(b, f(f(b, a), c)) =B f(f(b, c), f(a, b)), we can represent it by using the “internal sequence”

of transformations f(b, f(f(b, a), c))
flat−→ ∗Bf(a, b, b, c)

unflat−→ ∗Bf(f(b, c), f(a, b)), where the first
subsequence corresponds to a flattening transformation sequence that obtains the AC canonical
form, while the second one corresponds to the inverse, unflattening transformation. This way,
any given instrumented computation consists of a sequence of (standard) rewrites using the
equations (→∆), rewrite rules (→R), equational axioms and flat/unflat transformations (→B).
By abuse of notation, since equations and axioms are both interpreted as rewrite rules in our
formulation, we often abuse the notation λ→ ρ to denote rules as well as (oriented) equations
and axioms. Given an instrumented computation Cinst, by |Cinst| we denote its length —that is,
the number of rewrite steps that occur in Cinst. We use the functions head(Cinst) and tail(Cinst)
to respectively select the first rewrite step in Cinst and the instrumented computation yielded
by removing the first rewrite step from Cinst. In the sequel, we also assume the existence of a
function instrument(C), which takes a computation C and delivers its instrumented counterpart.

Example 3.3
Consider the rewrite theory of Example 3.1 together with the following computation:

C = [Cli, Srv, 7, na] & [Srv] & Cli <- {Srv, f(Srv, Cli, 7)} →∆,B

[Cli, Srv, 7, na]& [Srv] & Cli <- {Srv, 8} →R,B

[Cli, Srv, 7 , 7] & [Srv]

The corresponding instrumented computation Cinst, which is produced by instrument(C), is
given by 1) suitably parenthesizing states by means of flattening/unflattening transformations
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when needed, and 2) making commutative “steps” explicit by using the (oriented) equational
axiom (X & Y → Y & X) in B that models the commutativity property of the (juxtaposition)
operator &. Note these transformations are needed to enable the application of the rule rec

(of R) to the seventh state.

Cinst = [Cli, Srv, 7, na] & [Srv] & Cli <- {Srv, f(Srv, Cli, 7)} succ−→∆

[Cli, Srv, 7, na] & [Srv] & Cli <- {Srv, 8} unflat−→B

[Cli, Srv, 7, na] & ([Srv] & Cli <- {Srv, 8}) comm−→B

[Cli, Srv, 7, na] & (Cli <- {Srv, 8} & [Srv])
flat−→B

[Cli, Srv, 7, na] & Cli <- {Srv, 8} & [Srv]
unflat−→B

([Cli, Srv, 7, na] & Cli <- {Srv, 8}) & [Srv]
comm−→B

(Cli <- {Srv, 8} & [Cli, Srv, 7, na]) & [Srv]
rec−→R

[Cli, Srv, 7, 7] & [Srv]

4 Exploring the Computation Tree

Computation trees are typically large and complex objects to deal with because of the highly-
concurrent, nondeterministic nature of rewrite theories. Also, their complete generation and
inspection are generally not feasible since some of their branches may be infinite as they encode
nonterminating computations.

However, one may still be interested in analysing a fragment of a given computation tree for
debugging or program comprehension purposes. This section presents an exploration technique
that allows the user to incrementally generate and inspect a portion T •R(s•) of a computation
tree TR(s) by expanding (fragments of) its program states into their descendants starting from
the root node. The exploration is an interactive procedure that is completely controlled by the
user, who is free to choose the program state fragments to be expanded.

4.1 Expanding a Program State

A state fragment of a state s is a term s• that hides part of the information in s, that is, the
irrelevant data in s are simply replaced by special •-variables of appropriate sort, denoted by
•i, with i = 0, 1, 2, . . ..Given a state fragment s•, a meaningful position p of s• is a position
p ∈ Pos(s•) such that s•|p 6= •i, for all i = 0, 1, . . .. By MPos(s•), we denote the set that
contains all the meaningful positions of s•. Symbols that occur at meaningful positions of a
state fragment are called meaningful symbols. By Var•(exp) we define the set of all •-variables
that occur in the expression exp.

Basically, a state fragment records just the information the user wants to observe of a given
program state.

The next auxiliary definition formalizes the function fragment(t, P ) that allows a state
fragment of t to be constructed w.r.t. a set of positions P of t. The function fragment relies on
the function fresh• whose invocation returns a (fresh) variable •i of appropriate sort, which is
distinct from any previously generated variable •j .

Definition 4.1 Let t ∈ τ(Σ,V) be a state, and let P be a set of positions s.t. P ⊆ Pos(t).
Then, the function fragment(t, P ) is defined as follows.

fragment(t, P ) = recfrag(t, P,Λ), where

10
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function inspect(s•, Cinstr , I)
1. if |Cinstr | = 1 then
2. return I(s•, Cinstr )
3. elseif |Cinstr | > 1
4. if I(s•, head(Cinstr ))!= nil then
5. return inspect(I(s•, head(Cinstr )),

tail(Cinstr ), I)
6. else
7. return nil
8. end
9. end
endf

function expand(s•, s,R, I)
1. E•R = ∅
2. for each s

r,σ,w→R∪∆,B t
with w ∈MPos(s•)

3. Cinst = instrument(s
r,σ,w→R∪∆,B t)

4. t• = inspect(s•, Cinst, I)

5. if t• 6= nil then E•R = E•R ∪ {s•
r→ t•}

6. end
7. return E•R
endf

Figure 1: The inspect function. Figure 2: The expand function.

recfrag(t, P, p) =


f(recfrag(t1, P, p.1), . . . , recfrag(tn, P, p.n))

if t=f(t1, . . . , tn) and p ∈ P̄
t if t ∈ V and p ∈ P̄
fresh• otherwise

and P̄ = {u | u ≤ p ∧ p ∈ P} is the prefix closure of P .

Roughly speaking, fragment(t, P ) yields a state fragment of t w.r.t. a set of positions P that
includes all symbols of t that occur within the paths from the root to any position in P , while
each maximal subterm t|p, with p 6∈ P , is replaced by means of a freshly generated •-variable.

Example 4.2
Let t = d(f(g(a, h(b)), c), a) be a state, and let P = {1.1, 1.2} be a set of positions of t. By
applying Definition 4.1, we get the state fragment t• = fragment(t, P ) = d(f(g(•1, •2), c), •3)
and the set of meaningful positions MPos(t•) = {Λ, 1, 1.1, 1.2}.

An inspection criterion is a function I(s•, s
r,σ,w→K t) that, given a rewrite step s

r,σ,w→K t, with
K ∈ {∆, R,B} and a state fragment s• of s, computes a state fragment t• of the state t. Roughly
speaking, an inspection criterion controls the information content conveyed by term fragments
resulting from the execution of standard rewrite steps. Hence, distinct implementations of the

inspection criteria I(s•, s
r,σ,w→K t) may produce distinct fragments s•

r→ t• of the considered
rewrite step. We assume that the special value nil is returned by the inspection criterion,
whenever no fragment t• can be delivered. Several examples of inspection criteria are shown in
Section 5.

The function inspect of Figure 1 allows an inspection criterion I to be sequentially applied
along an instrumented computation Cinstr in order to generate the fragment of the last state
of the computation. Specifically, given an instrumented computation s0 →K s1 →K . . . → sn,
n > 0, the computation is traversed and the inspection criterion I is recursively applied on
each rewrite step si →K si+1 w.r.t. the input fragment s•i to generate the next fragment s•i+1.

The expansion of a single program state is specified by the function expand(s•, s,R, I) of
Figure 2, which takes as input a state s and its fragment s• to be expanded w.r.t. a rewrite
theory R and an inspection criterion I. Basically, expand unfolds the state fragment s• w.r.t.

all the possible rewrite steps s
r,σ,w→R∪∆,B t that occur at the meaningful positions of s• and

stores the corresponding fragments of s•
r→ t• in the set E•. Note that, to compute the state
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fragment t• for a rewrite step s
r,σ,w→R∪∆,B t and a state fragment s•, expand first generates the

instrumented computation Cinst of the considered step and then applies the inspection criterion
I over C by using the inspect function.

4.2 Computing a Fragment of the Computation Tree

The construction of a fragment T •R(s•0) of a computation tree TR(s0) is specified by the function
explore given in Figure 3. Essentially, explore formalizes an interactive procedure that starts
from a tree fragment (built using the auxiliary function createTree), which only consists of the
root node s•0, and repeatedly uses the function expand to compute rewrite step fragments that
correspond to the visited tree edges, w.r.t. a given inspection criterion. The tree T •R(s•0) is built
by choosing, at each loop iteration of the algorithm, the tree node that represents the state
fragment to be expanded by means of the auxiliary function pickLeaf (T •R(s•0)), which allows
the user to freely select a node s• from the frontier of the current tree T •R(s•0). Then, T •R(s•0)
is augmented by calling addChildren(T •R(s•0), s•, expand(s•, s,R, I)). This function call adds all
the edges s• → t•, which are obtained by expanding s•, to the tree T •R(s•0).

The special value EoE (End of Exploration) is used to terminate the inspection process:
when the function pickLeaf (T •R(s•0)) is equal to EoE, no state to be expanded is selected and
the exploration terminates delivering the computed fragment T •R(s•0).

function explore(s•0, s0,R, I)
1. T •R(s•0) = createTree(s•0)
2. while(s• = pickLeaf (T •R(s•0)) 6= EoE) do
3. T •R(s•0) = addChildren(T •R(s•0), s•, expand(s•, s,R, I))
4. od
5. return T •R(s•0)
endf

Figure 3: The explore function.

5 Particularizing the Exploration

The methodology given in Section 4 provides a generic scheme for the exploration of com-
putation trees w.r.t. a given inspection criterion I that must be provided by the user. In
this section, we show three implementations of the criterion I that produce three distinct ex-
ploration strategies. In the first case, the considered criterion allows an interactive program
stepper to be derived in which rewriting logic computations of interest can be animated. In
the second case, we implement a partial stepper that allows computations with partial inputs
to be animated. Finally, in the last example, the chosen inspection criterion implements an
automated, forward slicing technique that allows relevant control and data information to be
extracted from computation trees.

5.1 Interactive Stepper

Given a computation tree TR(s0) for an initial state s0 and a rewrite theory R, the stepwise
inspection of the computation tree can be directly implemented by instantiating the exploration
scheme of Section 4 with the inspection criterion

Istep(s•, s
r,σ,w→ K t) = t

12
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that always returns the reduced state t of the rewrite step s
r,σ,w→ K t, with K ∈ {∆, R,B}.

This way, by starting the exploration from a state fragment that corresponds to the whole
initial state s0 (i.e., s•0 = s0), the call explore(s0,R, Istep) generates a fragment T •R(s•0) of the
computation tree TR(s0) whose topology depends on the program states that the user decides
to expand during the exploration process.

Example 5.1
Consider the rewrite theoryR in Example 3.1 and the computation tree in Example 3.2. Assume
the user starts the exploration by calling explore(s0,R, Istep), which allows the first level of the
computation tree to be unfolded by expanding the initial state s0 w.r.t. the inspection criterion

Istep . This generates the tree T •R(s0) containing the edges {s0
req→ s1, s0

req→ s2}. Now, if the user
carries on with the exploration of program state s1 and then quits, s1 will be expanded and the
tree T •R(s0) will be augmented accordingly. Specifically, the resulting T •R(s0) will include the

following edges {s0
req→ s1, s0

req→ s2, s1
succ→ s3, s1

req→ s4, s1
dupl→ s4, s1

req→ s5, s1
loss→ s6}.

It is worth noting that all the program state fragments produced by the program stepper
defined above are “concrete” (i.e. state fragments that do not include •-variables). However,
sometimes it may be useful to work with partial information and hence with state fragments
that abstract “concrete” program states by using •-variables. This approach may help to focus
user’s attention on the parts of the program states that the user wants to observe, disregarding
unwanted information and useless rewrite steps.

Example 5.2
Consider the following two rewrite rules [r1] : f(x, b)→ g(x) and [r2] : f(a, y)→ h(y) together
with the initial state f(a, b). Then, the computation tree in this case is finite and only contains

the tree edges f(a, b)
r1,{x/a},Λ→ g(a) and f(a, b)

r2,{y/b},Λ→ h(b). Now, consider the state fragment
f(•1, b), where only the second input argument is relevant. If we decided to expand the initial
state fragment f(•1, b), we would get the tree fragment represented by the single rewrite step

f(•1, b)
r1→ g(•1), since the partial input encoded into f(•1, b) cannot be rewritten via r2.

In light of Example 5.2 and our previous considerations, we define the following inspection
criterion

Ipstep(s•, s
r,σ,w→ K t) = if s•

r,σ•,w→ K t• then return t• else return nil

Roughly speaking, given a rewrite step µ : s
r,σ,w→ K t, with K ∈ {∆, R,B}, the criterion

Ipstep returns a state fragment t• of the reduced state t, whenever s• can be rewritten to t•

using the very same rule r and position w that occur in µ.
The particularization of the exploration scheme with the criterion Ipstep allows an interac-

tive, partial stepper to be derived, in which the user can work with state information of interest,
thereby producing more compact and focused representations of the visited fragments of the
computation trees.

5.2 Forward Trace Slicer

Forward trace slicing is a program analysis technique that allows computations to be simplified
w.r.t. a selected fragment of their initial state. More precisely, given a computation C with
initial state s0 and a state fragment s•0 of s0, forward slicing yields a simplified view C• of C
in which each state s of the original computation is replaced by a state fragment s• that only

13



Parametric Exploration of Rewriting Logic Computations M. Alpuente et al.

function Islice(s•, s
λ→ρ,σ,w→ t)

1. if w ∈MPos(s•) then
2. θ = {x/fresh• | x ∈ V ar(λ)}
3. λ• = fragment(λ,MPos(Var•(s•|w)) ∩ Pos(λ))

4. ψλ = 〈|θ,matchλ•(s•|w)|〉
5. t• = s•[ρψλ]w
6. else
7. t• = nil
8. fi
9. return t•

endf

Figure 4: Inspection criterion that models forward slicing of a rewrite step

records the information that depends on the meaningful symbols of s•0, while unrelated data
are simply pruned away.

In the following, we define an inspection criterion Islice that implements the forward slicing
of a single rewrite step. The considered criterion takes two parameters as input, namely, a

rewrite step µ = (s
r,σ,w→ K t) (with r = λ → ρ and K ∈ {∆, R,B}) and a state fragment

s• of a state s. It delivers the state fragment t• which includes only those data that are
related to the meaningful symbols of s•. Intuitively, the state fragment t• is obtained from
s• by “rewriting” s• at position w with the rule r and a suitable substitution that abstracts
unwanted information of the computed substitution with •-variables. A rigorous formalization
of the inspection criterion Islice is provided by the algorithm in Figure 4.

Note that, by adopting the inspection criterion Islice , the exploration scheme of Section 4
automatically turns into an interactive, forward trace slicer that expands program states using
the slicing methodology encoded into the inspection criterion Islice . In other words, given a
computation tree TR(s0) and a user-defined state fragment s•0 of the initial state s0, any branch
s•0 → s•1 . . . → s•n in the tree T •R(s•0), which is computed by the explore function, is the sliced
counterpart of a computation s0 →R∪∆,B s1 . . .→R∪∆,B sn (w.r.t. the state fragment s•0) that
appears in the computation tree TR(s0).

Roughly speaking, the inspection criterion Islice works as follows. When the rewrite step
µ occurs at a position w that is not a meaningful position of s• (in symbols, w 6∈ MPos(s•)),
trivially µ does not contribute to producing the meaningful symbols of t•. This amounts to
saying that no relevant information descends from the state fragment s• and, hence, the function
returns the nil value.

On the other hand, when w ∈ MPos(s•), the computation of t• involves a more in-depth
analysis of the rewrite step, which is based on a refinement process that allows the descendants
of s• in t• to be computed. The following definition is auxiliary.

Definition 5.3 (substitution update) Let σ1 and σ2 be two substitutions. The update of
σ1 w.r.t. σ2 is defined by the operator 〈| , |〉 as follows:
〈|σ1, σ2|〉 = σ|̀Dom(σ1), where

xσ =

{
xσ2 if x ∈ Dom(σ1) ∩Dom(σ2)
xσ1 otherwise

The operator 〈|σ1, σ2|〉 updates (overrides) a substitution σ1 with a substitution σ2, where both
σ1 and σ2 may contain •-variables. The main idea behind 〈| , |〉 is that, for the slicing of the
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rewrite step µ, all variables in the applied rewrite rule r are näıvely assumed to be initially
bound to irrelevant data •, and the bindings are incrementally updated as we apply the rule r.

More specifically, we initially define the substitution θ = {x/fresh• | x ∈ V ar(ρ)} that
binds each variable in λ → ρ to a fresh •-variable. This corresponds to assuming that all the
information in µ, which is introduced by the substitution σ, can be marked as irrelevant. Then,
θ is refined as follows.

We first compute the state fragment λ• = fragment(λ,MPos(Var•(s•|w))∩Pos(λ)) that only
records the meaningful symbols of the left-hand side λ of the rule r w.r.t. the set of meaningful
positions of s•|w. Then, by matching λ• with s•|w, we generate a matcher matchλ•(s•|w) that
extracts the meaningful symbols from s•|w. Such a matcher is then used to compute ψλ, which

is an update of θ w.r.t. matchλ•(s•|w) containing the meaningful information to be tracked.
Finally, the state fragment t• is computed from s• by replacing its subterm at position w with
the instance ρψλ of the right-hand side of the applied rule r. This way, we can transfer all the
relevant information marked in s• into the fragment of the resulting state t•.

Example 5.4
Consider the computation tree of Example 3.2 whose initial state is

s0 = [Srv-A] & [Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,17,na].

Let s•0 = • & [Cli-A,•,7, • ] & • be a state fragment1 of s0 where only request 7 of Client
Cli-A is considered of interest. By sequentially expanding the nodes s•0, s•1, s•3, and s•5 w.r.t.
the inspection criterion Islice , we get the following fragment of the given computation tree:

Query...    Go

Go

Go

Go

Go

Go

GoGoBack

Back

Back

Back

Back

Back

BackBack Anima

Options

• & [Cli-A,•,7,•] & •
s•0

req
• & (• <- {Cli-A,7}) & [Cli-A,•,7,na] & •
s•1

req/dupl
• & (• <- {Cli-A,7}) & 
(• <- {Cli-A,7}) & [Cli
-A,•,7,na] & •

s•2 reply
[•] & (Cli-A <- {•,f(•,
Cli-A,7)}) & [Cli-A,•,7
,na] & •

s•3 loss
• & [Cli-A,•,7,na] & •
s•4

succ
[•] & (Cli-A <- {•,8}) & [Cli-A,•,7,na] & •
s•5

req
[•] & (• <- {Cli-A,7}) &
(Cli-A <- {•,8}) & [Cli-
A,•,7,na] & •

s•6 dupl
[•] & (Cli-A <- {•,8}) &
(Cli-A <- {•,8}) & [Cli-
A,•,7,na] & •

s•7 loss
[•] & [Cli-A,•,7,na] & •
s•8 rec

[•] & [Cli-A,•,7,7] & •
s•9

Note that the slicing process automatically computes a tree fragment that represents a
partial view of the protocol interactions from client Cli-A’s perspective. Actually, irrelevant
information is hidden and rules applied on irrelevant positions are directly ignored, which
allows a simplified fragment to be obtained favoring its inspection for debugging and analysis
purposes. In fact, if we observe the highlighted computation in the tree, we can easily detect
the wrong behaviour of the rule rec. Specifically, by inspecting the state fragment s•9 = ([•]
& [Cli− A, •, 7, 7] & •), which is generated by an application of the rule rec, we immediately
realize that the response 8 produced in the parent state s•5 has not been stored in s•9, which
clearly indicates a buggy implementation of the considered rule.

1Throughout the example, we omit indices from the considered •-variables to keep notation lighter and
improve readability. So, any variable •i, i = 0, 1, . . ., is simply denoted by •.
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Finally, it is worth noting that the forward trace slicer implemented via the criterion Islice

differs from the partial stepper given at the end of Section 5.1. Given a state fragment s• and

a rewrite step
r,σ,w→K t, Islice always yields a fragment t• when the rewrite occurs at a meaningful

position. By contrast, the inspection criterion Ipstep encoded in the partial stepper may fail to
provide a computed fragment t• when s• does not rewrite to t•.

Example 5.5

Consider the same rewrite rules and initial state f(•1, b) of Example 5.2. By expanding f(•1, b)
w.r.t. the inspection criterion Islice , we get the computation tree fragment with tree edges
f(•1, b)

r1→ g(•1) and f(•1, b)
r2→ h(b), whereas the partial stepper only computes the tree edge

f(•1, b)
r1→ g(•1) as shown in Example 5.2.

6 Implementation

The exploration methodology developed in this paper has been implemented in the Anima
tool, which is publicly available at http://safe-tools.dsic.upv.es/anima/. The underlying
rewriting machinery of Anima is written in Maude and consists of about 150 Maude function
definitions (approximately 1600 lines of source code).

Anima also comes with an intuitive Web user inter-

Database

Anima Client

JAX-RS API

Initial State Rewriting Logic
Specification

Animation

Anima Web Service

Anima Core

Figure 5: Anima architecture.

face based on AJAX technology, which allows users
to graphically display and animate computation tree
fragments. The core exploration engine is specified as
a RESTful Web service by means of the Jersey JAX-
RS API.

The architecture of Anima is depicted in Figure 5
and consists of five main components: Anima Client,
JAX-RS API, Anima Web Service, Database, and An-
ima Core. The Anima Client is purely implemented
in HTML5 and JSP. It represents the front-end layer
of our tool and provides an intuitive, versatile Web
user interface, which interacts with the Anima Web Service to invoke the capabilities of the
Anima Core and save partial results in the Database component.

A screenshot that shows the Anima tool at work on the case study that is described in
Example 5.4 is given in Figure 6.

These are the main features provided by Anima:

1. Inspection strategies. The tool implements the three inspection strategies described in
Section 5. As shown in Figure 6, the user can select a strategy by using the selector
provided in the option pane.

2. Expanding/Folding program states. The user can expand or fold states by right-clicking on
them with the mouse and by selecting the Expand/Fold Node options from the contextual
menu. For instance, in Figure 6, a state fragment on the frontier of the computed tree
has been selected and is ready to be expanded through the Expand Node option.

3. Selecting meaningful symbols. State fragments can be specified by highlighting the state
symbols of interest either directly on the tree or in the detailed information window.
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 GoGoGoGoGoBackBackBackBackBack Anima
Options

View

Rule Labels

State Labels

Zoom: 100%

- +

Interactive StepperInteractive StepperInteractive StepperInteractive StepperInteractive Stepper

Simple Advanced

ON OFF

ON Transition information from state  to :s•1 s•2
Rule:

rl [reply] : S <- {C, Q} & [S] => [S] & C <- {S, f(S, C, Q)} .

 & [Cli-A,•,7,na]

• & [Cli-A,•,7,•] & •

s•0

req

• & (• <- {Cli-A,7}) & [Cli-A,•,7,na] & •

s•1

req/dupl

• & (• <- {Cli-A,7}) & (•

<- {Cli-A,7}) & [Cli-A,•,

7,na] & •

s•2 reply

[•] & (Cli-A <- {•,f(•,Cl

i-A,7)})

& •

s•3 loss

• & [Cli-A,•,7,na] & •

s•4

Expand node

Fold node

Show full information

Show transition information

Expand view

Collapse view

Anima Online Stepper http://safe-tools.dsic.upv.es/animaV3/

1 de 1 6/12/13 4:05 PM

Figure 6: Anima at work.

4. Search mechanism. The search facility implements a pattern language that allows state
information of interest to be searched on huge states and complex computation trees. The
user only has to provide a filtering pattern (the query) that specifies the set of symbols that
he/she wants to search for, and then all the states matching the query are automatically
highlighted in the computation tree.

5. Transition information. Anima facilitates the inspection of a selected rewrite step s → t
that occurs in the computation tree by underlining its redex in s and the reduced subterm
in t. Some additional transition information is also displayed in the transition informa-
tion window (e.g., the rule/equation applied, the rewrite position, and the computed
substitution of the considered rewrite step) by right-clicking on the corresponding option.

7 Conclusions

The analysis of execution traces plays a fundamental role in many program analysis approaches,
such as runtime verification, monitoring, testing, and specification mining. We have presented
a parametrized exploration technique that can be applied to the inspection of rewriting logic
computations and that can work in different ways. Three instances of the parameterized ex-
ploration scheme (an incremental stepper, an incremental partial stepper, and a forward trace
slicer) have been formalized and implemented in the Anima tool, which is a novel program an-
imator for RWL. The tool is useful for Maude programmers in two ways. First, it concretely
demonstrates the semantics of the language, allowing the evaluation rules to be observed in
action. Secondly, it can be used as a debugging tool, allowing the users to step forward and
backward while slicing the trace in order to validate input data or locate programming mis-
takes.
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