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Abstract

Polynomial interpolation is a classical method to approximate continuous functions
by polynomials. To measure the correctness of the approximation, Lebesgue constants
are introduced. For a given node system X(n+1) = {x1 < . . . < xn+1} (xj ∈ [a, b]),
the Lebesgue function λn(x) is the sum of the modulus of the Lagrange basis polynomials
built on X(n+1). The Lebesgue constant Λn assigned to the function λn(x) is its maximum
over [a, b]. The Lebesgue constant bounds the interpolation error, i.e., the interpolation
polynomial is at most (1 + Λn) times worse then the best approximation. The minimum
of the Λn’s for fixed n and interval [a, b] is called the optimal Lebesgue constant Λ∗

n. For
specific interpolation node systems such as the equidistant system, numerical results for
the Lebesgue constants Λn and their asymptotic behavior are known [3, 7]. However, to
give explicit symbolic expression for the minimal Lebesgue constant Λ∗

n is computationally
difficult. In this work, motivated by Rack [5, 6], we are interested for expressing the minimal
Lebesgue constants symbolically on [−1, 1] and we are also looking for the characterization
of the those node systems which realize the minimal Lebesgue constants. We exploited the
equioscillation property of the Lebesgue function [4] and used quantifier elimination and
Groebner Basis as tools [1, 2]. Most of the computation is done in Mathematica [8].
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