
EPiC Series in Computing

Volume 78, 2021, Pages 69–76

Proceedings of the European Univer-
sity Information Systems Conference 2021

JupyterHub on an on-premises cloud – a special focus on

GPU Accelerated Machine Learning and 3D Visualization

Markus Blank-Burian1, Jürgen Hölters1, and Raimund Vogl1

WWU Münster, Germany
{blankburian,holters,rvogl}@uni-muenster.de

Abstract

At the IT department of the University of Münster (WWU IT) we build a private IaaS
cloud based on OpenStack and Kubernetes (WWU Cloud). This cloud provides a generic
platform for data storage and service hosting. WWU IT operates a JupyterHub on WWU
Cloud for use in research and education. Researchers have access to virtual GPUs from
their Jupyter sessions. These may be used to compile and natively run CUDA accelerated
code, e.g. for machine learning. Using VirtualGL, we also provide an accelerated X server
in Jupyter sessions. X11 applications are then accessible from the browser using noVNC.

1 Introduction

Jupyter notebooks [5, 8] are a defacto standard for scientific research. They provide an easy to
use interface for interactive, reproducible data analysis and visualization. Lately, the traditional
notebook interface has been replaced by JupyterLab [4]. This new user interfaces is easy to
navigate by using well-known elements from desktop applications and has an extendable plugin
architecture.

At the IT department of WWU Münster (WWU IT), we operate a JupyterHub using Kube-
Spawner on a Kubernetes cluster [3]. This Kubernetes cluster itself runs on WWU Cloud, a
private IaaS cloud based on OpenStack [9] and part of the RDI-NRW project [10]. The Jupyter-
Hub can be used by students, in teaching and by researchers. We provide a selection of notebook
images containing standard applications directly available on the JupyterLab launcher page.

As machine learning became a major topic in research and teaching, it was requested make
GPU resources available in our Jupyter sessions. In addition, medical researchers needed a
solution for accelerated remote data visualization using GPUs. In response to these requests,
we setup the necessary infrastructure providing virtual GPUs within Jupyter sessions.

In the following sections, we will describe our complete cloud stack in a bottom-up approach
with focus on GPU acceleration, starting with a quick overview on Kubernetes, followed by
WWU Cloud, WWU Kube and finally JupyterHub (Figure 1).

S. Bolis, J.-F. Desnos, L. Merakos and R. Vogl (eds.), EUNIS 2021 (EPiC Series in Computing, vol. 78),
pp. 69–76



JupyterHub on an on-premises cloud Blank-Burian, Hölters, Vogl

2 Kubernetes

We use Kubernetes as a platform to deploy services on bare metal and in virtual machines
on cloud resources. Kubernetes is a container orchestration engine [3], which is configured
declaratively using a REST API. Originally created by Google, Kubernetes has become a widely
used platform for operating services on the internet. The objects, created using the Kubernetes
REST API, represent a desired state, which is periodically reconciled with the actual state.
YAML [2] is the preferred markup language to write object representations in API calls, as
it is more easy to write and can be converted directly to JSON. One important feature of
Kubernetes as a container orchestration engine is its integrated high availability and resiliency
towards hardware failures. Services are automatically restarted on hardware or software failures
and user requests are load-balanced between all healthy processes. Monitoring and alerting
solutions from the cloud native ecosystem integrate nicely with Kubernetes clusters, providing
insights into resource usage and quick notifications on errors.

Applications for use in Kubernetes have to be packaged into container images, typically
containing an operating system image without kernel as well as the application and all its
dependencies. Many modern images contain only a single statically linked binary, thereby
reducing the potential attack surface. Multiple containerized applications may run on the same
host with only minimal interaction, as they each use an independent filesystem. The Kubernetes
”kubelet” daemon, running on a single node, starts an application with the help of a container
runtime, which is responsible for downloading and unpacking the container image, setting up
the container and starting the application. This architecture makes it possible to quickly update
a service, by uploading a new application image or rolling back to a previous version.

Due to these many great features, using Kubernetes as base platform for deploying our cloud
platform and services greatly improves stability, manageability and observability.

3 WWU Cloud

The WWU Cloud is a private IaaS (Infrastructure as a Service) cloud platform, based on
OpenStack and Ceph, for use by WWU IT and researchers. Ceph is a storage system, designed
for exabyte capacity, and is comprised of an object store (RADOS), a block device interface
(rbd), a filesystem (CephFS) and an S3 gateway (RadosGW). The WWU Cloud exposes the
last two directly to users and block devices in form of virtual volumes, which can be attached
to virtual machines. OpenStack provides an interface (API and Web) for self-service creation of
virtual infrastructure (virtual machines, virtual volumes, virtual networks and network shares).

In WWU Cloud, Projects with fixed quotas on virtual hardware can be requested free of
charge. The actual hardware is overcommitted (15x for CPUs and 1.5x for RAM), making
the cloud most ideal for services or interactive usage. Once a project in OpenStack is created,
virtualized infrastructure can be created on demand by the user. The hardware resources of
the WWU cloud consist of a heterogeneous mix of hyperconverged nodes, providing compute
and storage resources as well as GPUs for use in data visualization and machine learning. The
hyperconverged architecture allows for easy expansion and maximum resource utilization.

To orchestrate OpenStack, Ceph and other cloud platform services, we use a baremetal
Kubernetes cluster. The deployment method of this cluster is currently being replaced with
Cluster API [1], which provides a convenient way to provision baremetal nodes using operating
system images. The Metal3.io backend for Cluster API works together with OpenStack Ironic
to perform the actual baremetal provisioning. We deployed Cluster API into a Kubernetes
deployment cluster, from where we manage multiple deployment regions. New operating system

70



JupyterHub on an on-premises cloud Blank-Burian, Hölters, Vogl

Physical Nodes

Platform 
Operators

Tenant Admins Users

Kubernetes

OpenStack S3 NFS SMB
Platform 
Services

Multi-Tenant Kubernetes VMsTenant VMs

Tenant Services Multi-Tenant Kubernetes

Tenant 
Namespaces

Platform 
Namespaces

Platform ServicesTenant Services

WWU KubeWWU Cloud

Physical Nodes

OpenStack S3 SMB
Platform 
Services

Multi-Tenant Kubernetes VMsTenant VMs

Tenant Services Multi-Tenant Kubernetes

Tenant 
Namespaces

Platform 
Namespaces

Platform Services
Tenant

Services

Ju
p

yt
e

rH
u

b

Figure 1: Graphical representation of the software architecture for WWU Cloud and WWU
Kube. As a consequence of our hyperconverged design, all cloud platform components including
storage and virtual machines run on the same hardware. JupyterHub runs as a service in WWU
Kube, which is a Kubernetes cluster running in virtual machines on WWU Cloud.

images are built and uploaded in a fully automated CI/CD workflow. The resulting images can
then be deployed using Cluster API on any new or existing node using a single command.
During an update, the nodes are automatically drained by Cluster API, stopping all running
containers, but not the virtual machines. We wrote a small controller to migrate all virtual
machines to other hosts, once a node is drained, thereby fully automating node updates without
service interruption.

The GPUs are virtualized as VFIO mediated devices ”mdev” using NVidia GRID technol-
ogy. In our current setup, device type selection in Nova is limited to a single device type per
card. In the future, this limitation can be avoided with OpenStack Cyborg, making it possible
to dynamically select an arbitrary vGPU type for each VM.

Without Cyborg, OpenStack makes custom GPU resources available to virtual machines as
a single untyped ”VGPU” resource, making it impossible to distinguish between different GPU
types. As we only use a single GPU type per node, we have worked around this limitation
by specifying the GPU type as node trait, which can be added administratively on each node.
This makes it possible to define multiple vGPU flavors, individually selectable by newly created
virtual machines.

4 WWU Kube

Within virtual machines in the WWU Cloud, WWU IT runs a multi tenant Kubernetes cluster
called WWU Kube. Users of WWU Kube may use this platform to operate arbitrary services.
At WWU IT for example, we operate JupyterHub and our scalable Jitsi deployment on WWU

71



JupyterHub on an on-premises cloud Blank-Burian, Hölters, Vogl

Kube.
Kubernetes in WWU Kube nodes are organized in multiple groups: control plane, nodes,

worker nodes and worker nodes with vGPU. Control plane and node VMs have hardware node
anti-affinity. While the former group is intended to run only platform critical services, the
latter group is suited for all types of services requiring high availability. Worker nodes without
node anti-affinity are used for Jupyter sessions, as these run in single pods without failover
capabilities. This Kubernetes cluster is provisioned using Cluster API, allowing the cluster to
automatically scale up more nodes based on the actual load for each node group. Specifically
our JupyterHub deployment benefits from autoscaling, as compute resources and especially
GPU resources can be allocated on demand.

Nodes with vGPUs are automatically labeled using the ”node-feature-discovery” and
”nvidia-device-plugin” tools. These labels can be used by Kubernetes pods to select the nodes
for an application and thereby a gpu type. The amount of GPUs for a pod is specified via
Kubernetes resource requests and limits. The device inodes and environment variables are au-
tomatically injected into the container, so the application can transparently access the virtual
device.

As users with Jupyter sessions gain terminal access within containers in WWU Kube, special
emphasis has to be put on security. We employ cilium network policies to restrict access
within the cluster and Kubernetes pod security policies as well as OpenPolicyAgent Gatekeeper
policies to restrict permissions on newly spawned pods and enforce node selectors. For enhanced
observability we run Falco, an eBPF based security scanner to detect privilege escalations and
exploits. To prevent resource exhaustion, we impose detailed quotas on the JupyterHub project
namespace.

Services within WWU Kube are deployed using GitOps with ArgoCD. GitOps is a deploy-
ment method, where the desired state of an application is represented in a git repository [6].
ArgoCD is implemented as a controller, which periodically reconciles the actual state with the
desired state. An application may thus be updated or rolled back using a single git commit.
Multiple application states (e.g. production and development) are realized using branching.
We use an apps-of-apps pattern to recursively deploy all system applications as well as WWU
IT deployed applications in the cluster. For testing purposes, we have additional development
and staging clusters, which are also managed using branching in git.

5 JupyterHub

JupyterHub is a webservice, providing jupyter notebook sessions hosted on dedicated server
hardware. WWU IT operates a JupyterHub deployment on WWU Kube, available for all
students and employees of WWU, primarily used by researchers and for courses. JupyterHub
is configured to use ”KubeSpawner” to spawn new instances as Kubernetes pods. After a
successful login, users are presented with a dialog for selecting the cpu and ram limits as well
as the notebook image and vGPU support. WWU IT provides a small selection of notebook
images, containing commonly used software for data analysis and visualization.

JupyterLab is used as the main user interface, providing a launcher interface to start ap-
plications, notebooks and terminal sessions. Combined with a treeview for file selection, git
integration and a tabbed interface for opening multiple notebooks, JupyterLab provides a com-
plete virtualized working environment in the browser. Our file storage in WWU Cloud as well
as our HPC cluster filesystems are directly available from JupyterLab sessions, making it ideal
to quickly analyze and visualize results from computations.

Apart from notebooks, we offer browser based applications like ”code-server” (a VSCode

72



JupyterHub on an on-premises cloud Blank-Burian, Hölters, Vogl

Figure 2: JupyterLab Launcher. In addition to traditional notebooks, X11 and Web applica-
tions or a command line terminal can be started from the user interface.

fork) and R Studio. This is realized using websockets and port-forwarding in JupyterLab
through the ”jupyter-server-proxy” extension. Both web applications run natively in the
browser and are therefore very responsive.

We also offer X11 applications in JupyterHub sessions, realized by using noVNC, also using
websockets and port-forwarding. noVNC is a browser based remote visualization software based
on the VNC protocol. The X11 applications are rendered on an Xorg server in the server side
Jupyter sessions. The output is compressed and transferred to the browser, where it is displayed.
In case, the session is started with vGPU support, we configure an Xorg server with VirtualGL
in a sidecar container, so that multiple applications in a session share a single GPU accelerated
framebuffer. X11 Applications see the full set of GLX extensions provided by the native driver
and use server based accelerated rendering. At WWU IT, we can therefore offer high end GPU
acceleration for data visualization, with no additional requirements on the client side.

When vGPU support is selected, the virtual GPUs are also directly accessible from within
the Jupyter sessions. CUDA applications can be compiled and executed natively, e.g. for
machine learning tasks. We also integrated major machine learning frameworks (TensorFlow,
Kiras, PyTorch) into our notebook images.

6 Discussion

Using open source building blocks, we have implemented a complete private IaaS cloud platform.
The Kubernetes container orchestration engine has proven to be a valuable tool in service
deployment, from bare metal to clusters of virtual machines. Through the integrated high
availability features of Kubernetes, metric based alerting tools and high levels of automation, we

73



JupyterHub on an on-premises cloud Blank-Burian, Hölters, Vogl

(a) Notebook (b) Terminal

(c) VS Code (d) Voreen

Figure 3: (a) The standard notebook interface of JupyterLab, (b) the standard terminal of
JupyterLab, (c) VS Code fork ”code-server” as web application and (d) Voreen [7], an X11 3D
visualization application, started inside a JupyterHub session. A video demonstration show-
ing server-side rendering can be found at https://radosgw.public.os.wwu.de/wwuit-sys/

videos/voreen.mp4.

built a very robust system, which is easy to maintain and requires hardly any human intervention
during normal operations. Updates and bugfixes can be tested automatically through the use
of CI workflows and be integrated swiftly into staging or production systems using GitOps
workflows.

The WWU Cloud as well as the WWU Kube are already used in plenty of projects, most of
which are administered by researchers. Our JupyterHub service is primarily used by students,
as a basic working environment to learn programming or data analysis. The GPU support
in JupyterHub is primarily used by researchers, requiring either remote data visualization or
machine learning capabilities.

7 Acknowledgements

• We thank MKW NRW for funding the RDI-NRW project.

References

[1] Cluster api. https://github.com/kubernetes-sigs/cluster-api.

74

https://radosgw.public.os.wwu.de/wwuit-sys/videos/voreen.mp4
https://radosgw.public.os.wwu.de/wwuit-sys/videos/voreen.mp4
https://github.com/kubernetes-sigs/cluster-api


JupyterHub on an on-premises cloud Blank-Burian, Hölters, Vogl

[2] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t markup language (yaml™) version
1.1. Working Draft 2008-05, 11, 2009.

[3] Brendan Burns, Joe Beda, and Kelsey Hightower. Kubernetes: up and running: dive into the
future of infrastructure. O’Reilly Media, 2019.

[4] B Granger and J Grout. Jupyterlab: Building blocks for interactive computing. Slides of presen-
tation made at SciPy, 2016.

[5] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Busson-
nier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay, et al.
Jupyter Notebooks-a publishing format for reproducible computational workflows., volume 2016.
2016.

[6] Thomas A Limoncelli. Gitops: a path to more self-service it. Communications of the ACM,
61(9):38–42, 2018.

[7] Jennis Meyer-Spradow, Timo Ropinski, Jörg Mensmann, and Klaus Hinrichs. Voreen: A rapid-
prototyping environment for ray-casting-based volume visualizations. IEEE Computer Graphics
and Applications, 29(6):6–13, 2009.

[8] Jeffrey M Perkel. Why jupyter is data scientists’ computational notebook of choice. Nature,
563(7732):145–147, 2018.

[9] Tiago Rosado and Jorge Bernardino. An overview of openstack architecture. In Proceedings of the
18th International Database Engineering & Applications Symposium, pages 366–367, 2014.

[10] Raimund Vogl, Dominik Rudolph, and Anne Thoring. Bringing structure to research data man-
agement through a pervasive, scalable and sustainable research data infrastructure. In The Art of
Structuring, pages 501–512. Springer, 2019.

75



JupyterHub on an on-premises cloud Blank-Burian, Hölters, Vogl

8 Biographies

M. Blank-Burian is a research assistant at the it department of the
University of Münster (WWU IT) and lead cloud architect of the WWU
Cloud. He graduated from University of Münster (Germany) in 2013
with degrees in both physics and computer sciences. In 2018, he received
his Ph.D. in theoretical physics. His research focuses on private clouds
and cloud native technology. More info: https://www.uni-muenster.
de/forschungaz/person/17330

J. Hölters is the head of the department for systems at it department
of the University of Münster (WWU IT). More info: https://www.

uni-muenster.de/forschungaz/person/8172

R. Vogl holds a Ph.D. in elementary particle physics from the Uni-
versity of Innsbruck (Austria). After completing his Ph.D. studies in
1995, he joined Innsbruck University Hospital as IT manager for med-
ical image data solutions and moved on to be deputy head of IT. He
served as a lecturer in medical informatics at UMIT (Hall, Austria) and
as managing director for a medical image data management software
company (icoserve, Innsbruck) and for a center of excellence in medical
informatics (HITT, Innsbruck). Since 2007 he has been director of the
it department of the University of Münster (WWU IT, Germany). His
research interests focus on management of complex information systems
and information infrastructures.

76

https://www.uni-muenster.de/forschungaz/person/17330
https://www.uni-muenster.de/forschungaz/person/17330
https://www.uni-muenster.de/forschungaz/person/8172
https://www.uni-muenster.de/forschungaz/person/8172

	Introduction
	Kubernetes
	WWU Cloud
	WWU Kube
	JupyterHub
	Discussion
	Acknowledgements
	Biographies

