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Abstract

Workflow management systems (WfMSs) are useful tools for supporting enterprise in-
formation systems. Such systems must ensure compliance with guidelines and regulations.
While formal verification techniques can be used in the development stages to help ensure
behavioral properties of many systems, these techniques are generally not available in work-
flow tools. We present a framework which models workflows using Petri nets and translates
the model to a tableau style model checker. The model checker uses the recently introduced
one-pass tableau algorithm and delivers enhanced performance over traditional two-pass
strategies in practical applications. A failed tableau will generate a counter model which
can aid in debugging. We present a case study involving a health services delivery program,
and verify properties written in Computation Tree Logic (CTL). The tableau method can
be modified to accommodate other specification languages such as timed CTL, logics of
beliefs, desires and intentions, temporal description logic, first order logic, and others.

1 Introduction

It is a common practice to analyze a system’s behaviour before its actual implementation.
Established analysis approaches like test beds allow for rigorous, transparent, and replicable
testing of software, hardware, and networking systems. However, they are difficult to set up,
are usually very costly, and require experts. Another approach, simulation, involves providing
certain inputs and observing their corresponding outputs. Providing all possible inputs and
observing their outputs is tedious and usually impractical. These shortcomings led researchers
to the application of formal verification in system analysis and development. This involves
modelling systems using an adequate level of abstraction which decreases analysis cost and gives
a rigorous view of the system. Models are relatively easy to modify and errors found before
implementation can greatly decrease cost. Properly verified models ensure better processes.
We present a framework for applying formal verification to workflow models.

There are two formal verification approaches: theorem proving and model checking. The-
orem proving is a logic based proof theoretic approach which typically uses a very expressive
language for describing systems and property specifications. The system is expressed as a set
of axioms and the specifications are expressed as formulae; a proof system is used to deter-
mine if the formulae are valid. In model checking, the description of a system (also known
as a model) is given by the specification language of a model checker and the model checker
determines if a (usually) temporal logic (such as Computation Tree Logic (CTL), or Linear
Temporal Logic (LTL)) formula holds for the model. Applying a formal verification technique
by modelling a system using a formal specification language is generally a difficult and tedious
task. Our framework starts with a human-friendly specification language, Petri nets, which
has a graphical representation easily modelled with the Coloured Petri net (CPN) tool [23];
the Petri net models are automatically transformed to Kripke structures for formal analysis.
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The system does not have to be represented in the formal specification language of an existing
model checker.

The tableau method is a popular proof procedure applicable to a wide range of logics in-
cluding temporal logics. The traditional tableau method for CTL is a two-pass procedure [2]
which applies a set of tableau rules to construct a tableau in the first pass and determines
the inconsistent nodes (the nodes that cannot be a part of a valid model for the given CTL
formula) in the second pass. A formula is satisfiable if and only if a model for the formula
can be found in the tableau. Recently an improvement over the two-pass procedure, known
as the one-pass tableau procedure [1], was developed. A comparison between the one-pass
and two-pass procedure in [8] showed that the one-pass procedure consistently, and sometimes
dramatically, outperformed the two-pass procedure. The one-pass procedure requires a sin-
gle pass through the tree to determine the satisfiability of a formula. This procedure can be
used for model checking where the tableau is constructed from a given CTL property and a
system model. Here we propose a workflow verification framework based on this technique.
Our framework includes an automatic translator to translate a Petri net workflow model to the
corresponding Kripke structure, and uses the one-pass tableau procedure for model checking.
One-pass tableau-based decision procedures have been used for various logics, but to the best
of our knowledge we are the first to use the one-pass tableau algorithm for model checking. We
show the usefulness of our framework with a case study involving health service delivery.

The rest of this paper is organized as follows: Section 2 presents some related work; Section
3 presents some background topics; Section 4 discusses various components of the one-pass
tableau-based workflow verification framework; Section 5 describes a case study, and Section 6
concludes the paper and offers some directions for future work.

2 Motivation and Related Work

There is no foundational, well recognized, or universally accepted formalism for workflow verifi-
cation [7]. In [19], the authors discussed an automatic translation of workflow models into DVE,
the specification language of the DiVinE model checker. The end result of their work is the
NOVA WorkFlow [6] tool which uses the Compensable Workflow Modelling Language (CWML)
for workflow modelling. Use of the DiVinE model checker limited the NOVA WorkFlow tool to
LTL property specifications. An application of the SPIN model checker to workflow verification
can be found in [22], and another approach using UPPAAL is available in [10]. Spin supports
LTL, and UPPAAL supports Timed Computation Tree Logic. A tableau-based model checker
for Temporal Description Logic (ALCT) can be found in [4] and a similar approach for Timed
BDICTL can be found in [15]. Both the ALCT and Timed BDICTL model checkers use Petri
nets to design workflows, but the Petri net models were translated manually to generate the
state space for model checking.

Among the other workflow management systems, FlowMake [20] can identify structural
conflicts in process models, YAWL [24] has some verification facilities mainly with respect to
structural properties, AgentWork [16] uses dynamic rules to allow users to identify errors in the
execution logic of the workflow while PLMflow [26] can generate workflow from business rules
and can detect deadlocks.

Existing tools involve the usually difficult task of writing workflow models in the specification
language of existing model checkers, or lack temporal verification capabilities, or are restricted
to one property specification language. Tools and techniques to support workflow modelling
and automatic verification in a single but flexible framework are needed.
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According to [9], with suitable optimization techniques, tableau-based methods are poten-
tially more flexible and efficient than other model checking approaches. The one-pass tableau
strategy has been developed recently [1], and a näıve implementation of the one-pass tableau-
based decision procedure for various logics 1 is available at [17]. While the worst-case complexity
of the one-pass algorithm is 2EXPTIME which is worse than the EXPTIME complexity of the
two-pass algorithm, in most practical situations, the worst case rarely arises; indeed the one-pass
algorithm consistently outperforms the two-pass algorithm [8].

3 Preliminaries

In our framework, we use Petri nets to formally describe a workflow model, CTL to describe
properties of the system, and the one-pass tableau-based model checking algorithm.

3.1 Workflow modelling using Petri nets

Worflow management systems (WfMSs) such as YAWL [24] provide users without any pro-
gramming experience a relatively easy way to organize and/or describe complex processes in
a visual format. Financial institutions, healthcare organizations, etc., involving complex pro-
cesses, information and communication systems are adopting WfMSs to orchestrate the various
activities. The main objective of workflow modelling is to provide an abstract view of a system
to support analysis. Petri nets provide a graphical interface along with a strong mathematical
foundation to accomplish this. A Petri net is a graph with two types of nodes—places and
transitions. Arcs connect the two types, and no two nodes of the same type can be directly
connected.

Definition 1 (Petri net). A Petri net is a triple (P, T, F ), where: P is a finite set of places,
T is a finite set of transitions (P ∩ T = ∅), and F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow
relation).

Researchers developed various workflow patterns to facilitate the development of process-
oriented applications. For this paper, we consider only the basic control flow patterns, namely
sequential flow, parallel flow, conditional flow, and iterative flow [14]. These suffice to define
many complex workflows. Our framework can handle Petri nets workflows containing all the
four basic control flow patterns. Among the four basic patterns, conditional flow and iterative
flow require special care. For example, in conditional flow, the token will follow one of the
paths; in the iterative flow, the token will follow the same path multiple times. We used a
variable called guard to restrict the token passing along one of the paths or along the same
path. We also need to determine when to terminate an iterative flow which require updating a
variable with each iteration. We call this updating step an action.

In Petri nets, the state space is given implicitly, but for formal verification, we need to
generate the explicit states or markings. A marking M of a Petri net is a function from the
set of places P to the non negative integers. Firing a transition t in a Petri net with marking
M , results in a new marking M ′. A Petri net can be represented as a Kripke structure: the
states are markings and there is a transition in the Kripke structure from M to M ′ whenever
a transition in the Petri net creates a marking M ′ from M .

1PDL, CTL, LTL, Modal Logic KD, KD45, K4, CK, K, S4, KLM Logic P, Intuitionistic Logic G4IP, and
Propositional Classical Logic
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Definition 2 (Kripke Structure). A Kripke structure, over a set AP of atomic propositions, is
a 4-tuple M =

(
S,→, L, I

)
, where S is a finite set of states, →⊆ S×S is a transition relation,

L : S → 2AP is an interpretation function, and I ⊆ S is a set of initial states. L(s) is the set
of atomic propositions satisfied by s.

3.2 Property specifications

We chose CTL as the property specification language. The syntax and semantics of CTL are
available in [1]. In addition to propositional operators, CTL has path quantifiers, A (all paths),
E (some paths), and temporal modalities, G (all future states), F (some future state), X (the
next state), U (until) and B (before). In a formula, a temporal operator must be preceded by a
path quantifier. The inductive definition of CTL formulae in Backus Näur Form is given below:

ϕ ::= ⊥ | > | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | EX ϕ | AX ϕ | EF ϕ | AF ϕ |
EG ϕ | AG ϕ | E[ϕUϕ] | A[ϕUϕ] | E[ϕBϕ] | A[ϕBϕ]

where p ranges over a set of atomic propositions. Given a Kripke structure M and a CTL
formula ϕ, the semantics of CTL is defined as follows:

1. M, s |= > and M, s 6|= ⊥.

2. M, s |= p if and only if p ∈ L(s).

3. M, s |= ¬ϕ if and only if M, s 6|= ϕ.

4. M, s |= ϕ1 ∧ ϕ2 if and only if M, s |= ϕ1 and M, s |= ϕ2.

5. M, s |= ϕ1 ∨ ϕ2 if and only if M, s |= ϕ1 or M, s |= ϕ2.

6. M, s |= EX ϕ if and only if ∃s′ ∈ S, such that s→ s′ and M, s |= s′.

7. M, s |= AX ϕ if and only if ∀s′ ∈ S, if s→ s′ then M, s |= s′.

8. M, s |= EG ϕ if and only if there is a path s1 → s2 → s3 → · · · , where s1 = s, and for
all si along the path, we have M, si |= ϕ.

9. M, s |= AG ϕ if and only if for all paths s1 → s2 → s3 → · · · , where s1 = s, and for all
si along the path, we have M, si |= ϕ.

10. M, s |= EF ϕ if and only if there is a path s1 → s2 → s3 → · · · , where s1 = s and for
some si along the path we have M, si |= ϕ.

11. M, s |= AF ϕ if and only if for all paths s1 → s2 → s3 → · · · , where s1 = s there is
some si such that M, si |= ϕ.

12. M, s |= E[ϕ1Uϕ2] if and only if there exists a path s1 → s2 → s3 → · · · , where s1 = s
and for some si along the path M, si |= ϕ2 and ∀j, j < i M, sj |= ϕ1.

13. M, s |= A[ϕ1Uϕ2] if and only if for all paths s1 → s2 → s3 → · · · , where s1 = s there
exists si along the path such that M, si |= ϕ2 and ∀j, j < i M, sj |= ϕ1.

14. M, s |= E[ϕ1Bϕ2] if and only if there exists a path s1 → s2 → s3 → · · · , where s1 = s
and for some si along the path M, si |= ϕ2 implies ∃j, j < i M, sj |= ϕ1.
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15. M, s |= A[ϕ1Bϕ2] if and only if for all paths s1 → s2 → s3 → · · · , where s1 = s there
exists si along the path such that M, si |= ϕ2 implies ∃j, j < i M, sj |= ϕ1.

We say an elementary formula is a formula of the form p, ¬p, EXϕ or AXϕ where p is an
atomic proposition and ϕ is a CTL formula. The classification of non-elementary formulae is
shown in Table 1 using Smullyan’s α- and β-notation.

Table 1: Smullyan’s α- & β-notation for CTL
α α1 α2

ϕ ∧ ψ ϕ ψ
EG ϕ ϕ EX EG ϕ
AG ϕ ϕ AX AG ϕ
E[ϕBψ] ¬ψ ϕ ∨ EX E[ϕBψ]
A[ϕBψ] ¬ψ ϕ ∨AX A[ϕBψ]

β β1 β2
ϕ ∨ ψ ϕ ψ
EF ϕ ϕ EX EFϕ
AF ϕ ϕ AX AF ϕ
E[ϕUψ] ψ ϕ ∧ EX E[ϕUψ]
A[ϕUψ] ψ ϕ ∧AX A[ϕUψ]

3.3 Tableau-based satisfiability checking for CTL

Tableau systems obey the subformula principle - all formulae occurring in a tableau proof are
subformulae of the formula being proved. Subformulae are obtained by applying a set of rules
based on the semantics of the particular logic. Applications of these rules forms a tree, called
the tableau. For propositional logic, tableau-based procedures include the following steps: to
show a formula ϕ is valid we try to show its negation ¬ϕ is not satisfiable, i.e., there is no
assignment of truth values to propositional variables in ¬ϕ to make it true. The expression ¬ϕ
is decomposed into subformulae by applying tableau expansion rules. If a branch of the tableau
contains a pair of contradictory formulae (i.e., ψ and ¬ψ), then this branch is marked as closed.
The tree construction stops when all the branches close or there is no other formula to which a
tableau rule can be applied. An open branch in a completed tableau (rules have been applied to
all the formulae) gives a counter example, i.e, an assignment which satisfies ¬ϕ. If all branches
close, the tableau is said to be closed and ϕ is declared valid.

In CTL tableau, Boolean connectives are handled the same way as in propositional logic,
and temporal connectives are handled by decomposing them into a requirement on the “cur-
rent state” and a requirement on “the rest of the sequence” [25]. Implementing the tableau
rules will cause some branches of the tableau to loop forever. However, the tableau can be
made finite by identifying nodes containing the same set of formulae. A formula ϕ of the form
EFϕ,AFϕ,E[ϕ U ψ], or A[ϕ U ψ] is called an eventuality formula [1]. Eventuality formulae
state “something will happen eventually in the future”. To guarantee validity of a CTL formula
ϕ, in addition to checking for propositional inconsistencies, we need to check for unsatisfiability
of all the eventuality formulae. The tableau rules for CTL can be categorized into four cate-
gories: the α rules, the β rules, the X rule, and the terminal rules. The α rules are for the
conjunctive operators (i.e., ∧, EG, AG, EB, and AB) and each creates one child (e.g., the rule
for EGϕ creates a child with the formulas ϕ and EXEGϕ). The β rules are for the disjunctive
operators (i.e., ∨, EF , AF , EU and AU) and each creates two children (e.g., the rule for AFϕ
creats a child with ϕ and a child with AXAFϕ). The X rule is for the X operator and the
number of children created is dependent on the number of EX formulae in a node. The X
rule states that if there is {EXφ1, · · · , EXφn, AXψ1, · · · , AXψm} in a node then there are n
children of the node, with {φ1, ψ1, · · · , ψm} at child 1, {φ2, ψ1, · · · , ψm} at child 2, and so on.
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There are two terminal rules, one (known as the id rule) is applied when there is a contradiction
on a branch and the other (known as the block rule) is applied when expanding a branch causes
a loop. If a node m is about to be created as a child of a node n and there is an ancestor n0
of n having the same set of formulae in m, then m is not created, and n and n0 are connected
with a feedback edge (these situations causes loops in the tableau).

A Hintikka structure for ϕ is a finite partial representation of a model for ϕ. A formal
discussion on Hintikka structures for CTL formulae can be found in [1], [2]. The tableau
procedure is a systematic search for a Hintikka structure; to determine the satisfiability of ϕ
the tableau shows there is no Hintikka structure for ¬ϕ.

The two-pass tableau-based decision procedures [2], [3] test the satisfiability of a CTL for-
mula ϕ in two steps or “passes”. In the first step, it constructs a tableau Tϕ, for ϕ, by applying
tableau construction rules. If any Hintikka structure satisfies ϕ, then there is at least one
represented by Tϕ [8]. In the second step, inconsistent nodes (nodes that cannot be a part of
any Hintikka structure for ϕ) are identified. The second pass uses an algorithm known as the
marking algorithm to mark the inconsistent nodes; the marking algorithm marks the root of the
tableau if there is no Hintikka structure for the input formula [2]. Termination of the one-pass
tableau procedure is guaranteed [11].

The one-pass tableau algorithm for CTL [1] uses a single pass to determine the satisfiability
of a formula. Instead of constructing the tableau first and then finding the Hintikka structure,
the one-pass tableau determines the existence of a Hintikka structure while constructing the
tableau, through the use of a history and a variable associated with each tableau node. In the
one-pass tableau, loops are determined by looking at the history of the current node; the history
is passed from parent to child. The variable propagates information about the unsatisfiable
eventualities from a child to its parent. The history of a node is calculated while applying a
tableau rule. The variable of a terminal node is calculated according to the terminal rule when
a branch of the tableau terminates, and propagated upward.

The tableau rules for the one-pass tableau for satisfiability checking are available in [1]. A
tableau node, in a one-pass tableau, contains three components - a set of formulae Γ, a history
Fev and Br, and a variable uev, the three are Γ :: Fev ,Br :: uev , where the symbol “::” separates
the three components. Here, Fev keeps track of the satisfiable eventualities, Br keeps track of
the formulae that may create loops and is used by one of the terminal rules to identify loops, and
uev keeps track of the unsatisfiable eventualities. The uev of a node is set to {(false,m)} if both
branches created by a β rule are closed due to propositional inconsistencies; the uev is set to
the empty set if there are no unsatisfiable eventualities or propositional inconsistencies in any of
the children; the uev is set to the set of all the unsatisfiable eventualities of the children if both
children have unsatisfiable eventualities; and finally the uev is set to the set of all unsatisfiable
eventualities of a child if either of the two children has unsatisfiable eventualities.

The one-pass procedure starts with the negation of the formula of interest (the input for-
mula) in negation normal form (NNF) as the root and the rules are applied on the root to
construct the tableau. If, after the construction, the uev of the root is not empty, we call it a
closed tableau. A closed tableau means the negation of the input formula is not satisfiable, i.e.,
the input formula is valid. On the other hand, if the uev of the root is the empty set we say the
tableau is open, meaning the negation of the input formula is satisfiable, and the input formula
is not valid. We discuss one of the rules, namely the AF rule below. A detailed discussion of
the one-pass tableau rules may be found in [11].

(AF )
AFϕ; Γ :: Fev,Br :: uev

ϕ; Γ :: {AFϕ} ∪ Fev,Br :: uev1 | AXAFϕ; Γ :: Fev,Br :: uev2
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The uev of the parent is calculated from the uev1 and uev2 of the children as follows:

uev =

 uev1 if uev2 = {(false,m)}
uev2 if uev1 = {(false,m)}
{(AFϕ, n)} otherwise

Here, n = max
(
f(AFϕ, uev1)∪f(AFϕ, uev2)

)
. The function f(AFϕ, uev ′) returns the index of

AFϕ in uev’. We show an example of the AF rule in Fig. 1. In node n6, Fev and Br came from
its predecessor (not shown in the figure). An application of the AF rule on n6 creates nodes n7
and n8. The id rule is applied on n7 and the block rule is applied on n8. We show n6 with the
value of uev calculated from its children. For n6, uev1 = {(false, 1)} and uev2 = {(AFϕ, 0)}.
As uev1 = {(false, 1)}, the uev of n6 is set to uev2 which is {(AFϕ, 0)}.

n6 AF
¬ϕ; EXEG¬ϕ; AF ϕ

:: F ev = { }, Br = {(EG¬ϕ; AF ϕ, ∅)}
:: uev = {(AF ϕ, 0)}

n7 id
¬ϕ; ϕ; EXEG¬ϕ

:: F ev = {AF ϕ}, Br = {(EG¬ϕ; AF ϕ, ∅)}
:: uev = {(false, 1)}

Stop

n8 block
¬ϕ; EXEG¬ϕ; AXAF ϕ

:: F ev = { }, Br = {(EG¬ϕ; AF ϕ, ∅)}
:: uev = {(AF ϕ, 0)}

Stop

Figure 1: Illustration of the AF rule.

4 The One-Pass Tableau-Based Model Checking

A generic framework using the tableau method for model checking is described in [9]. The
main idea of tableau-based model checking is that given a Kripke structure M with initial
state s0 and a property ϕ, the algorithm simulates the construction of the tableau in M. The
construction starts from s0 and moves forward along the transitions in M. More specifically,

1. The tableau construction starts with (¬ϕ, s0) where s0 ∈ S.

2. The tableau construction is similar to the tableau for satisfiability. However, the con-
struction rules must be modified so that the tableau nodes are properly associated with
the states of M.

3. When the tableau construction is completed, M satisfies ϕ iff the final tableau with
(¬ϕ, s0) is a closed tableau.

We show the modifications required to use the one-pass tableau procedure to perform model
checking.

Definition 3 (Closure of a formula cl(ϕ) in CTL). The closure cl(ϕ) of a formula ϕ is the
least set of formulae such that:

1. >, ϕ ∈ cl(ϕ);
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2. cl(ϕ) is closed under taking subformulae;

3. if ψ ∈ cl(ϕ) and ψ does not begin with ¬ then ¬ψ ∈ cl(ϕ);

4. cl(ϕ) is closed under taking all components of α−formulae and β−formulae.

Given a Kripke structure M, and a CTL formula ϕ, L[cl(ϕ), s] :=
(
L(s) ∪ {¬p | p ∈

AP \L(s)}
)
∩cl(ϕ). It can be shown that L[cl(ϕ), s] consists of a set of atomic propositions and

the negation of atomic propositions only. For example, given the Kripke structure in Figure 2,
and a CTL formula ϕ = AG(p→ AFq), L[cl(ϕ), s] = {p, q}.

p, q s0

q, rs1 r

s2

Figure 2: A simple Kripke structure with three states.

In the one-pass tableau-based model checking, the tableau construction starts with (s0,¬ϕ∪
L[cl(¬ϕ), s0]). Here, s0 is the initial state of the model and ϕ is the CTL property to be verified.
In model checking, all the tableau rules are same as the tableau for satisfiability checking except
for the X rule. The X rule which deals with formulae referring to the “next state”, is modified
to denote a transition from one state to another. The next states of a state can be identified
from the given transition relation of the Kripke structure. The one-pass tableau model checking
algorithm given in Algorithm 1. The tableau construction starts from the initial states and to
reduce the branching, the α rules are applied before the β rules. The α and β rules do not
make transitions from one state to another. The X rule is applied when a tableau node has
only EX and AX formulae to which to apply tableau rules. In the tableau-based satisfiability
checking, the number of children of a node having EX and AX formulae depends on the number
of EX formulae in the node. In model checking, the number of children is determined from
the number of EX formulae and the number of states adjacent to the current state. If the
constructed tableau is closed then the property ϕ is declared true; otherwise, an open branch
of the tableau shows a counter example.

4.1 System description

We implemented the tableau-based model checking framework using the C++ programming
language. We used the CPN tool to design the Petri net workflow models. The CPN tool stores
the Petri net in the Petri net markup language (PNML) which is an XML-based interchange
format for Petri nets. Our framework could be modified to deal with any Petri net graphical
editor with an XML based interchange format. The top-level structure of the tableau-based
model checking framework is shown in Fig. 3 and a brief discussion of each component is given
below.

The XML Parser: Most of the information in the XML file generated by the CPN tool is
editor specific information, such as: the position of the nodes, the size of the nodes, and colours
of different parts, etc. Our XML Parser reads the input PNML file from the beginning to the
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Algorithm 1 Given a Kripke structure and a property, this algorithm generates a tableau using
the one-pass tableau procedure

root ← tableauNode(property ∪ L[cl(property), state] , state) {Here, tableauNode(ϕ, s0)
is a constructor that creates a tableauNode with ϕ in the formulaList and s0 in the
stateSpaceID}
nodeStack.push(root)
while one-pass tableau rules have not been applied to all the nodes in nodeStack do

tempTableauNode ← nodeStack.pop()
if the id rule is applicable to tempTableauNode then

apply the id rule
else if a linear rule is applicable to tempTableauNode then

newTableauNode ← tableauNode({α1, α2} ∪ Γ, si) {Here, Γ is the set of formulae in
tempTableauNode and si is the the stateSpaceID in tempTableauNode}
nodeStack.push(newTableauNode)

else if a universal branching rule is applicable to tempTableauNode then
newTableauNode1 ← tableauNode({β1} ∪ Γ, si)
nodeStack.push(newTableauNode1)
newTableauNode2 ← tableauNode({β2} ∪ Γ, si)
nodeStack.push(newTableauNode2)

else if an existential branching rule is applicable to tempTableauNode then
adjList ← all the states adjacent to si in the Kripke structure
for all sj ∈ adjList do

newTableauNode ← tableauNode(∆∪ψ∪L[cl(property), sj ], sj) {Here, tempTableauN-
ode has a formula of the form EXψ;AX∆}
nodeStack.push(newTableauNode)

end for
else

apply the block rule
end if

end while

Specification 

Properties

Tableau 

Based Model 

Checker

Properties hold

Counter example

XML Parser
State Space 

Generator

Start

Kripke structure

PN.txt

Workflow as Petri nets 

using CPN tool

XML Parser

State Space Generator

Formula Pre-processor

Model Checker

Result Handler

Begin

End

Figure 3: The components of the tableau-based model checking framework.
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end and extracts the information related to the Petri net places and transitions and stores, and
stores it in a simple text file.

The State Space Generator: The State Space Generator loads the Petri net model from
the simple text file generated by the XML Parser. The Petri net is represented in the memory
as a list of transitions. Two types of information control a transition firing, a guard and an
action. If we have a loop in the workflow model then a set of transitions are fired until the
guard becomes false. A guard represents a condition of the from variable op value, where
op ∈ {==, ! =, <,>,≤,≥}. An action represents an assignment of the form variable = exp,
where exp is a variable or of the form variable op1 value, and op1∈ {+,−, ∗}. A transition can
have an action and/or a guard, whereas a place can have only an action. Actions associated
with transitions can change the value of a variable in the output places. After loading the Petri
net model from the text file, the Kripke structure is generated by simulating the Petri net[11].

The Formula Pre-processor: The Formula Pre-processor module applies four pre-processing
steps before applying the tableau model checking algorithm. The first step is to rewrite the
U and B operators in the given property. For example, a formula of the form E[ϕ U ψ] is
written as (ϕ EU ψ), this makes it easier to generate a parse tree for the formula. The second
pre-processing step is to generate a parse tree for the property. Using parse trees provides two
benefits: we can easily identify the first operator to apply a tableau rule to (it is the root of
the parse tree) and easily identify the subformulae. The third pre-processing step is to change
the input property ϕ to ¬ϕ. The final pre-processing step is to convert ¬ϕ to NNF.

The Model Checker: The Model Checker module uses two functions − a state space handler
to manage the Kripke structure and a property handler to manage the property parse tree. The
Model Checker module implements the one-pass tableau model checking algorithm according
to the previous discussion.

The Result Handler: The purpose of the Result Handler module is to show the output of
the model checker in a readable format. Currently, our model checker can show the output as
a list of tableau nodes which can be transformed into a tree structure by hand. If a property
does not hold, we can get a counter example by investigating an open branch.

First, we implemented the one-pass tableau algorithm for satisfiability checking and tested
our implementation with a comprehensive set (41 in total) of CTL formulae available at [17];
see the results in [11]. Then we modified the one-pass tableau algorithm for model checking.
We used the Mahone cluster (a parallel cluster of 134 nodes with 64GB RAM per node) of
ACEnet 2 to run our experiments.

5 Case Study

Our research is part of a collaboration among academic researchers, an industry partner and
the local health authority to develop innovative workflow tools for health services delivery [13],
[6]. Healthcare workflows are developed from guidelines or best practises defined by healthcare
professionals. Such guidelines are processes describing the activities for providing treatment to
a patient. Using the CPN tool, we modeled a workflow following the national Hospice Palliative
Care (HPC) guideline 3 and used our tool model check some properties, some of which are listed

2ACEnet: http://www.ace-net.ca
3Canadian HPC association: http://www.chpca.net/
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below.
HPC refers to the comfort care that reduces the severity of a disease rather than providing

a cure. For example, if surgery cannot be performed to remove a tumour, radiation treatment
might be tried to reduce its rate of growth, and pain management could help the patient manage
physical symptoms. The HPC guideline containing 51 tasks is depicted in Fig. 4; the Petri net
model contains 55 places and 51 transitions, and the corresponding workflow state space graph
consists of 67 states. We verified the following properties of the model:

Property 1: AF end of workflow
The end of workflow will always be reached.

Property 2: AG(error in therapy → EF report to supervisor)
Any error in therapy is always reported to the supervisor.

Property 3: AG(prepare care plan → AFpresent care plan)
After a care plan is prepared, it is always presented to the patient.

Property 4: AG¬(¬define limits of conf . ∧ share accurate info)
Limits of confidentiality are always defined before information is shared.

The verification results are summarized in Table 2. Further experiments may be found in
[11], including experiments on verification of large models, and an example of a smaller model
with a failed property and the output of a counter model. In our current implementation the
output of counter models for large Petri nets is difficult for the human eyes to read.

Table 2: Property verification results of the one-pass tableau model checker
Property Time No. of tableau Memory Valid

(in sec) nodes (in MB)
Property 1 3.887 2266 8.1 Yes
Property 2 13.931 4968 16.5 Yes
Property 3 12.389 4778 15.9 Yes
Property 4 11.399 4920 16.4 Yes

6 Conclusion and Future work

In this paper we presented a model checking framework for workflow model verification. We
used the one-pass tableau method for model checking which can efficiently verify properties for a
large workflow model. The framework can be improved and extended easily as the architecture
can be adapted to support different workflow modelling languages (e.g., YAWL [24]) as well as
a variety of property specification languages, such as LTL, timed CTL, other modal logics such
as BDI logics (logics for beliefs, desires, and intentions) as needed to verify various aspects of
large scale enterprise information systems. The latter modifications in general simply require
the addition and/or replacement of one-pass tableau rules. While there are other approaches to
model checking Petri nets (e.g., LoLa [18] and Fast [5]) these in general lack flexibility as they
use a fixed specification language for property specifications. We presented an implementation
of the framework, but a number of improvements are possible. The tree structure, generated
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Figure 4: The HPC model using Petri nets.
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by the tableau model checking algorithm, is not possible to show on the console output. A
graphical user interface showing the tableau would help the user better analyse the counter
models. Another improvement would be to apply high performance computing techniques to
increase the efficiency of the model checking algorithm. In the one-pass tableau method, only
one branch of the derivation tree needs to be considered at any stage, making it suitable to
implement on a bank of parallel processors [1]. In [21], [12], the authors discussed two ap-
proaches to parallel temporal tableau for LTL using the two-pass tableau procedure; these need
investigation for the one-pass method. The first approach applies parallelism by dividing the
sequential algorithm into separate sub-problems and distributing the sub-problems to different
processors. In this approach communication between the processes are maintained using two
shared queues. The second approach does not use any shared queue, hence the inter-process
communication increases. However, dividing into sub-problems does not ensure equal load dis-
tribution across the processors, because one sub-problem may take less time than the others,
i.e., some processors will remain idle while the others are working. The inter-process commu-
nication increases in the second approach. In literature, experiments show that the second
approach performs better than the first approach for LTL [21]. Many optimization techniques
including unit propagation, simplification, and backjumping have been developed for tableau-
based modal logic systems which can be applied to the one-pass tableau-based model checking
algorithm to enhance performance. Extensions of the method to include timing information
are fairly straightforward [15].
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Atlantic Canada Opportunities Agency, and by an ACEnet Graduate Research Fellowship and
benefited from many discussions with clinicians from the Guysborough Antigonish Strait Health
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