
Automated Invariant Generation for the

Verification of Real-Time Systems

Bahareh Badban
Department of Computer and Information Science
University of Konstanz, Germany, Stefan Leue

Department of Computer and Information Science
University of Konstanz, Germany

and Jan-Georg Smaus∗

Institut für Informatik
University of Freiburg, Germany

Abstract

We present an approach to automatically generating invariants for timed automata
models. The CIPM algorithm that we propose first computes new invariants for timed au-
tomata control locations taking their originally defined invariants as well as the constrains
on clock variables imposed by incoming state transitions into account. In doing so the
CIPM algorithm also prunes idle transitions, which are transitions that can never be taken,
from the automaton. We discsuss a prototype implementation of the CIPM algorithm as
well as some initial experimental results.

1 Introduction

Predicate abstraction is an instance of the general theory of abstract interpretation [6]. It is a
technique for generating finite abstract models of large or infinite state systems. This technique
involves abstracting a concrete transition system using a set of formulas called predicates. Pred-
icates usually denote some state properties of the concrete system. The predicate abstraction
is conservative in the sense that if a property holds on the abstract system, there will be a
concretization of the property that holds on the concrete system as well. Abstraction is defined
by the value (true or false) of the predicates in any concrete state of the system [18]. This
technique was first introduced by Graf and Säıdi [10] as a method for automatically determin-
ing invariant properties of infinite-state systems. As mentioned above, the idea of predicate
abstraction is to generate a finite state abstraction of the system with respect to a finite set of
predicates, which are mostly provided by the users themselves. Such an abstraction will have
at most 2‖P‖ distinct states for a total number ‖P‖ of predicates [16]. There are two obstacles
to the practical use of the predicate abstraction approach:

1. The initial abstraction is not fine enough, and hence it is too abstract to be able to verify
any property of the concrete model. In such a case the method relies on counter examples
or proofs in the overall verification process to refine the abstraction [5], and as it is stated
by Lahiri, et.al. in [15]:

”It is not clear if it is always preferable to compute the abstraction incremen-
tally. But, we have observed that the refinement loop can often become the
main bottleneck in these techniques (e.g. SLAM), and limits the scalability of
the overall system.”

∗The work of this author was partially funded by the German Research Council (DFG) through the Tran-
sregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB
TR14/AVACS).

44 A. Voronkov, L. Kovacs, N. Bjorner (eds.), WING 2010 (EPiC Series, vol. 1), pp. 44–58

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

2. The other obstacle is that the abstraction works with the predicates that are provided
by the user. Hence, this method relies on the user’s understanding of the system and on
a trial-and-error process [15]. This phenomenon has been pointed out by Das and Dill
in [7]:

”Another problem is how to discover the appropriate set of predicates. In
much of the work on predicate abstraction, the predicates were assumed to
be given by the user, or they were extracted syntactically from the system
description. It is obviously difficult for the user to find the right set of predicates
(indeed, it is trial-and-error process involving inspecting failed proofs), and the
predicates appearing in the system description are rarely sufficient. There has
been less work and less progress, on solving the problem of finding the right
set of predicates. In addition [...] there is a challenge of avoiding irrelevant
predicates [...]”

The purpose of our work is to provide support for an automated predicate abstraction tech-
nique for dense real-time models according to the timed automaton model of [1] by generating a
more useful set of predicates than a manual, ad-hoc process would be able to provide. We ana-
lyze the behaviour of the system under verification to discover its local state invariants. During
this analysis we remove idle transitions which are transitions that can never be traversed. We
plan to incorporate the generated invariants into the abstraction phase of a counterexample
guided abstraction refinement method for timed automata by using them as the initial set of
predicates that is used to define an initial abstraction of the concrete model.

Related Work. How to discover predicates for use in the abstraction of real time system
models has been widely discussed in the literature. Colón and Uribe [5] introduce an interactive
method for predicate abstraction of real-time systems where a set of predicates called basis is
provided by the user. As mentioned in the paper itself, this way the choice of abstraction
basis is based on the user’s understanding of the system. Therefore, generation of a suitable
abstraction basis relies on trial-and-error. Möller et. al. in [21] introduce a method which is
based on identifying a set of predicates that is fine enough to distinguish between any two
clock regions and which creates a strongly preserving abstraction of the system. Refinement of
the abstraction is accomplished using an analysis of the spuriousness of counter examples. Also
in [7] Das and Dill use the spurious trace in discovering predicates for the predicate abstraction.
Das et. al. in [8] introduce Morφ−− which is a prototype for the verification of invariants in
predicate abstraction. McMillan et. al. in [14, 19] and Henzinger, et. al. in [11] use interpolation
to detect feasibility of the abstract trace and also to extract predicates from the proof for use in
the abstraction. McMillan and Amla [20] introduce a proof-based automatic abstraction. The
slicing approach of [13, 23] is a recent method with the same intention of reducing the state
space of timed automata models. However, it is based on static analysis and not on a semantic
interpretation of the automaton structure.

Another direction of research in the field of predicate abstraction addresses symbolic tech-
niques. In this method a decision procedure takes a set of predicates P and symbolically
executes a decision procedure on all the subsets over P . This results in a directed graph which
represents the answer to a predicate abstraction query. The method aims at reducing the num-
ber of decision procedure calls since this number often tends to be extremely large [15]. In the
first step, the first-order formula is encoded into some equi-satisfiable Boolean formula, and in
the next step it is verified using a SAT solver. Examples of different symbolic methods are
in [18, 15, 17, 16].

45

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

In [12] Hoffmann et. al. use the technique of predicate abstraction in order to obtain search
heuristics to be used in directed model checking of safety properties. In [2] Ball et. al. introduce
an abstraction method based on oracle-guided widening. In most cases the widening is such
that it simply drops a variable from the rest of the computations of the pre-states.

Structure of the Paper. The paper is organized as follows. Section 2 provides some prelim-
inary definitions on real-time automata. The semantics of timed automata and their possible
transitions are discussed in section 2.1. Section 3 introduces our method of creating new in-
variants. The respective algorithm, called CIPM, is explained in Section 3.1. In Section 3.2 we
illustrate the algorithm by an example which is used by Möller et. al. in [21]. Section 4 describes
an initial implementation of our approach. Finally, Section 5 presents concluding remarks and
discusses future work.

2 Preliminary Definitions

In this section we reiterate the classical definition of timed automata according to [4, 1]. Addi-
tional concepts and notations which will be used throughout the paper are also introduced in
this section.

A timed automaton consists of a finite state automaton together with a finite set of clocks.
Clocks are non-negative real valued variables which keep track of the time elapsed since the
last reset operation performed on the respective clock. The finite state automaton describes
the system control states and its transitions. Initially, all clocks are set to 0. All clocks evolve
at the same speed. A configurations of the system is given by the current control location of
the automaton and the value of each clock, denoted 〈l, u〉, where l is the control location and
u is the valuation function which assigns to each clock its current value. u + d, for d∈R+1, is
a valuation which assigns to each clock x the value u(x) + d, i.e., it increases the value of all
clocks by d. G(X) denotes the set of clock constraints g for a set X of clock variables. Each g
is of the form

g := x ≤ t | t ≤ x | ¬g | g1 ∧ g2

where x ∈ X , and t, called term, is either a variable in X or a constant in R
+. By var(g) we

denote the set of all clock variables appearing in g. A timed automaton is then formally defined
as follows:

Definition 1. A timed automaton A is a tuple 〈L, l0,Σ, X,I , E〉 where

• L is a finite set of locations (or states), called control locations,

• l0 ∈ L is the initial location,

• Σ is a finite set of labels, called events,

• X is a finite set of clocks,

• I : L 7→ G(X) assigns to each location in L some clock constraint in G(X),

• E ⊂ L× Σ× 2X × G(X)× L represents discrete transitions.

1
R
+ is the set of all non-negative reals, including 0.

46

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

The clock constraint associated with each location l ∈ L is called its invariant, denoted
I (l). We later refer to these invariants as the original invariants. It requires that time can
pass in a control location only as long as its corresponding invariant remains true. In other
words, I (l) must hold whenever the current state is l.

We call a constraint g atomic if there exist two terms s and t such that g is equivalent to
s ≤ t, t ≤ s or their negation2. With each clock constraint g, we associate a set of its atomic
sub-formulas, atom(g), defined as:

• atom(g) := {g} when g is atomic,

• atom(g1 ∧ g2) := atom(g1) ∪ atom(g2).

Reset constraints are conjunctions of (one or more) formulas of the form x := c where c is
a constant in R

+. We similarly define the application of atom over reset constraints, e.g.
atom(x := 3 ∧ y := 0) ≡ {x := 3, y := 0}. An atomic constraint is called bounded if it is of the
form x ≺ c, where c is a constant value and ≺∈ {=, <,≤}. g is unbounded if it is not bounded.
For example, x ≤ y and x > 2 are unbounded. We define a set of unbounded constraints in a
set A of constraints as: un(A) := {a ∈ A | a is unbounded}.

We say a valuation u satisfies g, denoted u |= g, if the assigned value to all variables in g by
u satisfies g. For example if g := x+ 1 > y ∧ x < 5, and u(x) = 4.1 and u(y) = 3, then u |= g.
We consider true as a valid proposition which is satisfied by each valuation, i.e. u |= true for
each u. For a set A, u |= A if u |= a for each a ∈ A. Given two constraints g and g′, g entails
g′, denoted g ⇒ g′, if for any valuation u, u |= g′ if u |= g. For instance, x ≥ 3 ⇒ x > 2. Based
on this, we define a function join3 as:

join(g, g′) :=

g′ if g ⇒ g′

g if g′ ⇒ g

true if ¬g ⇒ g′ or equivalently, ¬g′ ⇒ g

g ∨ g′ otherwise

(1)

Intuitively, given any two constraints g and g′, join(g, g′) is equivalent to the weaker one. We
further extended this definition over sets:

join(A,B) :=
∨

(a,b)∈A|B

join(a, b)

where A|B := {(a, b) | a ∈ A, b ∈ B and var(a) = var(b)}. For example, if A = {x < y, x > 2}
and B = {x < 3} then A|B = {(x > 2, x < 3)} and hence, join({x < y, x > 2}, {x < 3}) =
join(x > 2, x < 3) = true, since x ≥ 3 ⇒ x > 2.

In a timed automaton the values of all clocks evolve at the same speed. Therefore, if at
time t0, x has the value of x0 then after ∆t time units the value of x will be x0 +∆t. This fact
leads us to the next property:

Note 1. In a timed automaton A, if at some point of time (e.g. t0) a relation like x ≺ y where
≺∈ {=, <,≤} holds between two clock variables x and y then this relation will be preserved
until one of the variables is reset. This is because x(t) = x + ∆t ≺ y + ∆t = y(t), where ∆t
computes the time elapsed as of t0.

2The negation of t ≤ s is s < t.
3This operation is called strong join in [22].

47

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

Lemma 1. If u |= g for a valuation u and some unbounded atomic constraint g, then u+d |= g
for any d∈R+. This can be extended to any set of unbounded atomic constraints, too.

Proof. If g is of the form x ≥ c or x > c, then proof is obvious. For other constraints g, by
Note 1, u+ d |= g (d is the ∆t). By definition this property also extends to sets of unbounded
atomic constraints.

Lemma 2. For each two atomic constraints g and g′, and sets A and B of atomic constraints,
we have:

1. g ⇒ join(g, g′) and g′ ⇒ join(g, g′).

2. if u |= g for some valuation u, then u |= join(g, g′).

3. if u |= A (or u |= B) for some valuation u, then u |= join(A,B).

Proof. The proofs of these properties can be sketched as follows:

1. This is obvious according to the definition of join.

2. By the definition of join the statement 2 is equivalent to statement 1.

3. u |= A, hence by definition, u |= a for all a ∈ A. Therefore, according to the second item,
for all a ∈ A and b ∈ B, u |= join(a, b). Hence, by definition, u |= join(A,B). This holds,
analogously, for when u |= B.

2.1 Semantics

We associate a transition system SA with each timed automaton A4. States of SA are pairs
〈l, u〉, where l ∈ L is a control location of A and u is a valuation over X which satisfies I (l),
i.e. u |= I (l). 〈l0, u〉 is an initial state of SA if l0 is the initial location of A and for all x ∈ X :
u(x) = 0.

Transitions. For each transition system SA the system configuration changes by two kinds
of transitions:

• Delay transitions allow time d∈R+ to elapse. The value of all clocks is increased by d

leading to the transition 〈l, u〉
d
7→ 〈l, u+ d〉. This transition can take place only when the

invariant of location l is satisfied along the transition.

• Discrete transition enabling a transition (c.f. Definition 1)5. In this case all clocks,
except those which are reset, remain unchanged. This results in the transition τ :=

〈l, u〉
a,g,r
7→ 〈l′, u′〉 where a is an event, g is a clock constraint and r is a reset constraint

(c.f. Definition 1).

4We work with nondeterministic timed automata.
5A transitions is enabled if it can be traversed from the source control location.

48

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

An execution of a system is a possibly infinite sequence of configurations 〈l, u〉 where each
pair of two consecutive configurations corresponds to either a discrete or a delay transition.

In the sequel, τ and d denote discrete and delay transitions, respectively. We may de-
note a discrete transition τ as 〈l, u〉

τ
7→ 〈l′, u′〉 when a, g, r do not need to be clarified. For

each τ := 〈l, u〉
a,g,r
7→ 〈l′, u′〉, we define Gτ := atom(g) and Rτ := atom(r). For this tran-

sition, l and l′ are called source of τ , denoted sorc(τ), and target of τ , denoted tar(τ), re-
spectively. Gτ/Rτ

(respectively I (sorc(τ))/Rτ
) represents the set of all atomic constraints in

Gτ (respectively I (sorc(τ))) which do not have a variable occurring in Rτ . For instance, if

τ := 〈l, u〉
x≤y∧z<x+1, z:=0

7→ 〈l′, u′〉, then Gτ = {x ≤ y, z < x + 1}, Rτ = {z := 0} and
Gτ/Rτ

= {x ≤ y}. In this example, z occurs in Rτ . For this transition if I (l) = {y < 2, z > 4}
then I (sorc(τ))/Rτ

= {y < 2}.
For each discrete transition τ we define:

inv(τ) := un(Gτ/Rτ
) ∪ un(I (sorc(τ))/Rτ

) ∪ atom(Rτ)

where atom(Rτ) =
⋃

r∈atom(Rτ)
r, and

x := c =

{

{x ≤ y | y ∈ X−{x}} if c = 0

{x ≥ c} ∪ {x ≤ y + c | y ∈ X−{x}} if c > 0

We will later show in Theorem 3 that inv(τ) is a set of constraints that are preserved in tar(τ).
Below, in the next lemma, we prove this for when we have just entered a state and before any

time elapses. For the example above, τ := 〈l, u〉
x≤y∧z<x+1, z:=0

7→ 〈l′, u′〉, inv(τ) = un({x ≤
y}) ∪ un({y < 2}) ∪ z := 0 = {x ≤ y} ∪ ∅ ∪ {z ≤ x, z ≤ y} = {x ≤ y, z ≤ x, z ≤ y}. Here,
X = {x, y, z}.

Lemma 3. For each discrete transition 〈l, u〉
τ
7→ 〈l′, u′〉, we have u′ |= inv(τ).

Proof. Clock variables are reset iff they occur in Rτ . Hence, those variables which do not occur
in Rτ retain their value when the transition τ is occurring. These are variables which belong
to Gτ/Rτ

. Therefore, u′ |= Gτ/Rτ
, and since Gτ/Rτ

⊆ un(Gτ/Rτ
), u′ |= un(Gτ/Rτ

). The same
reasoning applies to un(I (sorc(τ))/Rτ

). Since u′ has some new values for the reset variables in
r it holds that u′ |= r right at the time of the occurrence of the transition (notice that no time
has elapsed yet). Therefore, u′ |= atom(Rτ). Summing these up results in u′ |= inv(τ).

Definition 2. For each control location l, we define a set of incoming discrete transitions,
intrans(l,A), and a set of outgoing discrete transitions, outtrans(l,A) as:

intrans(l,A) := {τ | ∃li, ui, u : 〈li, ui〉
τ
7→ 〈l, u〉}

outtrans(l,A) := {τ | ∃l′, u′, u : 〈l, u〉
τ
7→ 〈l′, u′〉}

Notice that this definition relies exclusively on discrete transitions. Since only a finite
number of such transitions exists these two sets are well-defined.

We now define a reduction system. This system simplifies the (disjunction of) clock con-
straints. The intuition is that any valuation function u satisfies the left hand-side of the reduc-
tion step (denoted by −→) if and only if it also satisfies the right-hand side.

Definition 3 (Reduction System). We apply the following reduction rules on disjunction of
constraints, φ. Here, s and t are terms.

49

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

1. s < t ∨ s = t −→ s ≤ t

2. s < t ∨ s > t −→ s 6= t

φ is called simplified if none of the rules above are applicable on it. We apply the reduction
rules of Definition 3 on φ as long as they can be applied, which means that the result of the
application is not identical to the constraint itself. When the reduction process terminates, we
call the result simp(φ). Obviously, simp(φ) is simplified.

Lemma 4. If u |= φ then u |= simp(φ), for each valuation u.

Proof. If φ −→ ψ with any of the reduction rules, then obviously u |= ψ. Therefore, u |= simp(φ)
as well.

In the next section we introduce an automatic approach to creating new invariants and to
reducing the size of the model by pruning away those transitions which can never be traversed
and which hence have no impact on a reachability analysis of the model.

3 Creating New Invariants

In this section we present the CIPM algorithm which strengthens the given original invariants
in each control location by analysing the incoming discrete transitions to that specific control
location.

3.1 The Algorithm

The input of Algorithm 1 is a timed automaton. Without loss of generality we assume that
each location is assigned a separate index between 0 and ‖A‖ − 1, e.g. l1, where ‖A‖ is the
number of control locations in A.

Before explaining the algorithm we introduce the notion of idleness of a transition which
expresses that a transition will never be enabled.

Definition 4. A discrete transition τ : 〈l, u〉 7→ 〈l′, u′〉 is called idle if it can never be enabled.

Amongst other reasons, a transition can be idle when the constraint over the transition is
never being satisfied or the valuation function obtained from the transition does not satisfy the
invariant of the target location (i.e., u′¬ |= I (l′)). For instance, if τ is the discrete transition

〈l, u〉
x≤y
7→ 〈l′, u′〉, where x > y + 3 is invariant in location l, i.e. I (l) = {x > y + 3}, then this

transition is idle since the constraint x ≤ y is never fulfilled as long as we are in l.
The CIPM algorithm first collects the set I (li) of all the original invariants in each location

li. It then selects each location li and collects its incoming transitions in intrans(li,A). The
idle transitions within that set are detected using Lemma 5 and are deleted from the model.
For each non-idle τ in intrans(li,A) the algorithm next computes inv(τ). It thereby extracts all
constraints that are propagated to location li when executing transition τ . Applying join to all
propagated constraints yields inv(li) which defines the full set of constraints that are imposed on
li by all of the transitions in intrans(li,A). Since li may also have some original invariant, I (li) is
the conjunction of the original invariant and all of the previously computed imposed constraints
on li. This is expressed in the algorithm by IA(li) := I (li) ∧ simp(inv(li)). Computing IA(li)
may render some of the outgoing transitions of li idle. Therefore, the algorithm next checks
all outgoing transitions of li for idleness again using Lemma 5 (1st item). It then removes all

50

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

transitions detected as being idle. The set seen stores the traversed transitions. It is used to
ensure that all transitions are checked for being idle only once.

In Algorithm 1, we use conjunction of sets, which is defined as: A ∧ B :=
∧

1≤i≤n ai ∧
∧

1≤j≤m bj for A = {a1, ...an} and B = {b1, ...bm} 6.

Lemma 5. A discrete transition τ is idle when either of the conditions below, holds:

• I (sorc(τ)) ∧ Gτ is a contradiction,

• inv(τ) ∧ I (tar(τ)) is a contradiction.

Proof. • I (sorc(τ)) holds as long as the current location is sorc(τ). At this location, τ is
enabled only when Gτ holds. If this occurs then I (sorc(τ)) ∧ Gτ holds. By assumption,
this can never happen.

• By Lemma 3, if 〈l, u〉
τ
7→ 〈li, ui〉 is enabled then ui |= inv(τ). By definition, ui |= I (tar(τ))

too. Therefore, ui |= inv(τ) ∧ I (tar(τ)). This contradicts the assumption. So, τ is never
enabled.

We say two timed automata A and A1 are equivalent, denoted A=̇A1, if they differ only on
some idle transitions.

Theorem 1. The CIPM algorithm has the following properties:

• it is terminating,

• if CIPM(A1) = (A, IA) then A=̇A1, and

• for each control location l, inv(l) consists of only unbounded constraints.

Proof. • In timed automata, the number of control locations (‖A‖) is a finite number, say
n. Hence, the first two repeat loops halt after n steps. Besides, each timed automaton
consists of a finite automaton which describes the system control states and its transitions.
Hence, each control location has only a finite number of incoming and outgoing discrete
transitions. Thus, the other two while loops will also stop after a finite number of steps.

• According to Lemma 5 and the algorithm A is updated only by removing some idle
transitions. Therefore, the output automaton will be either the exact same automaton,
or it will be an automaton with a smaller number of idle transitions.

• The above argument can be easily derived from the definition of inv(τ) and the definition
of inv(l) in the algorithm.

Note 2. Since A=̇A1 according to the previous theorem, in the sequel we may use A and A1

interchangeably.

The new constraint IA(l) implies the original invariant I (l) and moreover it extracts a
stronger clock constraint which should hold as long as we stay in l. We prove this in the next
two theorems.

6A ∧ ∅ and ∅ ∧A are equivalent to A.

51

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

Algorithm 1 Creating Invariants and Pruning the Model (CIPM)

Requires: a timed automaton A
n := ‖A‖ %% the number of control locations in A
X := the set of all clock variables occurred in A
i := 0, j := 0, seen := ∅
repeat

I (lj) := the given (original) invariant of lj
j := j + 1

until j < n
repeat

if i = 0 then

inv(li) := {x = y | x, y ∈ X where x and y are not identical}
else

inv(li) := ∅
k := 0, In := intrans(li,A)
if In = ∅ ∧ i > 0 then

A := A\outtrans(li,A)
else

while In 6= ∅ ∧ (k = 0 ∨ inv(li) 6= ∅) do
choose τ ∈ In

In := In\{τ}
if τ /∈ seen then

if I (sorc(τ)) ∧ Gτ is a contradiction then

A := A\{τ} %% the idle transition
else

seen := seen ∪ {τ}
inv(τ) := un(Gτ/Rτ

) ∪ un(I (sorc(τ))/Rτ
) ∪ atom(Rτ)

if inv(τ) ∧ I (li) is a contradiction then

A := A\{τ} %% the idle transition
else

k := k + 1
if k = 1 then

inv(li) := inv(τ)
else

inv(li) := join(inv(li), inv(τ))
I (li) := I (li) ∧ simp(inv(li))
Out := outtrans(li)
while Out 6≡ ∅ do

choose τ ∈ Out

Out := Out\{τ}
if τ /∈ seen then

if I (li) ∧ Gτ is a contradiction then

A := A\{τ} %% the idle transition
else

seen := seen ∪ {τ}
i := i+ 1

until i < n
IA := {li 7→ I (li)}

return (A, IA)

52

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

x := 0

y ≤ 1

y < x
l1

l0

l2

y > xx:=0y := 0

Figure 1: A. In this timed automaton, x and y are clock variables.

Theorem 2. If CIPM(A1) = (A, IA), then IA(l) ⇒ I (l) for each control location l in A,
where I (l) is the original invariant of l in A1.

Proof. IA(l) = I (l) ∧ simp(inv(l)). According to the definition of ⇒, we need to show that if
u |= I (l) ∧ simp(inv(l)) then u |= I (l), for any valuation function u. Let I (l) = {a1, ...an}
and simp(inv(l)) = {b1, ...bm}. Therefore, u |=

∧

1≤i≤n ai ∧
∧

1≤j≤m bj, and hence, for each
1 ≤ i ≤ n, u |= ai. By definition, this means that u |= I (l).

The next theorem shows that IA associates with each control location l a set of new invari-
ants.

Theorem 3. If CIPM(A1) = (A, IA), then u |= IA(l), for each reachable configuration 〈l, u〉
in SA1. In other words, IA(l) is invariant in l.

Proof. Since IA(l) = I (l) ∧ simp(inv(l)), we need to prove that u |= I (l) ∧ simp(inv(l)) where
I (l) is the original given invariant of location l (cf. Definition 1). To this end, we show that
u |= I (l) and u |= simp(inv(l)). The first part holds by definition. For the second part, by
Lemma 4 we only need to prove that u |= inv(l). We split the proof into two steps according to
whether 〈l, u〉 is reached by a discrete transition τ or whether it is reached by a delay transition
d.

• Assume that 〈l, u〉 is reached by a discrete transition τ (i.e. ...
τ
7→ 〈l, u〉). Then u |= inv(τ)

by Lemma 3. Hence, u |= join(inv(l), inv(τ)) by Lemma 2 (2nd item). This, according to
the algorithm, is the updated value of inv(l). Therefore, u |= inv(l).

• Assume that 〈l, u〉 is reached by a delay transition d. Then, there exist a discrete transition

τ , a valuation u1 and a delay value d1∈R+ such that ...
τ
7→ 〈l, u1〉

d17→ 〈l, u〉, i.e. u := u1+d1
and 〈l, u1〉 is reached by the discrete transition τ . Therefore, according to the previous
part we get u1 |= inv(l). According to Theorem 1 (last item), all elements of inv(l) are
unbounded, hence, u1 + d1 |= inv(l) by Lemma 1. This completes the proof.

3.2 Example

We illustrate the CIPM algorithm using an example taken from [21], cf. the timed automaton
in Figure 1. In this model, x and y are clock variables. l0, l1 and l2 are control locations. Our

53

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

intention is to prune this automaton and to find a new set of invariants for each control location
according to the CIPM algorithm.

The model starts with the initial value of x = y = 0 in location l0. y ≤ 1 is the original
invariant in l0, i.e. I (l0) = {y ≤ 1}. In other words, we can stay in l0 only as long as the value
of y does not exceed 1. Once this value has passed 1 then one of the outgoing transitions must

be taken out of this state (e.g. l0
x:=0
7→ l1). For the other locations we have: I (l1) = I (l2) = ∅.

Initially, n := 3, X := {x, y}, i := 0, j := 0 and seen := ∅. In the first repeat loop,
for 0 ≤ j < 3 the algorithm collects the original invariants at lj . So, I (l0) = {y ≤ 1} and
I (l1) = I (l2) = ∅. In the second repeat loop, we get: inv(l0) := {x = y}, k := 0, and

In := intrans(l0,A) = {l0
x:=0
7→ l0, l1

y:=0
7→ l0}. Since the condition of the first if loop does not

hold, the while loop must be activated. Here, In 6= ∅ ∧ (k = 0 ∨ inv(l0) 6= ∅) holds, we choose

τ := l0
x:=0
7→ l0 from In, and let In := {l1

y:=0
7→ l0}. τ /∈ seen (which is ∅) and I (sorc(τ)) ∧ Gτ =

{y ≤ 1}∧∅. By definition this is y ≤ 1, which is not a contradiction. Hence, seen := seen∪{τ} =

{l0
x:=0
7→ l0}. Now, since for this τ we have: un(Gτ/Rτ

) = ∅, un(I (sorc(τ))/Rτ
) = un({y ≤ 1}) = ∅

and atom(Rτ) = {x ≤ y}, we derive: inv(τ) := un(Gτ/Rτ
) ∪ un(I (sorc(τ))/Rτ

) ∪ atom(Rτ) =
{x ≤ y}. Then, inv(τ)∧I (l0) = {x ≤ y}∧{y ≤ 1} = x ≤ y∧y ≤ 1 which is not a contradiction.
Hence, k := k + 1 = 1 and inv(l0) := inv(τ) = {x ≤ y}.

Once more, since In = {l1
y:=0
7→ l0} 6= ∅, we go through the while loop of In 6= ∅ ∧ (k =

0 ∨ inv(l0) 6= ∅). Here, we bring the result of computations briefly. We choose τ := l1
y:=0
7→ l0,

we get In := ∅, and since I (sorc(τ)) ∧ Gτ = ∅ ∧ ∅ = true, seen := {l0
x:=0
7→ l0, l1

y:=0
7→ l0}.

inv(τ) := ∅ ∧ ∅ ∧ {y ≤ x} = {y ≤ x} and k := k + 1 = 2, hence, inv(l0) := join({x ≤ y}, {y ≤
x}) = join(x ≤ y, y ≤ x) = true. At this point, since In := ∅, we leave the while loop, and put
I (l0) := I (l0) ∧ simp(inv(l0)) = {y ≤ 1} ∧ simp(true) = {y ≤ 1} ∧ true, which is equivalent to
y ≤ 1. So, we gain no new invariant for l0.

Next, Out := outtrans(l0) = {l0
x:=0
7→ l1, l0

y>x
7→ l1}. We choose τ := l0

x:=0
7→ l1. Out :=

Out\{τ} = {l0
y>x
7→ l1}. τ /∈ seen, and I (l0) ∧ Gτ = y ≤ 1 which is not a contradiction. Hence,

seen := {l0
x:=0
7→ l1, l0

x:=0
7→ l0, l1

y:=0
7→ l0}. Then, we choose τ := l0

y>x
7→ l1, and for the same

reason, seen := {l0
y>x
7→ l1, l0

x:=0
7→ l1, l0

x:=0
7→ l0, l1

y:=0
7→ l0}. Out := Out\{τ} = ∅, hence we leave

this while loop, and put i := i+ 1 = 1. 1 < 3, so the repeat loop must be gone through once
more.

The same process should be repeated again. The interesting part in this second round is

that for τ := l0
y>x
7→ l1 ∈ intrans(l1,A), we get inv(τ) := {y > x}∧∅∧∅ = {y > x}. For the other

transition τ := l0
x:=0
7→ l1 ∈ intrans(l1,A), inv(τ) := {x ≤ y}, and inv(l1) := join({x ≤ y}, {y >

x}) = {x ≤ y}. In the end, I (l1) := ∅ ∧ {x ≤ y} = x ≤ y. This means that for this location
we actually obtain a new invariant which is x ≤ y. See Figure 2.

Then, Out := outtrans(l1) = {l1
y<x
7→ l2, l1

y:=0
7→ l0}. We choose τ := l1

y<x
7→ l2, then

Out := {l1
y:=0
7→ l0}. τ /∈ seen, and I (l1) ∧ Gτ = x ≤ y ∧ y < x, which is a contradiction!

This is shown in Figure 3(a). Therefore, the automaton is updated to A := A\{l1
y<x
7→ l2}.

We continue the algorithm with this new automaton. For this, see Figure 3(b). The other

transition l1
y:=0
7→ l0 is already in seen. So this loop terminates here.

With this new automaton, for location l2 we obtain: In := intrans(l2,A) = ∅. Hence, the
while loop of In 6= ∅ ∧ (k = 0 ∨ inv(l2) 6= ∅) can not be entered. There is also no transition
out of this location.

In the end we obtain A := A\{l1
y<x
7→ l2}, and IA := {l0 7→ {y ≤ 1}, l1 7→ {x ≤ y}, l2 7→ ∅}.

54

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

x := 0

y ≤ 1

y < x
l1

l0

x ≤ y l2

x:=0 y > xy := 0

Figure 2: New invariants.

x := 0 x := 0

a)

x ≤ y l2
y < x

NOT feasible!

b)

l2l1

x:=0 y > xy > xx:=0y := 0 y := 0

y ≤ 1l0 y ≤ 1l0

l1 x ≤ y

Figure 3:

Figure 3(b).

4 Implementation and Experimental results

We have developed a prototypical implementation of the CIPM algorithm in C++. The code
takes a timed automaton in UPPAAL [3] syntax as input and computes the new invariants
for each location, as well as removing the spurious transitions as shown in the pseudo-code
of Alg. 17. The actual implementation of CIPM thus consists of code for operating on the
abovementioned datastructure, to remove transitions and modify invariants of the automaton.

The implementation consists of about 1000 lines of code. For checking whether some invari-
ants togther constitute a contradiction (such a condition occurs in three places in the pseudo-
code of Alg. 1), we use ICS [9], which is a solver for linear arithmetic. Likewise, we use ICS to
check the implications occurring in the definition of join (see Equation 1).

Timed automata in UPPAAL are in some respects more general than the timed automata
that we have defined in this paper. In particular, UPPAAL automata may have integer variables
in addition to the real-valued clock variables. Integer variables only change their value when
there is an explicit assignment. The presence of integer variables has repercussions on the

7For parsing the UPPAAL input file into a suitable C++ datastructure, we used code that was provided to
the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB TR14/AVACS) gproject by Gerd Behrmann.

55

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

clocks since clock assignments, guards and invariants may involve linear expressions of those
variables. E.g., there may be a guard x ≤ 2i + j where x is a clock variable and i and j are
integer variables. In our current code, integer variables are ignored, but we plan to extend the
implementation to cater for them.

Another feature of UPPAAL is that of parallel composition of automata (called processes
in UPPAAL parlance) into a system. In the current implementation, we assume a system that
is composed of just one process. Again, we plan to extend the implementation so that it works
for systems with more than one process.

There is however one aspect where the automata we consider here are more general than
UPPAAL automata: In UPPAAL, there are no disjunctive invariants. The invariant of a
location, as well as the guard of a transition, is a sequence of equations and disequalities,
interpreted as a conjunction. Therefore, we cannot directly implement the invariant g ∨ g′

occurring in the definition of join, and we approximate it as the trivial invariant true. In some
cases, we might be able to do better than that. E.g., (x ≥ 2 ∧ y ≥ 1) ∨ (x ≥ 1 ∧ y ≥ 2) implies
x ≥ 1 ∧ y ≥ 1, which is stronger than true. However what the best approximation we can
express with UPPAAL syntax is and how we can compute it is a nonobvious question left for
future work as well. Another idea would be to split a location requiring a disjunctive invariant
into two locations.

We have tested the implementation on the example of Fig. 1 and some other hand-designed
examples. Our prototype tool transformed these examples in the expected way which increases
our confidence that the proposed pseudo-code for CIPM accomplishes what we intend it to do.

5 Conclusion

Our work proposes the CIPM algorithm which accomplishes two goals. First, it automatically
generates invariants for timed automata models. The algorithms computes new invariants
in each control location of a timed automaton taking logical conditions on the original state
invariants imposed by incoming transitions into account. Second, we defined the notion of idle
transitions which helps in reducing the size of a timed automaton by eliminating transitions
that can never be traversed.

We presented a preliminary implementation of the CIPM algorithms. At the current stage
it is too early to talk about the performance of the implementation since the runtime for the
examples including the one discussed above is, of course, negligible. However, the algorithm
looks at each location and each transition at most once and thus its complexity should be low.
How this would change if we ran the algorithm repeatedly on the same automaton is a different
matter.

Future work includes the definition of a counterexample guided abstraction refinement tech-
nique using our proposed invariant generation approach extended by suitable predicate abstrac-
tions. Currently, we are incorporating the invariants computed by CIPM into an abstraction
framework for timed automata. The idea is to couple each control location with its correspond-
ing invariant and to use these invariants to determine a predicate abstraction for the respective
pair of states. To illustrate the approach we considered an example from [21].

References

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

56

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

[2] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Relative Completeness of Abstraction
Refinement for Software Model Checking. In TACAS’02, 2002.

[3] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal. In Marco Bernardo
and Flavio Corradini, editors, Formal Methods for the Design of Real-Time Systems. Proceedings
of the 4th International School on Formal Methods for the Design of Computer, Communication,
and Software Systems (SFM-RT’04), volume 3185 of LNCS, pages 200–236, Bertinoro, Italy, Sep
2004. Springer–Verlag.

[4] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit, Laure Petrucci,
and Philippe Schnoebelen. Systems and Software Verification. Model-Checking Techniques and
Tools. Springer–Verlag, 2001.

[5] Michael Colón and Tomás E. Uribe. Generating Finite-State Abstractions of Reactive Systems
Using Decision Procedures. In CAV’98, pages 293–304, 1998.

[6] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixed points. POPL’77, pages 238–252,
1977.

[7] Satyaki Das and David L. Dill. Counter-example based predicate discovery in predicate abstraction.
In Formal Methods in Computer-Aided Design(FMCAD). Springer-Verlag, November 2002.

[8] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate abstraction. In 11th
International Conference on Computer-Aided Verification (CAV’99). Springer-Verlag, 1999.

[9] Jean-Christophe Filliâtre, Sam Owre, Harald Rueß, and Natarajan Shankar. ICS: Integrated
canonizer and solver. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Proceedings of
the 13th International Conference on Computer Aided Verification, volume 2102 of LNCS, pages
246–249. Springer-Verlag, 2001.

[10] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with PVS. In CAV, pages
72–83, 1997.

[11] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Abstractions
from proofs. In POPL’04, pages 232–244, 2004.

[12] Jörg Hoffmann, Jan-Georg Smaus, Andrey Rybalchenko, Sebastian Kupferschmid, and Andreas
Podelski. Using predicate abstraction to generate heuristic functions in uppaal. In Model Checking
and Artificial Intelligence, MoChArt’06, pages 51–66, 2006.

[13] Agata Janowska and Pawel Janowski. Slicing of Timed Automata with Discrete Data. Fundamenta
Informaticae, 72(1-3):181–195, 2006.

[14] Ranjit Jhala and Kenneth L. McMillan. Interpolant-based transition relation approximation. In
CAV’05, pages 39–51, 2005.

[15] Shuvendu K. Lahiri, Thomas Ball, and Byron Cook. Predicate Abstraction via Symbolic Decision
Procedures. Logical Methods in Computer Science, 3(2), 2007.

[16] Shuvendu K. Lahiri and Randal E. Bryant. Predicate abstraction with indexed predicates. ACM
Trans. Comput. Log., 9(1), 2007.

[17] Shuvendu K. Lahiri, Randal E. Bryant, and Byron Cook. A Symbolic Approach to Predicate
Abstraction. In CAV’03, pages 141–153, 2003.

[18] Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. SMT Techniques for Fast Predicate
Abstraction. In Proc. of Computer Aided Verification, CAV, pages 424–437, 2006.

[19] Kenneth L. McMillan. Lazy Abstraction with Interpolants. In Proc. of Computer Aided Verifica-
tion, CAV, pages 123–136, 2006.

[20] Kenneth L. McMillan and Nina Amla. Automatic Abstraction without Counterexamples. In
TACAS, pages 2–17, 2003.

[21] M. Oliver Möller, Harald Rueß, and Maria Sorea. Predicate Abstraction for Dense Real-Time
System. Electr. Notes Theor. Comput. Sci., 65(6), 2002.

[22] Sriram Sankaranarayanan, Michael Colón, Henny B. Sipma, and Zohar Manna. Efficient strongly

57

Automated Invariant Generation . . . B. Badban, S. Leue and J.-G. Smaus

relational polyhedral analysis. In VMCAI, 2006.

[23] Uffe Sørensen and Claus Thrane. Slicing for Uppaal. Master’s thesis, Aalborg university, 2008.

58

	Introduction
	Preliminary Definitions
	Semantics

	Creating New Invariants
	The Algorithm
	Example

	Implementation and Experimental results
	Conclusion

