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Abstract

One of the main challenges in the area of Neuro-Symbolic AI is to perform logical
reasoning in the presence of both neural and symbolic data. This requires combining
heterogeneous data sources such as knowledge graphs, neural model predictions, structured
databases, crowd-sourced data, and many more. To allow for such reasoning, we generalise
the standard rule-based language Datalog with existential rules (commonly referred to as
tuple-generating dependencies) to the fuzzy setting, by allowing for arbitrary t-norms in the
place of classical conjunctions in rule bodies. The resulting formalism allows us to perform
reasoning about data associated with degrees of uncertainty while preserving computational
complexity results and the applicability of reasoning techniques established for the standard
Datalog setting. In particular, we provide fuzzy extensions of Datalog chases which produce
fuzzy universal models and we exploit them to show that in important fragments of the
language, reasoning has the same complexity as in the classical setting.

1 Introduction
We currently see a rapid growth of Artificial Intelligence and its usage in large-scale applications,
such as image and speech recognition, knowledge graphs completion, or recommendation
generation. Such systems produce huge amounts of data, whose facts are associated with degrees
of truth—expressing the level of confidence in the truth of the datum. Reasoning about such
data gives rise to new challenges for data management. Specifically, there is a growing demand
for logical reasoning methods capable of integrating precise and uncertain data gathered from
heterogeneous sources. Developing efficient approaches for this task would allow us to make a
significant step towards a tight integration of symbolic and sub-symbolic AI.

This research direction is currently intensively studied within the areas of Neural-Symbolic
AI [23, 24] and Statistical-Relational AI [17] which, in the last years, gave rise to numerous
formalisms aiming to integrate various aspects of logical reasoning with neural models. A number
of approaches are based on combining logic programming languages with probabilistic and
neural predicates; representative examples in this class are DeepProbLog [35], SLASH [40],
NeurASP [42], and Generative Datalog [3]. There are also approaches, like Logic Tensor
Networks (LTN) [33, 39] or its extension LYRICS [36], which propose to adapt logical semantics
to the neural setting by interpreting terms with tensors and connectives with t-norms. On
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the other hand, there is a long-standing research on fuzzy logics [28] and their applications
to logic programming [2, 18, 19, 29, 31, 37] and description logics [34, 41, 10], among others.
More recently, the fuzzy setting is studied for complex multi-adjoint [16, 37] and Prolog-derived
semantics based on fuzzy similarity of constants and fuzzy unification procedures [29].

Although the recent progress on logical formalisms for reasoning about neural and uncertain
data is undeniable, current approaches still do not allow to fully address the grand challenge of
integrating neural data with logical reasoning [6, 4]. Indeed, current methods are often of high
computational complexity (reasoning is often undecidable and sometimes complexity is not even
analysed), require completely new, often exotic, reasoning procedures tailored to the introduced
formalisms, or impose significant restrictions on the allowed forms of uncertainty as well as on
their interaction within logical reasoning.

We address these difficulties by introducing an extension t-Datalog∃ of the standard rule-based
language Datalog (with existential rules) to the setting where data can be associated with degrees
of truth and rules are equipped with a wide range of connectives (interpreted by arbitrary
t-norms) operating on these degrees. To illustrate the reasoning capabilities of t-Datalog∃
consider the example from Figure 1, where the task is to determine a common hypernym of
objects presented in images img1 and img2 . To this end, we apply the CNN image classifier
EfficientNet [35], which provides us with predicted labels for the subject of the image and
truth degrees of these predictions. This allows us to produce fuzzy facts with neural predicates ;
the highest truth degrees 0.800 and 0.900 are associated with NeuralLabel(img1 , tiger_shark)
and NeuralLabel(img2 , tench), respectively. We also use a lexical database WordNet1 [38]
which contains, among many others, precise facts about hypernyms; for example we obtain
facts Hypernym(tiger_shark ,fish) and Hypernym(tench,fish). To perform reasoning based on a
combination of neural data from EfficientNet and precise facts from WordNet we use a t-Datalog∃
program consisting of the following rules, where conjunctions in rule bodies are replaced with
operators corresponding to t-norms:

NeuralLabel(x, y) → Class(x, y), (r1)
Class(x, y)⊙Ł Hypernym(y, z) → Class(x, z), (r2)

Class(x, z)⊙prod Class(y, z) → CommonClass(x, y, z). (r3)

Rule (r1) introduces a binary predicate Class which holds for image labels predicted by Ef-
ficientNet via NeuralLabel , Rule (r2) exploits knowledge about Hypernym from WordNet to
assign image objects to classes, and Rule (r3) derives common classes for pairs of images.
Note that t-Datalog∃ allows for using various t-norms in different rules; in particular, we
use Łukasiewicz t-norm ⊙Ł and the product t-norm ⊙prod, which operate on truth degrees
as follows: a ⊙Ł b = max{0, a + b − 1} and a ⊙prod b = a · b. Thus, Rule (r2) allows us
to derive Class(img1 ,fish) with truth 0.800 ⊙Ł 1 = 0.800 and Class(img2 ,fish) with truth
0.900 ⊙Ł 1 = 0.900 (facts about Hypernym are precise and so, they have a truth degree 1).
Then, Rule (r3) derives CommonClass(img1, img2, fish) with truth 0.800⊙prod 0.900 = 0.720.
Note that we can derive also CommonClass(img1 , img2 , tiger_shark) with a low truth degree
of 0.016, since EfficientNet misclassified image img2 as a tiger_shark with truth 0.020.

Our formalism t-Datalog∃ is, therefore, a natural extension of Datalog∃ (Datalog extended
with existential rules [5], also known as tuple-generating dependencies [7] and studied under
the name of Datalog± [14, 25]) to the fuzzy setting, where conjunctions are replaced with
t-norms. It is worth emphasising that the class of t-Datalog∃ programs is very broad; we allow
for existential quantification in rule heads (which we did not use in the exemplary program

1http://wordnetweb.princeton.edu/
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NeuralLabel(x, y) → Class(x, y)
Class(x, y) ⊙Ł Hypernym(y, z) → Class(x, z)

Class(x, z) ⊙prod Class(y, z) → CommonClass(x, y, z)

0.800 : NeuralLabel(img1 , tiger_shark)
0.070 : NeuralLabel(img1 , great_tiger_shark)
0.030 : NeuralLabel(img1 , hammerhead)
0.020 : NeuralLabel(img1 , scuba_diver)
0.010 : NeuralLabel(img1 , impala)

0.900 : NeuralLabel(img2 , tench)
0.020 : NeuralLabel(img2 , tiger_shark)
0.010 : NeuralLabel(img2 , goldfish)
0.010 : NeuralLabel(img2 , coho)

...

Hypernym(tiger_shark , requiem_shark)
Hypernym(tiger_shark , shark)
Hypernym(tiger_shark ,fish)
Hypernym(tench, cyprinid)
Hypernym(tench, cyprinformfish)
Hypernym(tench,fish)

...

REASONER

0.900 : Class(img2 ,fish)
0.800 : Class(img1 ,fish)
0.720 : CommonClass(img1 , img2 ,fish)
0.016 : CommonClass(img1 , img2 ,

tiger_shark)

...

Image classification from EfficientNet

t-Datalog∃ program

OutputLexical knowledge from WordNet

img1

img2

Figure 1: An application of t-Datalog∃ to derive common classes of objects in input images
img1 and img2 ; reasoning is performed based on image classifications from EfficientNet (with
uncertainty degrees) and lexical knowledge from WordNet (precise information).

to simplify presentation), any arity predicates, recursion, and arbitrary t-norms (in contrast
to many other approaches, e.g., our previous research tailored specifically to the Łukasiewicz
t-norm [31]). In particular, no restriction on the choice of t-norms allows us to model a range
of interactions between degrees of truth. This flexibility is also important from the practical
perspective, as the choice of t-norms has a significant impact on the performance of a system [21].

The main advantage, distinguishing t-Datalog∃ from the related formalisms, is that t-Datalog∃
does not only allow us to perform complex logical reasoning about uncertain data gathered
from heterogeneous data sources, but it also allows us to apply well-studied Datalog∃ reasoning
mechanisms. In particular, we show in the paper how to adapt the (semi-oblivious and restricted)
chase procedures developed for Datalog∃ and we prove that complexity of reasoning in various
fragments of t-Datalog∃ is the same as in the corresponding fragments of Datalog∃. Hence, we
obtain a proper extension of Datalog∃ which allows us to perform complex reasoning about
degrees of turth with no negative impact on the computational complexity and with the possibility
to use standard chase procedures.

The main contributions of this paper are as follows2 :

• We introduce t-Datalog∃ (Section 2) as a fuzzy extension of Datalog∃ allowing for arbitrary
t-norms instead of standard Boolean conjunction in rule bodies. Both syntax and semantics
are defined by natural extensions of Datalog∃ to the fuzzy setting. As a result, we lay

2Preliminary ideas for t-Datalog (i.e., without existential quantification) were previously presented as an
extended abstract [32].
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foundations for fuzzy extensions of the Datalog± family of ontology languages (obtained
by imposing various restrictions on Datalog∃) suitable for neuro-symbolic applications.

• We propose (Section 3.1) a fuzzy version of the chase and we show (Section 3.2) that,
similarly as in Datalog∃, application of a finite fuzzy chase results in a fuzzy universal
model, which can be used to decide entailment. We observe, however, that reasoning with
fuzzy chases introduces new challenges, which disallows us to directly translate results on
termination and complexity from Datalog∃.

• We introduce (Section 4) a new type of truth-greedy fuzzy chases for t-Datalog∃. We show
their relation to standard chases for Datalog∃, which allows us to exploit termination and
complexity results for Datalog∃. In particular, we show P-completeness for entailment
in t-Datalog and in weakly acyclic t-Datalog∃, matching the complexity of Datalog and
weakly acyclic Datalog∃.

• We introduce (Section 5) an extension of t-Datalog with fuzzy negations and any other
unary operators (e.g., threshold operators) interpreted as functions [0, 1] −→ [0, 1]. We
show that adding such operators does not increase complexity of reasoning if the input
program is stratifiable (and does not use existential quantification), namely it remains
P-complete in data complexity.

2 Datalog∃ over t-norms
In this section, we introduce syntax and semantics of t-Datalog∃, as well as present the basic
reasoning problem and notation which we will use in the paper.

Signature and domain. We fix a signature σ (i.e. a set of predicate symbols, each of a fixed,
but arbitrary arity) and countable sets Dom and Nulls of object elements and nulls, resepectively,
with Dom ∩ Nulls = ∅; we let DomN = Dom ∪ Nulls. We will use GAtoms and GAtomsN for the
sets of all ground atoms with constants in Dom and in DomN, respectively.

Fuzzy dataset. A fuzzy dataset is a partial function D : GAtoms −→ (0, 1] assigning real
numbers from the interval (0, 1]—treated as truth degrees—to a finite number of atoms in
GAtoms. Note that a fuzzy dataset does not assign truth degrees to atoms with nulls and that
it never assigns 0 to any atom, which is in line with the standard definition of a dataset listing
facts which need to hold true (but not mentioning which facts need to be false).

t-norms. A t-norm is any commutative, monotone, and associative function of the form
⊙ : [0, 1]×[0, 1] −→ [0, 1], with 1 being the identity element [28]. It follows from the definition that
if a and b are Boolean (i.e., 0 or 1), then a⊙b coincides with the value of the standard conjunction
a ∧ b, for any t-norm ⊙. Thus, t-norms provide a generalisation of the standard conjunction to
the fuzzy setting. Commonly used t-norms in fuzzy logics include the minimum t-norm (also
known as Gödel t-norm) a⊙min b = min{a, b}, Łukasiewicz t-norm a⊙Ł b = max{0, a+ b− 1},
and the real product t-norm a⊙prod b = a ·b. However, t-norms can be significantly more complex,
for example, all functions of the form fp(a, b) = (ap + bp − 1)

1
p , for p < 0, are t-norms (part of

the Schweizer-Sklar family of t-norms [43]). The following known observation will be particularly
important for our results.

Proposition 1. For every t-norm ⊙ and all a, b ∈ [0, 1] it holds that a⊙ b ≤ a⊙min b.

For an overview of t-norms and their properties, refer to the work of Klement et al. [30].
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t-Datalog∃ programs. A t-Datalog∃ program Π is a finite set of rules r, of the form

R1(x1)⊙r · · · ⊙r Rℓ(xℓ) → ∃zS(xh, z),

where ⊙r is any t-norm3 (each rule can use a different t-norm), S,R1, . . . , Rℓ are predicate
symbols in the signature and x1, . . . ,xℓ,xh, z are (possibly empty) sequences of variables of
arities matching the predicate symbols. The left-hand side of the implication → in a rule r is
the body, body(r), and the right-hand side is its head, head(r). Variables in x1, . . . ,xℓ are called
body variables, those in xh frontier variables, fr(r), and those in z are existential variables. We
assume that in each rule the set of body variables contains each frontier variable, but does not
contain any existential variable. A program with no existential variables is called a t-Datalog
program. We use vars(ϕ) to refer to the set of all variables in an expression ϕ (e.g., in a rule or
in a rule body). A grounding of a rule r is any function ρ : vars(body(r)) −→ DomN assigning
domain constants and nulls to body variables.

Semantics. A fuzzy interpretation is a function I : GAtomsN −→ [0, 1], assigning truth degrees
to ground atoms (also to atoms with nulls). The function is extended to complex expressions ϕ
and ϕ′ inductively as follows:

I(ϕ⊙ ϕ′) = ⊙(I(ϕ), I(ϕ′)),

I(ϕ → ϕ′) = min {1, 1− I(ϕ) + I(ϕ′)} ,

I
(
∃z S(a, z)

)
= sup

{
I
(
S(a,b)

)
| b ∈ DomN

|z|
}
,

where ⊙ is any t-norm and a is a sequence of constants in DomN. Note that we use the same
Łukasiewicz semantics for implication → in all rules.

A rule r is K-satisfied by a fuzzy interpretation I, for a rational number K ∈ [0, 1], if
I(ρ(r)) ≥ K for every grounding ρ of r. Thus, ϕ → ϕ′ is K-satisfied if I(ρ(ϕ′))−I(ρ(ϕ)) ≥ K−1.
In particular, 1-satisfiability requires that I(ρ(ϕ′))−I(ρ(ϕ)) ≥ 0, that is, the truth degree of the
head is at least as large as the truth degree of the body. On the other hand, ϕ → ϕ′ is trivially
0-satisfied by any I, since I(ρ(ϕ′))− I(ρ(ϕ)) ≥ −1 is always true. A fuzzy interpretation I is
a K-fuzzy model of a program Π if all rules in Π are K-satisfied by I. For a fuzzy dataset D,
we let ID be its minimal fuzzy interpretation defined such that ID(A) = D(A) if A is in the
domain of D and ID(A) = 0 otherwise. Then, I is a fuzzy model of D if I(A) ≥ ID(A) for every
ground atom A.

Reasoning and complexity. The basic reasoning problem we consider is K-entailment, for
any K ∈ [0, 1], which is to check whether in every K-fuzzy model of a program Π and a fuzzy
dataset D, the truth degree of a goal ground atom G is not smaller than a target value c. Hence,
the problem is defined as follows:

K-Entailment
Input: A t-Datalog∃ program Π, a fuzzy dataset D, a ground atom G ∈ GAtoms,

and c ∈ [0, 1].
Output: ‘Yes’ if and only if I(G) ≥ c, for all K-fuzzy models I of Π and D.

3We slightly abuse notation by using the same symbol, ⊙r, for a connective in a rule and for a t-norm which
interprets this connective.
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If the output is ‘yes’, we say that G is (c,K)-entailed by Π and D, written as (Π,D) |=c
K G.

Clearly, checking K-entailment requires applying t-norms and, although computing most of
the standard t-norms is easy (e.g., all the t-norms mentioned in this paper), one can introduce
computationally-demanding t-norms. For this reason, we will abstract away from the complexity
of computing t-norms. In particular, when studying computational complexity of K-Entailment,
we will treat the time required to compute t-norms and the memory used to store truth degrees
as constant. Moreover, we will focus on the data complexity of K-Entailment—which is with
respect to the size of D only—and is particularly important for data-intensive applications, like
the one from Figure 1. Furthermore, for the sake of simplicity, we only explicitly analyse atomic
entailment in this paper. Recall that entailment of a conjunctive query ϕ can be expressed by
adding a rule ϕ → Goal and checking entailment of Goal . Therefore, complexity results in our
paper transfer also to conjunctive query entailment.

We can observe that K-Entailment extends the standard notion of entailment in Datalog∃.
In particular, if c = K = 1 and the only truth degree assigned by a fuzzy dataset is 1, then
K-Entailment coincides with the standard entailment in Datalog∃, as shown below.

Theorem 2. Let Π be a t-Datalog∃ program, D a fuzzy dataset, and G ∈ GAtoms. If the only
truth degree assigned by D is 1 (i.e., D(A) = 1 whenever D(A) is defined), then the following
are equivalent:

1. (Π,D) |=1
1 G,

2. G is entailed by the Datalog∃ counterparts Π′ and D′ of Π and D (namely Π′ is obtained
by replacing t-norms in Π with conjunctions and D′ = {A | D(A) = 1}).

Proof. Assume that (Π,D) |=1
1 G and let S ⊆ GAtomsN be a Datalog∃ model of Π′ and D′. We

will show that G ∈ S. We define a fuzzy interpretation I such that for any A ∈ GAtomsN we
have I(A) = 1 if A ∈ S, and I(A) = 0 if A /∈ S. Hence, I is a fuzzy model of D. We claim
that I is also a 1-fuzzy model of Π. For this, it suffices to show that each rule of Π′ is satisfied
in S if and only if its counterpart in Π is 1-satisfied in I. This holds since the semantics of
any t-norm coincides with the semantics of a conjunction and the semantics of → in t-Datalog∃
coincides with its semantics in Datalog∃, whenever a fuzzy interpretation assigns only Boolean
truth degrees to all atoms. As (Π,D) |=1

1 G and I is a 1-fuzzy model of Π and D, we obtain
that I(G) = 1, and so, G ∈ S, as required.

For the opposite direction assume that Π′ and D′ entail G, and let I be a 1-fuzzy model of
Π and D. We construct a ‘crisp’ version Ic of I by setting Ic(A) = 1 if I(A), and Ic(A) = 0
if I(A) < 1, for any A ∈ GAtomsN. Since D assigns only 1 as a truth degree, Ic is a fuzzy
model of D. We claim that Ic is also a 1-fuzzy model of Π. Towards a contradiction suppose
that some ground rule ϕ → ϕ′ of Π is 1-satisfied by I, but not by Ic; that is I(ϕ) ≤ I(ϕ′) and
Ic(ϕ) > Ic(ϕ′). Since over the Boolean values any t-norm behaves like a conjunction, we obtain
that Ic(ϕ) = 1 and Ic(ϕ′) = 0. By the monotonicity of t-norms I(ϕ) ≥ Ic(ϕ), so I(ϕ) = 1.
Moreover I(ϕ′) < 1 because I(ϕ′) = 1 would imply that Ic(ϕ′) = 1. Hence I(ϕ) ̸≤ I(ϕ′), rising
a contradiction. Thus Ic is a 1-fuzzy model of Π and D. Since Ic is a ‘crisp’ model of Π and D,
the fact that Π′ and D′ entail G implies that Ic(G) = 1. Thus, I(G) = 1, as required.

3 Chasing t-Datalog∃

In this section, we define fuzzy chases and fuzzy universal models. We will show that each finite
fuzzy chase produces a fuzzy universal model, which can be used to check entailment.
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As described in the previous section, the notion of satisfaction in t-Datalog∃ is parameterised
with K ∈ [0, 1] (and so are also parameterised notions of a model and entailment), which
determines how much larger the truth degree of a head of rule needs to be than the truth degree
of the body so that we treat the rule as satisfied. It turns out, however, that the specific choice
of the value for K does not impact our technical results. Therefore, for the sake of simplification,
we will assume in the rest of the paper that K = 1 and we will not mention K; for example
instead of K-Entailment and |=c

K we will simply refer to Entailment and |=c, respectively.
In Section 6 we will briefly discuss how our results generalise to arbitrary values of K.

3.1 Fuzzy Triggers and Chases
We start by defining notions of fuzzy semi-oblivious and restricted chases in t-Datalog∃, by lifting
the notions used in standard Datalog∃ [12]. Our definitions are based on a fuzzy counterpart of
a trigger, defined next.

A fuzzy trigger is a pair (r, ρ), where r is a rule and ρ is a grounding of r. The result of
applying a trigger (r, ρ) to a fuzzy interpretation I is a fuzzy interpretation I ′ obtained by
updating the truth degree of the head of ρ(r) (with existential variables replaced by nulls) to the
value I(ρ(body(r))), that is, to the truth degree of the body. Formally, we let the head H(r, ρ)
of a fuzzy trigger (r, ρ) be the ground atom obtained from the head of ρ(r) by deleting existential
quantifier and replacing each existential variable x with a null Nx

r,ρ| fr(r)
∈ Nulls, where the null

is determined by x, r, and the restriction of ρ to frontier variables fr(r). To simplify notation
and make it more intuitive, in what follows we will write trI(r, ρ) instead of I(ρ(body(r))), for
the truth degree corresponding to a trigger application. Hence, we formally define the result of
applying (r, ρ) to I as the following fuzzy interpretation I ′:

I ′(A) =

{
trI(r, ρ), if A = H(r, ρ),

I(A), if A ∈ GAtomsN \ {H(r, ρ)}.

Example 3. Let r be the following rule r

NeuralLabel(x, y)⊙Ł NeuralLabel(u,w) → ∃zCommonClass(x, u, z)

and let ρ be its grounding with x 7→ img1 , y 7→ tiger_shark , u 7→ img2 , and w 7→ tench,
so the head H(r, ρ) of the trigger (r, ρ) is CommonClass(img1 , img2 ,Nz

r ,ρ| fr(r)
). To illus-

trate application of (r, ρ) assume that I assigns NeuralLabel(img1 , tiger_shark) 7→ 0.8 and
NeuralLabel(img2 , tench) 7→ 0.9. Hence trI(r, ρ) = 0.8⊙Ł0.9 = 0.7, and so, the result of applying
(r, ρ) to I is a fuzzy interpretation I ′ with CommonClass(img1 , img2 ,Nz

r ,ρ| fr(r)
) 7→ 0.7.

Depending on the type of allowed triggers we will obtain different types of chase procedures.
In particular, the semi-oblivious chase will allow for so-active triggers and the restrictive chase
for r-active triggers only. We say that:

• a trigger (r, ρ) is so-active in a fuzzy interpretation I if trI(r, ρ) > I(H(r, ρ)), that is, an
application of the trigger will increase the current truth degree of H(r, ρ),

• a trigger (r, ρ) is r-active in a fuzzy interpretation I if trI(r, ρ) > I(H′) for all H′ obtained
by replacing nulls in H(r, ρ) with elements from DomN.

Note that each r-active trigger is also so-active, because trI(r, ρ) > I(H′) for all H′ described
above, implies, in particular, that trI(r, ρ) > I(H(r, ρ)).
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A semi-oblivious chase (so-chase) for a program Π and a fuzzy dataset D is a (finite or
infinite) sequence of triggers (r1, ρ1), (r2, ρ2), . . . with rules ri in Π such that there exists a
sequence of fuzzy interpretations I0, I1, I2, . . . with the following properties:

(i) I0 = ID,
(ii) each (ri, ρi) is so-active in Ii−1,
(iii) each Ii (with i > 0) is the result of applying (ri, ρi) to Ii−1,
(iv) for each Ii and every so-active trigger in Ii, there exists finite j > i such that this trigger

is not so-active in Ij (the fairness condition).
Observe that each fuzzy chase has a unique sequence I0, I1, I2, . . . of fuzzy interpretations,
which we will call corresponding to the chase; we will also call Ii the ith interpretation in the
chase. A restricted chase (r-chase) is defined analogously, by using the notion of a r-active trigger
instead of an so-active trigger. Note that both types of chases can be either finite or infinite. If
a chase is finite, we call the last interpretation In the result of applying the chase.

Example 4. Let Π = {r} for the rule r from Example 3 and let D be the fuzzy dataset
corresponding to I from Example 3 (i.e., ID = I). There are four active triggers in ID (as there
are four ways we can assign img1 and img2 to x and y). Each order of their applications gives
rise to a different chase. For example we can obtain a chase, say (r, ρ1), (r, ρ2), (r, ρ3), (r, ρ4),
with corresponding interpretations I0, I1, I2, I3, I4 such that

I1 assigns CommonClass(img1 , img2 ,Nz
r ,ρ1 | fr(r)

) 7→ 0.7 (since 0.8⊙Ł 0.9 = 0.7),

I2 assigns CommonClass(img2 , img1 ,Nz
r ,ρ2 | fr(r)

) 7→ 0.7 (since 0.9⊙Ł 0.8 = 0.7),

I3 assigns CommonClass(img1 , img1 ,Nz
r ,ρ3 | fr(r)

) 7→ 0.6 (since 0.8⊙Ł 0.8 = 0.6),

I4 assigns CommonClass(img2 , img2 ,Nz
r ,ρ4 | fr(r)

) 7→ 0.8 (since 0.9⊙Ł 0.9 = 0.8).

Note that (r, ρ1), (r, ρ2), (r, ρ3), (r, ρ4) is both an so-chase and an r-chase for Π and D. It is still
an so-chase if we add CommonClass(img1 , img2 ,fish) 7→ 0.8 to D, but it is not an r-chase any
more because trI0

(r, ρ1) = 0.7 ̸> 0.8 = I0(CommonClass(img1 , img2 ,fish)), and so, (r, ρ1) is
not r-active in I0.

3.2 Fuzzy Universal Models
The core property of chases in Datalog∃, which makes them a crucial tool for checking entailment,
is that each finite chase results in a universal model that represents (modulo homomorphisms)
all models of a given program and dataset. In this section, we show that an analogous result can
be provided for fuzzy chases in t-Datalog∃. We start by introducing a notion of a homomorphism
which is tailored to our fuzzy setting. As defined below, a homomorphism is a function
h : DomN −→ DomN, but we will often use its extension to atoms and rule bodies; for example
we will write h(A) to refer to the atom A with constants replaced according to h.

Definition 5. A non-decreasing homomorphism from a fuzzy interpretation I to a fuzzy
interpretation I ′ is any function h : DomN −→ DomN such that:

(i) h(a) = a, for every a ∈ Dom, and
(ii) I(A) ≤ I ′(h(A)), for every A ∈ GAtomsN.

We will write I ≼ I ′ if there is a non-decreasing homomorphism from I to I ′.

Similarly as in Datalog∃, we define a universal model of Π and D as a model which can
be homomorphically mapped to any model of Π and D. However, instead of the standard
homomorphism, we use the above-defined non-decreasing homomorphism.
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Definition 6. A fuzzy universal model of a t-Datalog∃ program Π and a fuzzy dataset D is any
fuzzy model I of Π and D such that I ≼ I ′ for every fuzzy model I ′ of Π and D.

In general, a fuzzy universal model may not be unique. However, if a program does not have
existential variables, we can show that there exists a unique fuzzy universal model. Note that
this is analogous to the standard, non-fuzzy setting.

Theorem 7. Each pair of a t-Datalog program Π and a fuzzy dataset D has a unique fuzzy
universal model.

Proof. Consider the set S of all fuzzy models of Π and D. We claim that the fuzzy interpretation
I with I(A) = inf{I ′(A) | I ′ ∈ S}, for each A ∈ GAtomsN, is the unique fuzzy universal model
of Π and D. By the construction, I is a fuzzy model of D. To show that it is a fuzzy model
of Π, we observe that for any rule ϕ → ϕ′ in Π, any of its groundings ρ, and any I ′ ∈ S, we
have I ′(ρ(ϕ)) ≤ I ′(ρ(ϕ′)). Thus, we have also I(ρ(ϕ)) ≤ I(ρ(ϕ′)). Consequently, I is a fuzzy
model of Π and D (i.e, I ∈ S). To prove that I is a fuzzy universal model, we need to show that
I ≼ I ′, for any I ′ ∈ S. This, however, is witnessed by simply letting h be the identity function
on DomN. Indeed, such h satisfies both Conditions (i) and (ii) from Definition 5. Finally, we
observe that, by the construction, no I ′ ∈ S \ {I} satisfies I ′ ≼ I, so no I ′ ∈ S different from I
can be a fuzzy universal model of Π and D.

We observe that each fuzzy universal model can be used to check entailment, which follows
directly from our definitions.

Proposition 8. Let I be a fuzzy universal model of a t-Datalog∃ program Π and a fuzzy dataset
D, let c ∈ [0, 1], and let G ∈ GAtoms. Then I(G) ≥ c if and only if (Π,D) |=c G.

The crucial property connecting fuzzy chases and universal models, is that every finite fuzzy
chase (semi-oblivious or restricted) needs to result in a fuzzy universal model.

Theorem 9. Let ⋆ ∈ {so, r}. The result of applying a ⋆-chase for a t-Datalog∃ program Π and
a fuzzy dataset D is a fuzzy universal model of Π and D.

Proof. Consider first ⋆ = so. Let (r1, ρ1), (r2, ρ2), . . . , (rn, ρn) be a finite so-chase for Π and D,
and let ID = I0, I1, . . . In be corresponding fuzzy interpretations. To show that In is a fuzzy
universal model for Π and D, we fix an arbitrary fuzzy model I ′ of Π and D; we will show
inductively on i that Ii ≼ I ′.

For the basis of induction, we need to show that there is a non-decreasing fuzzy homomorphism
from ID to I ′. Since I ′ is a fuzzy model of D, we have ID(A) ≤ I ′(A) for every A ∈ GAtomsN.
Thus the identity function on DomN is a non-decreasing fuzzy homomorphism witnessing ID ≼ I ′.

For the inductive step assume that h is a non-decreasing fuzzy homomorphism from Ii−1 to
I ′; we will show how to construct a non-decreasing fuzzy homomorphism h′ from Ii to I ′. Let
us write body as a shorthand for ρi(body(ri)). Since h is a non-decreasing fuzzy homomorphism
from Ii−1 to I ′ and t-norms are monotone, Ii−1(body) ≤ I ′(h(body)). As I ′ is a fuzzy model
of Π, it needs to satisfy ri. Thus, there exists a ground atom H, obtained by replacing each
existential variable x in head(ri) with some ax ∈ DomN, such that I ′(h(body)) ≤ I ′(H). We use
this H to define h′ as follows:

h′(a) =

{
ax, if a = Nx

ri,ρi| fr(ri)
for some x (i.e., a is a null in H(ri, ρi)),

h(a), for all other a ∈ DomN.

It remains to show that h′ is a non-decreasing fuzzy homomorphism from Ii to I ′. Condition (i)
of Definition 5 holds by the construction of h′. For Condition (ii) it suffices to show that
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Ii(H(ri, ρi)) ≤ I ′(h′(H(ri, ρi))), as for all A ∈ GAtomsN other than H(ri, ρi), the inequality
holds by the inductive assumption. We observe that the following hold:

Ii(H(ri, ρi)) = Ii−1(body) ≤ I ′(h(body)) ≤ I ′(H) = I ′(h′(H(ri, ρi))).

The first equality holds by the definition of a trigger application, the next two inequalities are
already shown, and the last equality holds by the construction of h′. Thus h′ witnesses Ii ≼ I ′.

Finally, we observe that each finite r-chase is a prefix of some so-chase, so the argumentation
above also proves the theorem for ⋆ = r.

Theorem 9, together with Proposition 8, provides us with a mechanism for checking entailment,
which aligns directly with the standard methods for deciding entailment in Datalog∃. There are
however two main difficulties that need to be addressed. First, as in the classical setting, fuzzy
chases are not always finite. Second, unlike in the classical setting, a fuzzy chase can update the
truth degree of the same ground atom multiple times, as illustrated in the following example.

Example 10. Consider a program Π with Rules (r1)–(r3), and a fuzzy dataset D assigning
NeuralLabel(img, c1) 7→ 0.9,Class(img, c1) 7→ 0.6, and Hypernym(c1, c2) 7→ 1. Let the first
trigger in a fuzzy chase for Π and D be (r2, {x 7→ img, y 7→ c1, z 7→ c2}), which results
in Class(img, c2) 7→ 0.6. Let the second trigger be (r1, {x 7→ img, y 7→ c1}), which assigns
Class(img, c1) 7→ 0.9. This, however, makes (r2, {x 7→ img, y 7→ c1, z 7→ c2}) active again and
its application now yields Class(img, c2) 7→ 0.9. Note that it holds in both so- and r-chases.

The example above shows that even in the case of a t-Datalog program (with no existential
quantification), a trigger can be reactivated, and so, the same trigger can occur multiple times in
a fuzzy chase. This, in turn, may potentially lead to exponentially long or even infinite chases,
which never happens in standard Datalog. Clearly, if existential quantification is present in a
t-Datalog∃ program, reasoning with chases becomes even more challenging. In the next section,
we will show how to overcome these difficulties. In particular, we will show in which cases the
finiteness of a chase is guaranteed, and so, chasing can be used as a decision procedure for
entailment checking.

4 Truth-Greedy Chases

As we have shown, reasoning is conceptually harder than in the classical setting, as a fuzzy
chase may modify multiple times a truth degree of the same atom. To address this difficulty, we
will introduce truth-greedy chases, which allow us to overcome the above-mentioned issue. This,
in particular, will allow us to show that reasoning in weakly acyclic programs in t-Datalog∃ is
tractable for data complexity, and so, no harder than in Datalog∃.

Let ⋆ ∈ {so, r}. We say that a ⋆-chase (r1, ρ1), (r2, ρ2), . . . with corresponding fuzzy in-
terpretations I0, I1, I2, . . . is truth-greedy if each of its triggers (ri, ρi) has a maximal truth
degree among all ⋆-active triggers in Ii−1, that is, there is no ⋆-active trigger (r′, ρ′) such that
trI(ri, ρi) < trI(r

′, ρ′). In other words, in the ith step of a truth-greedy chase, we need to apply
a trigger whose results assigns a maximal truth degree among active triggers.

As we show next, truth degrees of triggers in a truth-greedy chase are non-increasing. Note
that this does not follow directly from the definition of a truth-greedy trigger, because application
of a trigger can activate triggers which were not active before. In general, such triggers may
have higher truth degrees. However, we will show that due to monotonicity of t-norms none of
the newly activated triggers can have a truth degree higher than previously applied triggers.
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Proposition 11. Let ⋆ ∈ {so, r} and let (r1, ρ1), (r2, ρ2), . . . be a truth-greedy ⋆-chase with corre-
sponding interpretations I0, I1, I2, . . . . For all i ≥ 1 it holds that trIi−1

(ri, ρi) ≥ trIi
(ri+1, ρi+1).

Proof. Suppose towards a contradiction that trIi−1(ri, ρi) < trIi(ri+1, ρi+1), for some i ≥ 1.
Since the chase is truth-greedy, trIi−1

(ri+1, ρi+1) ≤ trIi−1
(ri, ρi). Therefore trIi−1

(ri+1, ρi+1) <
trIi

(ri+1, ρi+1), or equivalently Ii−1(ρi+1(body(ri+1))) < Ii(ρi+1(body(ri+1))). By the defini-
tion of a trigger application, the only difference between Ii−1 and Ii is that the truth degree of
H(ri, ρi) is strictly increased in Ii to the value of Ii−1(ρi(body(ri))). Therefore, by the fact that
Ii−1(ρi+1(body(ri+1))) < Ii(ρi+1(body(ri+1))), the body ρi+1(body(ri+1)) needs to mention
the atom H(ri, ρi), and so, by Proposition 1, the truth degree of this body in Ii is no larger than
the truth degree of H(ri, ρi), that is, Ii(ρi+1(body(ri+1))) ≤ Ii−1(ρi(body(ri))). This, however,
contradicts the assumption trIi−1

(ri, ρi) < trIi
(ri+1, ρi+1).

As a consequence of Proposition 11 and the definitions of so- and r-active triggers, we obtain
that a truth-greedy chase cannot mention two triggers with the same head.

Corollary 12. Let ⋆ ∈ {so, r} and let (r1, ρ1), (r2, ρ2), . . . be a truth-greedy ⋆-chase. It holds
that H(ri, ρi) ̸= H(rj , ρj) whenever i ̸= j.

To exploit truth-greedy chases for efficient reasoning, we will relate fuzzy chases in t-Datalog∃
to standard chases in Datalog∃. In formal terms, we will relate a fuzzy chase of a t-Datalog∃
program Π and a fuzzy dataset D to a fuzzy chase of Π and Dcrisp, where Dcrisp is a ‘crispified’
version of D obtained by setting Dcrisp(A) = 1 whenever D(A) is defined (recall that, by the
definition, it implies that D(A) > 0). Note that a fuzzy chase for a ‘crispified’ dataset, corresponds
to a standard chase in Datalog∃. As we show next, if the application of standard chase procedures
to a crispified dataset Dcrisp always terminates (e.g., when a program has no existential variables,
it is non-recursive, or weakly-acyclic), then for each fuzzy chase s there is a standard chase scrisp

such that s assigns truth degrees to no more atoms than scrisp. Formally, for a chase s with
corresponding interpretations I0, I1, . . . we let atoms(s) be the set of all A ∈ GAtomsN such
that Ii(A) ̸= 0, for some i. Hence, our result claims that atoms(s) ⊆ atoms(scrisp), shown below.

Lemma 13. Let ⋆ ∈ {so, r}, let Π be a t-Datalog∃ program, and let D be a fuzzy dataset. Assume
that every sequence of ⋆-active trigger applications to Π and Dcrisp is finite. Then, for every
⋆-chase s of Π and D there exists a ⋆-chase scrisp of Π and Dcrisp with atoms(s) ⊆ atoms(scrisp).

Proof. Let s be a ⋆-chase (r1, ρ1), (r2, ρ2), . . . with corresponding interpretations I0, I1, I2, . . . .
We will show inductively on i ≥ 1, that for each prefix si = (r1, ρ1), . . . , (ri, ρi) of s, there exists
a finite sequence s′i = (r′1, ρ

′
1), . . . , (r

′
j , ρ

′
j) of j ≤ i ⋆-active trigger applications to Π and Dcrisp

such that atoms(si) = atoms(s′i). By the assumption that every sequence of ⋆-active trigger
applications to Π and Dcrisp is finite, this implies the existence of the required scrisp.

In the basis of the induction we have s1 = (r1, ρ1), hence (r1, ρ1) is ⋆-active in ID, and so,
ρ1(body(r1)) > 0. Thus, for each A mentioned in ρ1(body(r1)) we have D(A) > 0 and therefore
Dcrisp(A) = 1. If Dcrisp(H(r1, ρ1)) ̸= 1, then (r1, ρ1) is ⋆-active in IDcrisp and we let s′1 = (r1, ρ1);
otherwise we let s′1 be the empty sequence. In both cases atoms(s1) = atoms(s′1), as required.

In the inductive step we fix i ∈ N and assume that the claim is witnessed for si =
(r1, ρ1), . . . , (ri, ρi) by s′i = (r′1, ρ

′
1), . . . , (r

′
j , ρ

′
j). Since (ri+1, ρi+1) is ⋆-active in Ii, for each

atom A in the body ρi+1(body(ri+1)), we have Ii(A) > 0, and so, A ∈ atoms(si). Thus, by
the inductive assumption, A ∈ atoms(s′i), that is, I ′

j(A) = 1 for I ′
0, . . . , I ′

j being interpretations
corresponding to s′i. Similarly as in the basis, if I ′

j(H(ri+1, ρi+1)) ̸= 1, then (ri+1, ρi+1) is
⋆-active in I ′

j and we let s′i+1 = (r′1, ρ
′
1), . . . , (r

′
j , ρ

′
j), (ri+1, ρi+1); otherwise we let s′i+1 = s′i. In

both cases atoms(si+1) = atoms(s′i+1).
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It is worth observing that checking the assumption of Lemma 13, that is, if all ⋆-trigger
applications to Π and Dcrisp are finite, we can use results established for Datalog∃. For example,
it is known that for a fixed program and a dataset, all semi-oblivious chases are finite if there
exists some finite semi-oblivious chase [27]. Since semi-oblivious chases in Datalog∃ coincide with
so-chases in t-Datalog∃ for Π and Dcrisp, checking if the assumption of Lemma 13 is satisfied,
reduces to checking if some so-chase of Π and Dcrisp is finite.

Note that Lemma 13 and Corollary 12 allow us to determine for which pairs of a program Π
and a dataset D, the truth-greedy chase is guaranteed to terminate. Indeed, this is the case
whenever the standard chase applied to Dcrisp is guaranteed to terminate. Furthermore, if we
know the lengths of standard chases, we can bound the length of fuzzy truth-greedy chases.

For example, let us consider weakly acyclic programs (a syntactic restriction that inhibits the
role of nulls in recursion [20]), which constitutes one of the most prominent fragments of Datalog∃
with terminating restricted chase [20]. Since standard chases for weakly acyclic programs are
known to be polynomially long in the size of a dataset, we can show that truth-greedy chases
are also polynomially long. Moreover, we can show that entailment in weakly acyclic t-Datalog∃
programs is P-complete for data complexity, that is, of the same computational complexity as
in the non-fuzzy weakly acyclic Datalog∃ programs.

Theorem 14. Entailment for weakly acyclic t-Datalog∃ programs is P-complete in data
complexity.

Proof. The lower bound follows from P-hardness of entailment in weakly-acyclic Datalog∃ [15]
and Theorem 2. For the upper bound assume that we want to check if (Π,D) |=c G, for a weakly
acyclic t-Datalog∃ program Π, fuzzy dataset D, G ∈ GAtomsN, and c ∈ [0, 1]. By Proposition 8
and Theorem 9 it suffices to construct a (finite) r-chase for Π and D, and to check if I(G) ≥ c
in the resulting fuzzy interpretation I of this chase. Since Π is weakly-acyclic, by the result
for Datalog∃ established by Fagin et al. [20], every sequence of r-active trigger applications to
Π and Dcrisp is of polynomial length in the size of Dcrisp. Hence, by Lemma 13, |atoms(s)| is
polynomial, for every r-chase s of Π and D. Note that this does not mean that all r-chases have
polynomial lengths. However, by Corollary 12, we obtain that all truth-greedy r-chases have
polynomial lengths.

It remains to argue that constructing a truth-greedy r-chase of Π and D is feasible in
polynomial time (in the size of D). To construct the chase, in every step we compute all r-active
triggers (r, ρ), choose one of the triggers with maximal truth degree of ρ(body(r)), and apply it
to construct a next fuzzy interpretation. This can be done in logarithmic space because there are
polynomially many triggers to consider (in particular, there are polynomially many groundings ρ
to consider, as they assign to variables only those constants, for which some atom in the current
interpretation has a non-zero truth degree), so we can inspect all of them keeping in memory
only a single trigger with the highest truth degree of ρ(body(r)). Applying the computed trigger
is also feasible in logarithmic space. Since a truth-greedy chase has a polynomial length, we can
compute the final interpretation and check if the truth degree of G in this interpretation is at
least c, in polynomial time.

Since each program with no existential variables is weakly acyclic, we obtain as a corollary
that entailment in t-Datalog (t-Datalog∃ with no existential variables) is also in P for data
complexity. Matching lower bound follows from Theorem 2 and P-hardness of entailment in
Datalog for data complexity.

Corollary 15. Entailment for t-Datalog programs is P-complete in data complexity.
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5 Adding Negation and Other Unary Operators
In this section, we will show how to extend t-Datalog with unary operators (also studied under
the name of negators [22]) without negative impact on the complexity of reasoning. Unary
operators are interpreted in our fuzzy setting as functions mapping a truth degree of a ground
atom into another truth degree. A flagship unary operator is negation, which in the fuzzy setting
can be interpreted in various ways. However, there are also many other unary operators worth
considering. For instance, threshold operators ∆T , for T ∈ [0, 1] which assign truth degree 1 to
atoms which have truth degree at least T . Below we present semantics of two versions of fuzzy
negation and of the threshold operator:

I(¬A) = 1− I(A), I(∼A) =

{
1, if I(A) = 0,

0, otherwise,
I(∆TA) =

{
1, if I(A) ≥ T,

0, otherwise.

Formally, we let a unary operator be any computable function U : [0, 1] −→ [0, 1]. A t-DatalogU
program is defined similarly as a t-Datalog program, but body atoms in rules can be preceded
by arbitrary unary operators.4 Hence, rules of a t-DatalogU program are of the form

U1R1(x1)⊙r · · · ⊙r UℓRℓ(xℓ) → S(xh, z),

where each Ui is a unary operator or is empty. As usual in Datalog with negation [1], we define
a notion of a stratified program as follows. We let a stratification of a t-DatalogU program Π
be any function σ mapping predicates mentioned in Π to positive integers such that for each
rule r ∈ Π and all predicates P , P+, and P− mentioned, respectively, in the head, in body
atoms not using unary operators, and in body atoms using unary operators of r, it holds that
σ(P+) ≤ σ(P ) and σ(P−) < σ(P ). We will treat a stratification σ as a partition of Π into
Π1, . . . ,Πn such that n is the maximal value assigned by σ and Πi consists of all rules in Π with
heads P such that σ(P ) = i. A program is stratifiable (or stratified) if it has some stratification.

Semantics of unary operators is straightforward, namely I(UA) = U(I(A)) for each fuzzy
interpretation I and unary operator U . The definition of entailment, however, is more complex;
we will adapt the procedural semantics used in the non-fuzzy setting [1]. To this end, we start
by considering semi-positive t-DatalogU programs, in which unary operators appear only in
front of extensional predicates (i.e., predicates which do not occur rule heads). We can use the
argumentation from the proof of Theorem 7 to show that semi-positive t-DatalogU programs,
similarly to t-Datalog programs, have the unique fuzzy model property.

Proposition 16. Each pair of a semi-positive t-DatalogU program Π and a fuzzy dataset D has
a unique fuzzy universal model.

Next, we exploit Proposition 16, to define semantics for stratifiable programs. Given a strat-
ification Π1, . . . ,Πn of Π and a fuzzy dataset D we let I0, I1, . . . , In be a sequence of fuzzy
interpretations such that I0 = ID and each Ii with i > 1 is the fuzzy universal model of Πi and
(the dataset representation of) Ii−1. By the definition, each Πi is semi-positive, so Ii is well
defined by Proposition 16. We call In the result of applying Π1, . . . ,Πn to D. Similarly, as in
the non-fuzzy setting, we can show that each stratification results in the same interpretation.

Proposition 17. Let Π be a stratifiable t-DatalogU program and D a fuzzy dataset. Applying
any stratification of Π to D results in the same fuzzy interpretation.

4Similarly as in the case of t-norms we slightly abuse notation by using the same symbol for a unary operator
and a function interpreting this operator.
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Establishing Proposition 17 allows us to introduce a standard definition of entailment in stratified
programs. We say that an atom G is c-entailed, for any c ∈ [0, 1], by a stratifiable Π and D
if In(G) ≥ c, where In is the result of applying any stratification of Π to D. We define the
Entailment problem analogously as in the case of t-Datalog∃, namely, given a t-DatalogU
program Π, a fuzzy dataset D, G ∈ GAtoms, and c ∈ [0, 1], the problem is to check if Π and D
c-entail G.

The main result of this section is that adding arbitrary unary operators to t-Datalog does
not increase the complexity of entailment checking, as long as the input program is stratifiable.
In other words, entailment checking for stratifiable t-DatalogU programs is no harder than
entailment checking for t-Datalog programs. As in the case of t-norms, our complexity analysis
does not take into account the complexity of computing application of unary operators. Although
such computations are usually of low complexity (e.g., in the case of ¬, ∼, and ∆T introduced
at the beginning of this section), but one can introduce much more complex unary operators.

Theorem 18. Entailment for stratifiable t-DatalogU programs is P-complete in data com-
plexity.

Proof sketch. The lower bound is inherited from Datalog. For the upper bound, we compute
any stratification Π1, . . . ,Πn of the input program. Then we compute the (unique) universal
fuzzy models I1, . . . , In corresponding to application of the stratification. To compute each
Ii+1 from Ii and Πi+1 we apply the truth-greedy chase. By our results on truth-greedy chases
in Section 4, this procedure allows us to construct In in polynomial time with respect to D.
Finally, checking if In(G) ≥ c, for input G and c, is clearly feasible in polynomial time.

6 Discussion and Future Work
Summary. We have introduced t-Datalog∃, an extension of Datalog∃ for reasoning about
uncertain information, which can be used for neuro-symbolic reasoning. By allowing for arbitrary
t-norms in the place of conjunctions in standard Datalog programs, t-Datalog∃ provides us
with a highly flexible fuzzy formalism. We have established a chase-based reasoning technique
applicable to the fuzzy setting of t-Datalog∃, which we used for computational complexity
analysis. For example, the complexity of entailment in weakly-acyclic t-Datalog∃ matches that of
Datalog∃, namely it is P-complete for data complexity. Our fuzzy chase procedure is worst-case
optimal for such reasoning. Moreover, we showed that t-Datalog can be extended with arbitrary
(fuzzy) unary operators without a negative impact on the complexity. Our development has
purposefully followed that of Datalog∃ in order to leverage the wide range of results known in
the classical case. The obtained results illustrate the advantages of this approach and lay the
foundation to richer fuzzy ontology languages in which reasoning can be performed efficiently,
akin to the Datalog± family of languages [26].

Discussion. It is worth discussing some generalisations of the presented work. Recall that
to simplify the presentation, we have focused on the proofs on K-satisfiability with K = 1.
However, our techniques are not specific to this case, and our results can be extended to
arbitrary K ∈ [0, 1]. Furthermore, observe that the presented syntax of t-Datalog∃ requires that
each rule mentions at most one t-norm. For example, we do not allow for a rule of the form
P (x)⊙Ł Q(x)⊙prod R(x) → S(x), which mentions two different t-norms. We have imposed such
a restriction in order to obtain associativity of operators in rule bodies, which is the case in
standard Datalog and logic programming. However, if we fix the order of t-norms application
in rule bodies, we can use multiple t-norms within a single rule and it would not impact our
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technical results. Furthermore, we have only explicitly considered atomic fact entailment and
data complexity measure in the paper, but our techniques are also applicable to more complex
queries and allow for performing analysis of other measures of computational complexity (e.g.,
combined or program complexity).

Finally, in our presentation we defined the semantics of → as the residuum of the Łukasiewicz
t-norm. With respect to 1-satisfiability, every residuum of a t-norm is equivalent: under any of
them a rule would be 1-satisfied exactly when the truth degree of the head is at least the truth
degree of the body. With respect to 1-fuzzy models all these alternative semantics for → are the
same and our results hold unchanged in those cases. For K < 1, individual analysis may be
required to confirm whether our results still hold for alternative semantics for →.

Future Work. Our research on t-Datalog∃ is motivated by the need for practical and powerful
reasoning formalism for heterogeneous data sources. We have intentionally chosen to align the
development of t-Datalog∃ closely with Datalog∃, to exploit results known for the latter. Another
great benefit of this approach is that it opens a way for implementing reasoning procedures
for t-Datalog∃ by extending existing Datalog∃ reasoning systems. In particular, developing
implementations on top of established chase-based reasoners, such as Vadalog [8], form an
attractive opportunity for future work.

The results obtained in the paper also introduce interesting theoretical research directions.
Notice that in the presented results we focus on programs with finite Datalog∃ chase which, as
we have shown, allows us to construct finite chases in t-Datalog∃. However, there are prominent
fragments of Datalog∃, such as (weakly) guarded [13] or warded [9] programs, where entailment
is decidable even though the chase is generally not finite. Our truth-greedy chase technique does
not provide us with an appropriate tool for reasoning in such cases. For instance, consider the
behaviour of a truth-greedy chase applied to a guarded program as described below.

Example 19. Consider a fuzzy dataset D with D(R(a, b)) = 1 and D(A) < 1 for all other
atoms A for which D(A) is defined. Moreover, consider a guarded t-Datalog∃ program Π which,
among others, contains a rule r of the form R(x, y) → ∃z R(y, z). A truth-greedy chase of Π
and D applies this single rule infinitely many times before applying any other rule in Π. Since
other rules are not applied, it is possible that some triggers remain active infinitely. Hence the
fairness condition—Item (iv) in the definition of a chase—does not hold.

The question of how to decide entailment in t-Datalog∃ with infinite chases presents an interesting
research challenge for future work. Bogwardt et al. [11] showed that reasoning in fuzzy variants
of the description logic EL with Łukasiewicz semantics is decidable. While EL is closely related
to guarded Datalog∃, the undecidability proof in [11] relies on conjunction in rule heads. In
contrast to the Boolean case, this is not equivalent to single atoms in the head in the fuzzy
setting and their undecidability argument does not imply undecidability of guarded t-Datalog∃.

Decidability in guarded and warded Datalog∃, in particular, follows from the fact that the
infinite part of the chase only repeats certain patterns. In future we will aim to exploit this idea
in the fuzzy setting of t-Datalog∃, to introduce adequate fuzzy chase procedures and establish
computational complexity results for guarded and warded fragments of t-Datalog∃.
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A Details for Section 5
We follow [1] in the following definitions as well as the line or argumentation. We will use a
slightly different notation that in the main body of the paper, which is more convenient for
proofs.

The extensional predicates (edb(Π)) of a t-DatalogU program Π are those relation symbols
that only occur in rule bodies of Π. The intensional predicates (idb(Π)) are those relation
symbols that occur in the head of some rule of Π. We know by Lemma 13 that every truth-greedy
chase for t-Datalog∃ programs (and thus also for semi-positive t-DatalogU programs) is finite.
We write tgc(Π,D) for the result of applying a truth-greedy chase5 to Π and D. Since tgc(Π,D)
is always finite, we will treat tgc(Π,D) as a fuzzy dataset. As above, for G ∈ GAtoms, we write
G ∈ D to mean that D(G) is defined.

The notion of semipositive programs is lifted from Datalog¬. By convention we assume
everywhere in the following that D is defined only for extensional predicates.

Proposition 20 (cf. Theorem 15.2.2 [1]). Let Π be a semipositive program and D a fuzzy
dataset. Then there is a unique fuzzy universal model of Π and D.

Proof sketch. For each unary operator U and R ∈ edb(Π), let RU be a new relation with
D′(RU (c)) = U(D(R(c))) for every ground atom where D(R(c)) is defined. Let D′(G) = D(G)
for all other G ∈ D. Let Π′ be the t-Datalog∃ program obtained by replacing every instance of
U R in the body of a rule with RU . The unique fuzzy universal model I of Π′ and D′ (recall
Theorem 7) is the desired unique fuzzy universal model of Π and D.

Accordingly, we use the construction of Π′ and D′ in the proof sketch of Proposition 20 also
to define the semantics of a chase on semipositive programs: the result of applying the chase to
semipositive program Π and dataset D is the result of applying the chase to Π′ and D′. We
write Π(D) for the unique fuzzy universal model of Π and D from Proposition 20.

A stratification of a t-DatalogU program Π is a sequence of t-DatalogU programs Π1, . . . ,Πn

such that for some mapping ζ : idb(Π) → [n],
(i) {Π1, . . . ,Πℓ} is a partition of Π.
(ii) for each relation symbol R ∈ idb(Π), all rules with R in head are in Πζ(R).
(iii) If there is a rule with R in its head and R′ ∈ idb(Π) in its body, then ζ(R′) ≤ ζ(R).
(iv) If there is a rule with R in its head and U R′ in its body, for some unary operator U , then

ζ(R′) < ζ(R).
A program is stratifiable if it has a stratification.

The semantics of a t-DatalogU program Π is defined in terms of a procedure. Let ζ =
P1, . . . , Pn be a stratification of Π. Note that every Πi is semipositive. Define

D0 = D (1)
Di = tgc(Πi,Di−1) (2)

We denote Dn obtained from this procedure as ζ(Π,D), and refer to it the semantics of a
t-DatalogU program under ζ. We say that two stratifications of a t-DatalogU program are
equivalent if they have the same semantics for all fuzzy datasets.

5Recall that so- and r-chase are equivalent without existential quantifiers.
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For Datalog ¬ it is well known that all stratifications lead to equivalent semantics [1]. The
semantics of the formalism only affect a single key lemma, that we reprove below for our setting.

Lemma 21. Let Π be a semipositive t-DatalogU program and ζ a stratification for Π. Then
Π(D) = ζ(D) for every fuzzy dataset D.

Proof. Recall that we the semantics of semipositive programs are the result of applying the
truth-greedy chase on Π′ and D′ as defined in the proof of Proposition 20. Let si be the truth-
greedy chase sequence of (2). It is enough to observe that their concatenation s∗ = s1s2 · · · sn is
a finite chase of Π′ and D′. By Theorem 9 and Theorem 7 this will produce the unique fuzzy
universal model from Proposition 20.

To see that the concatenation is indeed a finite chase of Π′ and D′ we need to only check
that there is no active trigger at the end of s∗. We argue via induction on the the concatenation
of the first i ≤ n sequences s(i) = s1 · · · si that in the interpretation obtained from applying s(i)

to Π′ and D′, no trigger for rules in Π1, . . . ,Πi is active. First, the trigger cannot be for a rule
in Πi as it is the result of applying the chase on Di−1. Second, by inductive assumption no
triggers from Π1, . . . ,Πi−1 were active after s(i−1). But by Item (iii) and Item (iv), the heads of
Πi cannot occur in the bodies of Πj with j < i. Therefore, the addition of si also cannot make
any trigger for rules in Π1, . . . ,Πi−1 active.

Theorem 22. Let Π be a stratifiable t-DatalogU program. All stratifications of Π are equivalent.

Proof sketch. The proof of Theorem 15.2.10 in [1] holds also for our setting by simply replacing
the key Lemma 15.2.9 there with Lemma 21.

That is, we can use any stratification to compute the semantics of t-DatalogU programs,
just as for stratified Datalog ¬. Computing a stratification ζ is possible in polynomial time in
the size of a dataset (see also Proposition 15.2.7 [1]) and thus computing the truth degree of
G ∈ GAtoms in ζ(D) is also polynomial (cf. Corollary 15). Thus, entailment in t-DatalogU is in
P for data complexity, as stated in Theorem 18.
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