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Abstract

Inductive proofs can be represented as a proof schemata, i.e. as a parameterized se-
quence of proofs defined in a primitive recursive way. Applications of proof schemata can
be found in the area of automated proof analysis where the schemata admit (schematic)
cut-elimination and the construction of Herbrand systems. This work focuses on the ex-
pressivity of proof schemata as defined in [10]. We show that proof schemata can simulate
primitive recursive arithmetic as defined in [12]. Future research will focus on an extension
of the simulation to primitive recursive arithmetic using quantification as defined in [7].
The translation of proofs in arithmetic to proof schemata can be considered as a crucial
step in the analysis of inductive proofs.

1 Introduction

Most interesting mathematical proofs contain applications of mathematical induction, making
inductive theorem proving and the analysis of inductive proofs a crucial topic in computational
logic. As Herbrand’s theorem fails in presence of induction, an automated analysis of induc-
tive proofs automated requires the use of novel frameworks and techniques. In [1] the method
CERES (cut-elimination by resolution) was applied to analyze Fürstenberg’s proof of the infini-
tude of primes. For this anaysis the original CERES method for first-order logic defined in [2]
was extended to proof schemata (recursive representations of infinite sequences of proofs) ; the
proof schema representing Fürstenberg’s proof, still not fully formalized but represented on the
mathematical meta-level, was subjected to cut-elimination via CERES resulting in the construc-
tion of (what was later called) a Herbrand system (an infinite sequence of Herbrand instances
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represented by primitive recursion); this Herbrand system represented Euclid’s construction of
primes.

A first thorough analysis of an inductive (schematic) CERES method can be found in [9]; the
inductive proofs investigated in this paper are those representable by a single parameter - in the
formalisation by a proof schema. Here also the first concept of a Herbrand system was developed;
it is essentially an extension of Herbrand’s theorem from single proofs to a (recursively defined)
infinite sequence of proofs. This definition of a Herbrand system represented the first step to
extend Herbrand’s theorem to inductive proofs. In [10] the approach in [9] was extended to
arbitrary many induction parameters thus considerably increasing the strength of the method.

The schematic CERES method is capable of performing cut-elimination in presence of in-
duction. There are other approaches to inductive inference where cut-elimination is possible
as well. We just mention the works of Brotherston and Simpson [3] [4] and of McDowell and
Miller [11]. However, though these approaches present inductive calculi with corresponding
cut-elimination methods they do not allow the construction of any Herbrand structures (in
particular of Herbrand systems) as described in [9] and [10].

In this paper we analyze the expressivity of proof schemata with arbitrary many parame-
ters as defined in [10]. We prove that these schemata simulate primitive recursive arithmetic
as defined in [12], a quantifier-free arithmetic using an induction rule. That means, via the
translation, all arithmetical proofs formalizable in this arithmetic are candidates for an analyis
via the schematic CERES method. For future work we plan to consider an extension of this
arithmetic to the primitive recursive arithmetic as defined in [7], where the induction formulas
are still quantifier-free but otherwise the introduction of quantifiers is admitted.

2 Schematic Language

The proof schemata we are considering are based on a many-sorted version of classical first-order
logic and definitions via primitive recursion as introduced in [10]. Due to space limitations, we
refer the interested reader to [10] and to [8] for formal definitions and details, and will present
here only the most crucial notions and examples.

The first sort we consider is ω, in which every ground term normalizes to a numeral, i.e. a
term inductively constructable over the signature Σω = {0, s(·)} as N ⇒ s(N) | 0, s.t. s(N) ̸= 0
and s(N) = s(N ′)→ N = N ′. Natural numbers (N) will be denoted by lower-case Greek letters
(α, β, γ, etc), the numeral sα0, α ∈ N, will be written as ᾱ. The set of numerals is denoted by
Num.

The ω sort includes a countable set of variables N , called parameters. Parameters are de-
noted by k, l, n,m, k1, k2, . . . , l1, l2, . . . , n1, n2, . . . ,m1,m2, . . .. The set of parameters occurring
in an expression E is denoted by N (E). The set of free ω-terms, denoted by T ω0 contains all
terms inductively constructable over Σω and N as:

• If t ∈ N or t ∈ Num, then t ∈ T ω0 .

• If t ∈ T ω0 , then s(t) ∈ T ω0 .

Moreover, the ω sort allows defined function symbols, the set of which will be denoted by Σ̂ω.
These symbols will be denoted using ·̂ and have a fixed finite arity. The set of ω-terms, denoted
by Tω contains all terms inductively constructable over Σω, Σ̂ω, and N , i.e.

• If t ∈ Tω0 , then t ∈ Tω.
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• If t1, · · · tα ∈ Tω and f̂ ∈ Σ̂ω, s.t. f̂ has arity α ≥ 1 , then f̂(
−→
t α) ∈ Tω.

To every defined function symbol f̂ ∈ Σ̂ω of arity α + 1 there exists a set of two defining
equations of the form D(f̂) =

{f̂(n1, . . . , nα, 0̄) = f̂B , f̂(n1, . . . , nα, s(m+ 1)) = f̂S{ξ ← f̂(n1, . . . , nα,m)}

where N (f̂B) ⊆ {n1, . . . , nα}, N (f̂S) ⊆ {n1, . . . , nα, ξ} and f̂B , f̂S contain only defined function

symbols which are smaller than f̂ (for a precise definition of the ordering see [5]).

Example 1. For p̂ ∈ Σω, D(p̂) = {p̂(0̄) = 0̄, p̂(s(m)) = m}, p̂B = 0̄, p̂S = m.

Let f̂ , ĝ ∈ Σω s.t. f̂ is smaller than ĝ. We define D(f̂) as

f̂(n, 0̄) = f̂B , f̂(n, s(m)) = f̂S{ξ ← f̂(n,m)}

for f̂B = n and f̂S = s(ξ). Then, obviously, f̂ defines +. Now we define D(ĝ) as

ĝ(n, 0̄) = ĝB , ĝ(n, s(m)) = ĝS{ξ ← ĝ(n,m)}

where ĝB = 0̄ and ĝS = f̂(n, ξ). Then ĝ defines ∗. In both cases ξ is any fresh parameter in

N . We say that the corresponding theory is
(
{p̂, f̂ , ĝ}, {ĝ}, D(p̂) ∪D(f̂) ∪D(ĝ)

)
(for a formal

definition see [8], page 5, Definition 2.12).

The second sort, the ι-sort for individuals, also has two associated signatures, the set of
free function symbols, Σι, and the set of defined function symbols, Σ̂ι. Besides parameters we
also have the sets of individual variables V . The set of ι-terms, denoted by T ι is inductively
constructed from Σι, Σ̂ι, and V as:

• V ⊆ T ι.

• If f ∈ Σι, f is α-place and t1, . . . , tα ∈ T ι then f(t1, . . . , tα) ∈ T ι.

• If s1, · · · , sα ∈ T ι, t1, · · · , tβ+1 ∈ Tω, f̂ ∈ Σ̂ι, s.t. f̂ has arity α+ β+1 for α, β ≥ 0, then

f̂(s1, · · · , sα, t1, · · · , tβ+1) ∈ T ι.

Like for Tω there is a set of two defining equations for every symbol f̂ ∈ T ω; for details we
refer to [5] and [8]. As an example consider

Example 2. Let f ∈ Σι, f̂ ∈ Σ̂ι and x ∈ V . We define D(f̂) as

f̂(x, 0̄) = x, f̂(x,m+ 1) = f(f̂(X,m)).

Considering f̂B , f̂S like for Tω, we get f̂B = x, f̂S = f(ξ). E.g. f̂(x, 3̄) rewrites to the term
f(f(f(x))).

The third and final sort we consider is that of formulas which will be denoted by o. Formulas
are constructed using the signature Σo = {¬,∧,∨}, a countably infinite set of predicate symbols
P with fixed and finite arity, and a countably infinite set of formula variables V F . The set of
formulas, denoted by T oV is constructed inductively as:

• If t ∈ V F , then t ∈ T oV .
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• If t1, . . . , tα ∈ T ι and P ∈ P s.t. P has arity α ≥ 0, then P (t1, . . . , tα) ∈ T oV .

• If t ∈ T oV , then ¬t ∈ T oV .

• If t1, t2 ∈ T oV and ⋆ ∈ {∨,∧}, then t1 ⋆ t2 ∈ T oV .

The set of formulas in T oV which do not contain formula variables is denoted by T o0 .
Formula schemata are constructed using formula terms by allowing defined predicate symbols

to occur. Similarly as in the previous cases, defined symbols will be denoted by ·̂ and have a
fixed finite arity. The set of defined predicate symbols is denoted by P̂. The set of formula
schemata is denoted by To(Σo,P, V F , V G,N , P̂) and is constructed inductively as:

• If t ∈ T oV , then t ∈ T o.

• If t1, · · · , tα ∈ T ι, p̂ ∈ P̂, s1, . . . , sβ+1 ∈ Tω s.t. p̂ has arity α + β + 1 for α, β ≥ 0, then
p̂(t1, . . . , tα, s1, . . . , sβ+1) ∈ T o.

• If t ∈ T o, then ¬t ∈ T o.

• If t1, t2 ∈ T o and ⋆ ∈ {∨,∧}, then t1 ⋆ t2 ∈ T o.

For every defined symbol p̂ ∈ Σ̂o there exists a set of defining equations D(p̂) which expresses
a primitive recursive definition of p̂.

Definition 1 (defining equations). Let p̂ ∈ σ̂o. We define a set D(p̂) consisting of two equa-
tions:

p̂(x1, . . . , xα, n1, . . . , nβ , 0) = p̂B ,

p̂(x1, . . . , xα, n1, . . . , nβ , s(m)) = p̂S{ξ ← p̂(x1, . . . , xα, n1, . . . , nβ ,m)}, where

1) If p̂ is minimal (there is no smaller q̂ ∈ Σ̂o):

a) p̂B ∈ T o0 , p̂S ∈ T oV .
b) |V F (p̂S)| ≤ 1.

2) If f̂ is non-minimal: p̂B , p̂S ∈ T o where p̂B , p̂S may contain only defined predicate symbols
smaller than p̂. Moreover, |V F (p̂S)| ≤ 1 and |V F (p̂B)| = 0.

Additionally, N (p̂B) ⊆ {n1, . . . , nβ}, N (p̂S) ⊆ {n1, . . . , nβ} ∪ {m, ξ} and the only individual

variables occurring in p̂B and p̂S are in {x1, . . . , xα}. We define Do =
⋃
{D(p̂) | p̂ ∈ Σ̂o}.

It is easy to see that, given any parameter assignment, all terms in Tω evaluate to numerals.
The defined symbols in our language introduce an equational theory and without restrictions
on the use of these equalities the word problem is undecidable. In the definitions above the
equations can be oriented to terminating and confluent rewrite systems and thus termination
of the evaluation procedure is easily verified [5].

Definition 2 (parameter assignment). A function σ : N → Num is called a parameter assign-
ment. σ is extended to T ω homomorphically:

• σ(β̄)↓= β̄ for numerals β̄.

• σ(s(t))↓= s(σ(t)↓)
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• σ(f̂(
−→
tα))↓= f̂(σ(

−→
tα)↓)↓ for f̂ ∈ Σω and

−→
tα ∈ Tω.

The set of all parameter assignments is denoted by S.

Note that parameter assignments can be extended to ι and o terms in an obvious way.
While numeric terms evaluate to numerals under parameter assignments, terms in T ι evaluate
to terms in T ι0 , i.e. to ordinary first-order terms, and terms in T o evaluate to terms in T o0 , i.e.
Boolean expressions. Evaluations are denoted by↓, e.g. for F ∈ T o σ(F )↓ is a formula in T o0 .

3 Proof Schema

The general idea of a proof schema is to represent a proof by a finite description of an infinite
sequence of proofs. Assume a proof φ of the end-sequent ⊢ ∀xA(x) that uses an induction
inference. Instead of considering the proof φ, we instead consider the infinite sequence of
proofs φ0, φ1, φ2, . . . of end-sequents ⊢ A(0), ⊢ A(1), ⊢ A(2) . . .. The task is to find a
finite description of this infinite sequence of proofs, the proof schema. A proof schema always
represents a parameterized sequence, and an evaluation under a parameter assignment n results
in the proof φn of ⊢ A(n). The underlying problem, that initially lead to the development of
proof schemata, is to be able to analyze inductive proofs. Indeed, each of the proofs φ0, φ1, φ2,
. . . is a simple LK-proof without induction inferences, and thus enjoys cut-elimination resulting
in an analytic proof. The concept of proof schema was initially introduced in [6, 9] to address
schemata involving a single parameter. Subsequently, in [10], it was expanded to accommodate
an arbitrary number of parameters.

Formally, proof schemata are constructed using proofs in an extension of LK by an equa-
tional theory. First, let us define the concept of schematic sequents.

Definition 3 (schematic sequents). A schematic sequent is a sequent of the form F1, . . . , Fα ⊢
G1, . . . , Gβ where the Fi and Gj for 1 ≤ i ≤ α and 1 ≤ j ≤ β are formula schemata. Let
S : F1, . . . , Fα ⊢ G1, . . . , Gβ be a schematic sequent and σ a parameter assignment. Then the
evaluation of S under σ is σ(S)↓ : σ(F1)↓, . . . , σ(Fα)↓⊢ σ(G1)↓, . . . , σ(Gβ)↓.

In this work we restrict the end-sequent schemata to skolemized sequents in prenex form.

Definition 4. Let E be an equational theory. We extend the calculus LK by the E inference

rule
S(t)

S(t′)
E where the term or input term schema t in the schematic sequent S is replaced by a

term or input term schema t′ for t = t′ ∈ E (or t↔ t′ ∈ E).

The definitions below will use the schematic standard axiom set As.

Definition 5 (schematic standard axiom set). Let As be the smallest set of schematic sequents
that is closed under substitution containing all sequents of the form A ⊢ A for arbitrary atomic
formula schemata A. Then As is called the schematic standard axiom set.

Schematic derivations can be understood as parameterized sequences of LK-derivations
where new kinds of axioms (in the form of labeled sequents) are included. These labeled
sequents serve the purpose to establish recursive call structures in the proof. For constructing
schematic derivations we introduce a countably infinite set ∆ of proof symbols which are used
to label the individual proofs of a proof schema. A particular proof schema uses a finite set of
proof symbols ∆∗ ⊂ ∆. We assign an arity A(δ) to every δ ∈ ∆∗, A(δ) is the arity of the input
parameters for the proof labeled by δ. Also, we need a concept of proof labels which serve the
purpose to relate some leafs of the proof tree to recursive calls.
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Definition 6 (proof label). Let δ ∈ ∆ and ϑ be a parameter substitution. Then the pair (δ, ϑ)
is called a proof label.

Definition 7 (labeled sequents and derivations). Let S be a schematic sequent and (δ, ϑ) a
proof label, then (δ, ϑ) : S is a labeled sequent. A labeled derivation is a derivation π where all
leaves are labeled.

In the definition below we will define a proof schema over a base-case proof (for parameter
0) and a step-case proof (for parameter m+1), where initial sequents are either axioms, or end-
sequents from previously defined (base- or step-case) proofs. In general, the step-case proof
for some proof symbol δ uses as initial sequent its own end-sequent, but under a parameter
assignment m. Evaluating a schematic derivation means that initial sequents, which are no
axioms, have to be replaced by their derivations.

Definition 8 (parameter replacement). Let m⃗, n⃗ be tuples of parameters. A parameter replace-
ment on n⃗ with respect to m⃗ is a replacement substituting every parameter p in n⃗ by a term tp,
where the parameters of tp ∈ Tω are in m⃗.

Definition 9 (schematic deduction and proof schema). Let D be the tuple (δ0,∆
∗,Π). D is

called a schematic deduction from a finite set of schematic sequents S if the following conditions
are fulfilled:

• ∆∗ is a finite subset of ∆.

• δ0 ∈ ∆∗, and δ0 > δ′ for all δ′ ∈ ∆∗ such that δ′ ̸= δ0. δ0 is called the main symbol.

• To every δ ∈ ∆∗ we assign a parameter tuple n⃗δ of pairwise different parameters (called
the passive parameters), and a parameter mδ (called the active parameter).

• Π is a set of pairs {(Π(δ, n⃗δ,mδ), S(δ, n⃗δ,mδ)}, where S(δ, n⃗δ,mδ) is a schematic sequent,
and

Π(δ, n⃗δ,mδ) = {(δ, n⃗δ,mδ)→ ρ(δ, n⃗δ,mδ)},

where ρ(δ, n⃗δ, 0) = ρ0(δ, n⃗δ), and ρ(δ, n⃗δ, s(mδ)) = ρ1(δ, n⃗δ,mδ), and there exists a (pos-
sibly empty) finite set of schematic sequents C(δ) such that

1. ρ0(δ, n⃗δ) is a deduction of S(δ, n⃗δ, 0) from S ∪ C(δ),

2. ρ1(δ, n⃗δ,mδ) is a deduction of S(δ, n⃗δ,mδ+1) from {(δ,Ψ): S(δ, n⃗δ,mδ)}∪S ∪C(δ),
where (δ,Ψ) is a label, and Ψ the empty parameter replacement,

3. for all S′ ∈ C(δ), S′ = (δ′,Ψ): S(δ′, n⃗δ′ ,mδ′)Ψ where (δ′,Ψ) is a label, δ′ ∈∆∗ with
δ > δ′ and Ψ is a parameter replacement on (n⃗δ′ , mδ′) w.r.t. (n⃗δ,mδ) such that the
conditions 1. and 2. hold for δ′ .

If S = As we call D a proof schema of S(δ0, n⃗δ0 ,mδ0).

As our formalism is capable of handling several induction parameters, we can easily formalize
common proofs in Peano arithmetic, as for instance commutativity, as a proof schema. In the
following examples we will use the standard Peano axioms.
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Definition 10 (Peano axioms). The Peano axioms are defined as

A1 : ⊢ 0 ̸= s(x)

A2 : ⊢ s(x) = s(y)→ x = y

A3 : ⊢ x+ 0 = x

A4 : ⊢ x+ s(y) = s(x+ y)

A5 : ⊢ x× 0 = 0

A6 : ⊢ x× s(y) = x× y + x

Frequently, we will denote s(0) as 1 and add the axiom

A7 : ⊢ s(x) = x+ 1

which can be proven easily using A3, A4 and the definition of 1.

Example 3. In the following examples we will use the schematic standard axiom set extended by
Peano axioms and the usual equality rules (denoted by E).It is easy to see that the axioms, along
with valid equality rules, translate into valid inference rules in our calculus. This translation is
linear in the number of inferences. Therefore, we refrain from providing a detailed translation.

Proof of 0 is a left-identity: We define a proof schema of ⊢ 0 + m = m. Let D =
{(δ, ρ(δ, 0), ρ(δ,m+ 1))} where S(δ) = ⊢ 0 +m = m and we define ρ(δ, 0) as follows:

⊢ 0 = 0
A3⊢ 0 + 0 = 0

ρ(δ,m+ 1) is defined as follows:

(δ, ∅) : S(δ)
⊢ s(0 +m) = s(m)

A4
0 + s(m) = s(m)

Proof of associativity: We define a proof schema of ⊢ (a + b) + m = a + (b + m). Let
D1 = {(δ1, ρ(δ1, a, b, 0), ρ(δ1, a, b,m + 1))} where S(δ1) = ⊢ (a + b) +m = a + (b +m) and we
define ρ(δ1, a, b, 0) as follows:

⊢ a+ b = a+ b
A3⊢ a+ b = a+ (b+ 0)
A3⊢ (a+ b) + 0 = a+ (b+ 0)

ρ(δ1, a, b,m+ 1) is defined as follows:

(δ1, ∅) : S(δ1)
⊢ s((a+ b) +m) = s(a+ (b+m))

A4⊢ s((a+ b) +m) = a+ s(b+m)
A4⊢ s((a+ b) +m) = a+ (b+ s(m))
A4⊢ (a+ b) + s(m) = a+ (b+ s(m))

To prove commutativity, we first need to define a proof schema of ⊢ m + 1 = 1 +m. Let
D2 = {(δ2, ρ(δ2, 0), ρ(δ2,m + 1))} ∪ D, where δ2 > δ, S(δ2) = ⊢ m + 1 = 1 +m and we define
ρ(δ2, 0) as follows:
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(δ, {m← 1}) : S(δ){m← 1}
A3⊢ 0 + 1 = 1 + 0

ρ(δ2,m+ 1) is defined as follows:

(δ2, ∅) : S(δ2)
⊢ s(m+ 1) = s(1 +m)

⊢ 1 + s(m) = 1 + s(m)
A4⊢ s(1 +m) = 1 + s(m)
E , def

⊢ s(m+ 1) = s(0) + s(m)
A3⊢ s((m+ 1) + 0) = s(0) + s(m)
A7⊢ s(s(m) + 0) = s(0) + s(m)
A4⊢ s(m) + s(0) = s(0) + s(m)
def

⊢ s(m) + 1 = 1 + s(m)

Now we define a proof schema of ⊢ n+m′ = m′+n. Let D3 = {(δ3, ρ(δ3, n, 0), ρ(δ3, n,m′+
1))} ∪D2 ∪D1, where δ3 > δ2, δ3 > δ1, S(δ3) = ⊢ n+m′ = m′ + n and we define ρ(δ3, n, 0) as
follows:

(δ, {m← n}) : S(δ){m← n}
E⊢ n = 0 + n

A3⊢ n+ 0 = 0 + n

ρ(δ3, n,m
′ + 1) is defined as follows:

(δ1, {a← n, b← m′,m← 1}) :
S(δ1){a← n, b← m′,m← 1}
⊢ n+ (m′ + 1) = (n+m′) + 1

S(δ3)

⊢ n+m′ = m′ + n

⊢ s(n+m′) = s(m′ + n)

ϕ1

⊢ s(m′ + n) = (m′ + 1) + n
E

⊢ s(n+m′) = (m′ + 1) + n
A3

⊢ s((n+m′) + 0) = (m′ + 1) + n
A4

⊢ (n+m′) + s(0) = (m′ + 1) + n
def

⊢ (n+m′) + 1 = (m′ + 1) + n
E

⊢ n+ (m′ + 1) = (m′ + 1) + n

where ϕ1 is

(δ1, {a← m′, b← 1,m← n}) :
S(δ1){a← m′, b← 1,m← n}
⊢ m′ + (1 + n) = (m′ + 1) + n

(δ2, {m← n}) : S(δ2){m← n}
⊢ n+ 1 = 1 + n E⊢ 1 + n = n+ 1

E
⊢ m′ + (n+ 1) = (m′ + 1) + n

def
⊢ m′ + s(n) = (m′ + 1) + n

A4
⊢ s(m′ + n) = (m′ + 1) + n

We are going to evaluate proof schemata under parameter assignments.

Definition 11 (evaluation of proof schema). Let D = (δ0,∆
∗,Π) be a proof schema, and σ

a parameter assignment. In defining the evaluation of the proof schema, Dσ↓, we proceed by
double induction on the ordering of proof symbols and the assignments σ.

• Let δi be a minimal element in ∆∗.
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1. σ(mδi) = 0.

Then, by definition of a proof schema, ρ0(δi, n⃗δi) is a proof with LK-inferences and
inferences for defined symbols that contain schematic sequents. Let S1, . . . Sn be all
the schematic sequents in ρ0(δi, n⃗δi). Then the evaluation of ρ0(δi, n⃗δi) under σ
is denoted by ρ0(δi, n⃗δi)↓ and obtained by replacing all S1, . . . , Sn in ρ0(δi, n⃗δi) by
σ(S1)↓, . . . , σ(Sn)↓ and omitting the inferences for defined symbols.

2. σ(mδi) = α > 0.

Evaluate all schematic sequents except the leaves (δi, ∅) : S(δi, n⃗δi ,mδi) under σ. Let
σ[mδi/α − 1] be defined as σ[mδi/α − 1](p) = σ(p) for all p ̸= mδi and σ[mδi/α −
1](mδi) = α − 1. Then we replace the labeled sequent (δi, ∅) : S(δi, n⃗δi ,mδi) by the
proofs ρ0(δi, n⃗δi)σ[mδi/α − 1]↓ if α − 1 = 0 and by ρ1(δi, n⃗δi ,mδi)σ[mδi/α − 1]↓ if
α− 1 > 0. The result is an LK-proof.

• δi ∈ ∆∗ is not minimal.

1. σ(mδi) = 0.

Evaluate all schematic sequents except the labeled sequents of the form (δ′,Ψ):
S(δ′, n⃗δ′ ,mδ′)Ψ for δi > δ′ and the corresponding parameter replacement Ψ under σ.
Then replace the labeled sequent (δ′,Ψ): S(δ′, n⃗δ′ ,mδ′)Ψ by the proof ρ0(δ

′, n⃗δ′)Ψσ↓
if σ(mδ′) = 0 and by the proof ρ1(δ

′, n⃗δ′ ,mδ′)Ψσ↓ otherwise.
2. σ(mδi) = α > 0.

As above, except for the labeled sequents (δi, ∅) : S(δi, n⃗δi ,mδi) which are replaced by
the proof ρ0(δi, n⃗δi)σ[mδi/α−1] if α−1 = 0 and by the proof ρ1(δi, n⃗δi ,mδi)σ[mδi/α−
1] otherwise.

Dσ ↓ is defined as ρ0(δ0, n⃗δ0)σ ↓ for the <-maximal symbol δ0 if σ(mδ0) = 0, and by
ρ1(δ0, n⃗δ0 ,mδ0)σ↓ if σ(mδ0) > 0.

4 Simulation of Primitive Recursive Arithmetic Through
Proof Schemata

In [9], it was demonstrated that proof schemata are equivalent to a specific fragment of arith-
metic known as k-simple induction. This variant restricts the introduction of new eigenvariables
through induction. As we are dealing with proof schemata allowing an arbitrary number of pa-
rameters, we will now provide a simulation of primitive recursive arithmetic through proof
schemata without parameter restriction. Following [12], we define the respective calculus as
the propositional part of Gentzen’s LK (see Figure 1) extended by an equational theory as in
Definition 4 and the following induction rule:

Γ ⊢ ∆, F (0) Γ, F (y) ⊢ ∆, F (y + 1)
(IND)

Γ ⊢ ∆, F (n)

where y is a variable of sort ω, n is a variable of sort ω, and y does not occur in Γ,∆, F (0).
Note that in [12], the induction variable is an arbitrary term. Our restriction to a variable

of sort ω is equivalent, as it is easy to see that any arbitrary term can be simulated in the
conclusion. Further, every sequent S : Γ ⊢ ∆ corresponds to an equivalent formula F(S) :=∨
¬Γ ∪ ∆. The calculus resulting from combining the rules from Figure 1, E and (IND) is

denoted by PRA.
We will now show the translation from quantifier-free proof schemata to PRA and back.
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Γ ⊢ ∆ (w : l)
A,Γ ⊢ ∆

Γ ⊢ ∆ (w : r)
Γ ⊢ ∆, A

A,A,Γ ⊢ ∆
(c : l)

A,Γ ⊢ ∆

Γ ⊢ ∆, A,A
(c : r)

Γ ⊢ ∆, A

(Axiom)
F ⊢ F

Γ ⊢ ∆, F Σ, F ⊢ Π
(cut)

Γ,Σ ⊢ ∆,Π

Γ, F,G ⊢ ∆
(∧ : l)

Γ, F ∧G ⊢ ∆

Γ ⊢ ∆, F Σ ⊢ Π, G
(∧ : r)

Γ,Σ ⊢ ∆,Π, F ∧G
Γ, F ⊢ ∆ Σ, G ⊢ Π

(∨ : l)
Γ,Σ, F ∨G ⊢ ∆,Π

Γ ⊢ ∆, F,G
(∨ : l)

Γ ⊢ ∆, F ∨G
Γ ⊢ ∆, F

(¬ : l)
Γ,¬F ⊢ ∆

Γ, F ⊢ ∆
(¬ : r)

Γ ⊢ ∆,¬F
Γ ⊢ ∆, F Σ, G ⊢ Π

(→: l)
Γ,Σ, F → G ⊢ ∆,Π

Γ, F ⊢ ∆, G
(→: r)

Γ ⊢ ∆, F → G

Figure 1: The propositional part of Gentzen’s LK

Lemma 1. Let D be a proof schema with end-sequent S. Then there exists a PRA proof of S.

Proof. Let D = {(δi, ρ(δi, n⃗i, 0), ρ(δi, n⃗i,mi + 1)) | i ∈ {1, ..., α}} with S(δi) = Si and if i < j
then δi > δj . Hence, S(δ1) = S.

We construct inductively PRA proofs of F(Sγ), starting with γ = α. Assume we con-
structed PRA proofs ξγ+1, ..., ξα of F(Sγ+1), ...,F(Sα) respectively. Our aim is to construct a
PRA proof of F(Sγ). In ρ(δγ , n⃗γ , 0) replace any proof call of the form (δj ,Ψ) : S(δj)Ψ by ξjΨ
to obtain proof ξBγ . In ρ(δγ , n⃗γ ,mγ+1) replace any proof call of the form (δj ,Ψ) : S(δj)Ψ with
j ̸= γ by ξjΨ and replace any self-referencing proof call of the form (δγ , ∅) : S(δγ) by axiom
F(S(δγ)) ⊢ F(S(δγ)) to obtain proof ξSγ . The desired proof is then constructed as follows:

ξBγ

⊢ F(Sγ){mγ ← 0}
ξSγ

F(Sγ){mγ ← y} ⊢ F(Sγ){mγ ← y + 1}
(IND)

⊢ F(Sγ)

Note that in case of a proof call which includes an instantiation, we use (cut) instead of (IND).
Finally, we use cuts to derive S from the proof of F(S).

Example 4. To illustrate this, we provide a translation of the schematic proof of commutativity
from Example 3 into PRA. The proof schema D3 is then translated into:

φ1

⊢ n+ 0 = 0 + n

φ2

n+ z = z + n ⊢ n+ s(z) = s(z) + n
(IND)

⊢ n+m′ = m′ + n

where φ1 is
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⊢ 0 = 0
A3⊢ 0 + 0 = 0

0 + y = y ⊢ 0 + y = y

0 + y = y ⊢ s(0 + y) = s(y)
A4

0 + y = y ⊢ 0 + s(y) = s(y)
(IND)⊢ 0 + n = n E⊢ n = 0 + n

A3⊢ n+ 0 = 0 + n

and φ2 is

ψ1

⊢ n+ (z + 1) = (n+ z) + 1
A7

⊢ n+ s(z) = (n+ z) + 1

n+ z = z + n ⊢ n+ z = z + n

n+ z = z + n ⊢ s(n+ z) = s(z + n)

ψ2

⊢ s(z + n) = (z + 1) + n
E

n+ z = z + n ⊢ s(n+ z) = (z + 1) + n
A3

n+ z = z + n ⊢ s((n+ z) + 0) = (z + 1) + n
A4

n+ z = z + n ⊢ (n+ z) + s(0) = (z + 1) + n
def

n+ z = z + n ⊢ (n+ z) + 1 = s(z) + n
E

n+ z = z + n ⊢ n+ s(z) = s(z) + n

with ψ1

⊢ n+ z = n+ z
A3⊢ n+ z = n+ (z + 0)

A3⊢ (n+ z) + 0 = n+ (z + 0)

(n+ z) + 0 = n+ (z + 0) ⊢ (n+ z) + 0 = n+ (z + 0)

(n+ z) + 0 = n+ (z + 0) ⊢ s((n+ z) + 0) = s(n+ (z + 0))
A4

(n+ z) + 0 = n+ (z + 0) ⊢ s((n+ z) + 0) = n+ s((z + 0))
A4

(n+ z) + 0 = n+ (z + 0) ⊢ s((n+ z) + 0) = n+ (z + s(0))
A4

(n+ z) + 0 = n+ (z + 0) ⊢ (n+ z) + s(0) = n+ (z + s(0))
def

(n+ z) + 0 = n+ (z + 0) ⊢ (n+ z) + 1 = n+ (z + 1)
(cut)

⊢ (n+ z) + 1 = n+ (z + 1)
E⊢ n+ (z + 1) = (n+ z) + 1

and ψ2

γ1
⊢ z + (1 + n) = (z + 1) + n

γ2
⊢ 1 + n = n+ 1

E⊢ z + (n+ 1) = (z + 1) + n
A7

⊢ z + s(n) = (z + 1) + n
A4

⊢ s(z + n) = (z + 1) + n

with γ1

⊢ z + 1 = z + 1
A3

⊢ z + 1 = z + (1 + 0)
A3

⊢ (z + 1) + 0 = z + (1 + 0)

(z + 1) + u = z + (1 + u) ⊢ (z + 1) + u = z + (1 + u)

(z + 1) + u = z + (1 + u) ⊢ s((z + 1) + u) = s(z + (1 + u))
A4

(z + 1) + u = z + (1 + u) ⊢ s((z + 1) + u) = z + s((1 + u))
A4

(z + 1) + u = z + (1 + u) ⊢ s((z + 1) + u) = z + (1 + s(u))
A4

(z + 1) + u = z + (1 + u) ⊢ (z + 1) + s(u) = z + (1 + s(u))
(IND)

⊢ (z + 1) + n = z + (1 + n)
E

⊢ z + (1 + n) = (z + 1) + n

and γ2
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⊢ 0 = 0
A3⊢ 0 + 0 = 0

0 + 0 = 0 ⊢ 0 + 0 = 0

0 + 0 = 0 ⊢ s(0 + 0) = s(0)
A4

0 + 0 = 0 ⊢ 0 + s(0) = s(0)
def

0 + 0 = 0 ⊢ 0 + 1 = 1
(cut)

⊢ 0 + 1 = 1
A3⊢ 0 + 1 = 1 + 0

τ

w + 1 = 1 + w ⊢ s(w) + 1 = 1 + s(w)
(IND)

⊢ n+ 1 = 1 + n
E⊢ 1 + n = n+ 1

with τ

w + 1 = 1 + w ⊢ w + 1 = 1 + w

w + 1 = 1 + w ⊢ s(w + 1) = s(1 + w)

⊢ 1 + s(w) = 1 + s(w)
A4

⊢ s(1 + w) = 1 + s(w)
E , def

w + 1 = 1 + w ⊢ s(w + 1) = s(0) + s(w)
A3

w + 1 = 1 + w ⊢ s((w + 1) + 0) = s(0) + s(w)
A7

w + 1 = 1 + w ⊢ s(s(w) + 0) = s(0) + s(w)
A4

w + 1 = 1 + w ⊢ s(w) + s(0) = s(0) + s(w)
def

w + 1 = 1 + w ⊢ s(w) + 1 = 1 + s(w)

Lemma 2. Let π be a PRA proof of S. Then there exists a proof schema with end-sequent S.

Proof. Let π contain α induction inferences

Γβ ⊢ ∆β , Fβ(0) Γβ , Fβ(y) ⊢ ∆β , Fβ(y + 1)
(IND)

Γβ ⊢ ∆β , Fβ(nβ)

where a ≤ β ≤ α. W.l.o.g. assume that if γ < β then the induction inference with conclusion
Γβ ⊢ ∆β , Fβ(nβ) is above the induction inference with conclusion Γγ ⊢ ∆γ , Fγ(nγ). We define
n⃗ = {ni | i ∈ {1...α}}∪ V (π) as the set of all induction variables, where ni denotes the induction
variable of the i-th induction inference, together with the set of free variables and constants
V in π. Let T be the transformation taking an PRA proof to a proof schema by replacing
the induction inferences with conclusion Γγ ⊢ ∆γ , Fγ(nγ) by a proof call (δγ , {m ← nγ}) :
S(δγ){m← nγ} with S(δγ) = Γγ ⊢ ∆γ , Fγ(m).

We will inductively construct a proof schema D = {(δi, ρ(δi, n⃗, 0), ρ(δi, n⃗,m + 1)) | i ∈
{1...α}} with end-sequent S(δi) = Γi ⊢ ∆i, Fi(m+ 1) for each tuple and δi > δi+1. Assume we
already constructed proof schema Dβ+1 = {(δi, ρ(δi, n⃗, 0), ρ(δi, n⃗,m+ 1)) | i ∈ {(β + 1)...α}}.

Consider the induction inference with conclusion Γβ ⊢ ∆β , Fβ(nβ). Let φ1 be the derivation
above the left premise and φ2 be the derivation above the right premise. We construct a
proof schema Dβ = {(δβ , ρ(δβ , n⃗, 0), ρ(δβ , n⃗,m + 1))} ∪ Dβ+1 with ρ(δβ , n⃗, 0) = T (φ1) and
ρ(δβ , n⃗,m+ 1) =

(δβ , ∅) : S(δβ)
Γβ ⊢ ∆β , Fβ(m)

T (φ2)

Γβ , Fβ(m) ⊢ ∆β , Fβ(m+ 1)
(cut), (c : l)∗, (c : r)∗

Γβ ⊢ ∆β , Fβ(m+ 1)
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Summarising, (δβ , ρ(δβ , n⃗, 0), ρ(δβ , n⃗,m + 1)) is a proof schema tuple with end-sequent Γβ ⊢
∆β , Fβ(n), as desired.

Finally, the part of π located beneath the last induction inference is translated into proof
schema D′ = {(δ′, ρ(δ′, n⃗,m), ρ(δ′, n⃗,m + 1))} ∪ D with S(δ′) = S and δ′ > δi for i ∈ {1...α}.
Let φ be the derivation above S. As there is no internal recursion in δ′ needed, we only define

ρ(δ′, n⃗,m) =
T (φ)

S
.

5 Conclusion

An interesting research question that has not been solved so far is to relate proof schemata to
systems of arithmetic. In particular it was not known whether the classes of proofs specifiable in
primitive recursive arithmetic and via proof schemata coincide. In this paper we have shown that
proof schemata simulate primitive recursive arithmetic; we conjecture that a transformation of
proofs in the other direction can be provided as well. Together with with a completeness result
for the method CERES (a result not obtained so far) , the result in this paper yields a realization
of Herbrand’s theorem for an expressive fragment of formal number theory. While such a result
would be far-fetched for general formula schemata, one has to take into account that formulas
or clause sets derived from the cut structure of formal proofs are a significantly restricted subset
of the set of all formulas or clause sets. Even if a completeness result for CERES on schemata
originating from primitive recursive arithmetic were not possible using our current approach,
we expect that a completeness result for an expressive fragment thereof is within reach. Such
a result would be of major importance, as none of the previous schematic CERES methods is
shown proof analytically complete for a fragment of primitive recursive arithmetic.
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