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The dynamic modulus (|E*|) of asphalt mixtures is one of the main material characteristics that 
governs the quality of asphalt pavements in their design and construction. While the |E*| values are 
traditionally obtained from intensive laboratory testing or statistical predictive equations, this 
research attempted to apply several machine learning (ML) techniques to predict |E*|, especially for 
non-conventional asphalt mixtures. The study used 3906 lab-measured |E*| data points from 
different types of non-standard asphalt mixtures, such as recycled asphalt pavement, recycled 
asphalt shingles, warm mix asphalt, asphalt rubber, air-blown asphalt, and polymer-modified 
asphalt. Mixture temperature, loading frequency, aggregate gradation, mixture volumetric, and 
asphalt binder information were included as variables used in the ML techniques. Relative 
comparisons were made to answer the following question: which ML technique would provide a 
more accurate prediction for |E*| when non-conventional asphalt mixtures are considered in the 
design and construction? It was found that, among the five ML techniques used in the study, 
decision trees and random forests showed the best prediction capability. Linear regression showed 
the least accurate prediction. It was also found that the |E*| measured for asphalt-rubber asphalt 
mixtures was best predicted by ML techniques. 
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Introduction 
 
The longevity of roadway pavements relies heavily on their structural design with sound material 
selection followed by proper construction. During the late 1990s and early 2000s, a new pavement 
design and evaluation procedure known as the Mechanistic-Empirical Pavement Design Guide 
(MEPDG) was developed under the National Cooperative Highway Research Program (NCHRP 01-
37A, n.d.). The primary goal was to transition empirical-based pavement design practice towards a 
mechanistic-based approach that incorporates the mechanical responses of pavement mixtures and 
underlying layers. This effort has been continuing, and an advanced version of the MEPDG software, 
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AASHTOWare Pavement ME Design®, is currently being used or evaluated by numerous state 
highway agencies in the US (AASHTO, 2020).  
 
One of the primary inputs for an asphalt pavement design and performance evaluation in the software 
is the dynamic modulus (|E*|), as this viscoelastic property dynamically determines the stiffness of 
asphalt mixture depending on a given pavement temperature and traffic loading frequencies. The 
software subsequently utilizes the |E*| values and other material characteristics to forecast the 
pavement's performance, specifically in relation to the accumulation of distresses such as rutting and 
cracking on asphalt pavement over its design life. 
  
While the collection of laboratory-measured |E*| data is considered the most precise depiction of 
material response, it is not consistently undertaken by agency or consultant personnel who are 
involved in pavement design with the mechanistic-empirical approach. This is because not all 
laboratories have the necessary resources in terms of equipment, time, technician, and funding to 
conduct |E*| testing on a broad scale. Hence, the inclusion of |E*| prediction models within the 
software confers a practically significant advantage to those who would want to operate the software 
without the need for extensive laboratory measurements. 
   
Machine learning (ML) is recently emerging as an alternative way that could replace the traditional 
statistical |E*| predictions. Various ML techniques have been used in previous research in civil and 
construction engineering. The literature review in the proceeding section provides several previous 
studies on research using ML techniques used in the discipline. Though much research has attempted 
to predict |E*| of asphalt mixture, limited study is found in using ML, particularly focusing on the 
prediction of |E*| for non-conventional asphalt mixtures. In this study, the authors employed several 
ML techniques to predict the |E*| of non-conventional asphalt mixtures and evaluated them to find the 
best predictive ML method.  
 
Raw data included in this study come from 62 asphalt mixtures with a total of 3906 laboratory-
measured |E*| data points (Mensching et al., 2018). The dataset contains six groups of non-
conventional asphalt mixtures and one group of conventional mixture for comparison purposes. The 
non-conventional mixture groups are those mixed or modified with 1) Reclaimed Asphalt Pavement 
(RAP), 2) Recycled Asphalt Shingles (RAS), 3) Warm Mix Asphalt (WMA), 4) asphalt rubber, 5) air-
blown asphalt, and 6) polymer modified. The ML predicted |E*| values are compared and evaluated 
with the laboratory-measured |E*| values based on four different metrics: mean absolute error (MAE), 
mean squared error (MSE), root mean squared error (RMSE), and explained variance score (EVS). 
 
With this background, the objective of this study was to relatively evaluate the performance of ML 
techniques in predicting |E*| for non-conventional asphalt mixtures by answering the following 
question: which ML technique would provide a more accurate prediction for |E*| when non-
conventional asphalt mixtures are considered in the design and construction? Five ML techniques 
including linear regression, support vector machines, decision trees, random forests, and deep learning 
were used to find the predicted |E*| values in this study. 
 

Literature Review 
 
Dao et al. (2020) investigated several ML algorithms to predict |E*| of warm mix asphalt containing 
high reclaimed asphalt pavement. The ML techniques that were used include the artificial neural 
network, SVM, Gaussian process regression, and ensemble boosted trees. The results showed the 
boosted algorithm was found the best predictor. Behnood and Golafshani (2021) applied an 
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innovative optimization algorithm called biogeography-based programming for predicting |E*| of both 
traditional and non-traditional asphalt mixtures and concluded the algorithm was successful. Gong et 
al. (2020) used the deep learning algorithm, specifically a feedforward neural network, to evaluate the 
|E*| predictions. The study found that the neural networks outperformed the traditional statistical 
predictions and other prediction methods. The algorithm used some volumetric information such as 
binder properties, mixture volumetrics, and aggregate gradation to create neural network to estimate 
the |E*|. Another example of a ML technique using neural network to predict |E*| is in Ceylan et al.’s 
research (Ceylan et al., 2009). In this study, the |E*| of conventional asphalt mixtures were predicted 
using the feedforward neural network with four layers and eight inputs. The research concluded that 
the |E*| values from their ML algorithm were significantly higher than those found from the 
statistically driven |E*| equations when the identical inputs were used. It was reported that a more 
accurate |E*| prediction could be found through artificial neural networks that minimize bias. Another 
study by Gong et al. (2018) focused on random forests to predict the international roughness index 
(IRI) of asphalt pavements. In the development and validation of their IRI prediction model, it was 
reported that the random forest regression outperformed the traditional linear regression model 
showing greater than 0.95 R2 in both training and test datasets.  
 

Methodology 
 

Raw Data and Data Preprocessing 
 

The raw data used in this study was retrieved from one of the previous studies (Mensching et al., 
2018) that used non-conventional asphalt mixtures for comparing |E*| data between laboratory-
measured and predicted with traditional statistically driven equations. The study collected a set of |E*| 
data measured in the laboratories at various test temperature-frequency conditions from 62 asphalt 
mixtures. A total of 3906 laboratory-measured |E*| data points were populated. Table 1 shows the 
breakdown of the data used in this study showing the material types and datapoints of each type. As 
indicated earlier, the non-conventional mixtures include RAP, RAS, WMA, Asphalt Rubber, Air-
Blown Asphalt, and Polymer Modified. The RAP asphalt mixture type has the most data points (2358 
data points) out of the seven asphalt mixture types. The WMA asphalt mixture has the second-highest 
number of data points (504 data points) which used several warm mix additives. Both the RAP and 
WMA include four different material types which result in a higher number of data points for that 
mixture. Polymer-modified mixture types include the materials styrene-butadiene-styrene (SBS) and 
terpolymer in the composite. This mixture type contains 270 data points. The RAS mixture type has 
144 data points. This mixture is made of a combination of the composite and 6% RAS by weight. 
Asphalt rubber and air-blown asphalt modified mixtures have the least number of data points (90 data 
points each). In addition, a group of conventional asphalt mixtures was used as well for comparison 
purposes. This group of conventional materials includes 450 data points. 
 
Prior to operating ML techniques, it was essential to sort out the raw data to efficiently use the 
dataset. Table 2 provides a list of the information that was used from the raw data and the selected 
variables of this study. It is worth noting that the variables were chosen based on the two traditional 
statistically driven predictive equations (Andrei et al., 1999 and Bari et al., 2006) that are currently 
used in the AASHTOWare software. A variable named “Log_E” in the dataset was treated as the 
dependent variable and all other variables were considered the independent variables. The unit of 
"Log E" is 105 psi following the traditional convention of |E*| prediction methodology. 
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Table 1 
 
Summary of Dynamic Modulus Dataset 
 

Type of Asphalt Mixture Data Points Note 
Conventional 450  

RAP 2358 20%, 22%, 30%, 44%, RAP by weight 
RAS 144 6% RAS by weight 

WMA 504 Foamed, Advera®, Evotherm®, Sasobit® 
Asphalt Rubber 90 6% Tire Scraps by weight 

Air-blown Asphalt 90  
Polymer Modified 270 SBS, Terpolymer 
Total Data Points 3906  

 
Table 2 
 
Variables used in the ML operation 
 

Variable Abbreviation Variable Description 
temp Temperature (⁰F) 

f Frequency (Hz) 
p34 The cumulative percent retained in 3/4” sieve 
p38 The cumulative percent retained in 3/8" sieve 
p4 The cumulative percent retained in # 4 sieve 

p200 The percent passing # 200 sieve 
Va Percent of air voids 

Vbeff Percent of effective binder content by volume 
Vis Viscosity of the binder (106 poise) 

Log_E Log E (105 psi) 
 

Machine Learning 
 

The five ML techniques were run in Python using the Jupyter notebook. A total of seven notebooks 
for each of the five mixture types were created for the coding process for the seven mixture types 
presented in Table 1. Figure 1 shows a flow chart of the steps used in programming the ML 
techniques. The coding process of each ML technique was similar until the data was split into the 
training and testing sets (80% and 20%, respectively). After this split in the data, the code was 
specific to each ML technique.  
 
As indicated earlier, the evaluation metrics used in this study include MAE, MSE, RMSE, and EVS. 
MAE, defined as  

1
n
∑ |yi − ŷi|n
i , is a common evaluation metric for regression that does not punish 

larger errors, and measures the absolute value of the mean of the distance between the targeted value 
and the predicted value. MSE is the mean of the squared errors and is defined by 

1
n
∑ (|yi − y�i|)2n
i . 

This evaluation metric is sometimes used over MAE because larger errors are noted. The MSE 
measures how close a regression line is to the data points. RMSE is the square root of the MSE to 
normalize the unit of the MSE. The EVS is used to provide how much variance exists in the model as 
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defined by EVS =  1 − Error of Sum Squared
Total Corrected Sum of Squares 

. The error of the sum squared, and the total 

corrected sum of squares are two components of the equation to find the explained variance. It should 
be recognized that it is ideal for the EVS score to be closer to 1.0, however for MAE, MSE, and 
RMSE the goal is to have a value closer to 0.  
 

 
Figure 1. Coding Steps for Each Machine Learning Technique 

 
Results and Discussion 

 
Several bar charts from Figures 2 to 5 were created to compare the results of each evaluation metric. 
Figure 2 compares the MAE of all five ML techniques. For each ML technique, the MAE is provided 
for the individual asphalt mixture type along with the MAE of all combined data. Similar figures are 
created for MSE, RMSE, and EVS as shown in Figures 3, 4, and 5, respectively. It should be recalled 
that the goals of MAE, MSE, and RMSE are to have results closer to zero for an effective prediction 
of |E*|, while the goal of EVS is to have results closer to 1.  
 
In Figure 2, it was evident that decision trees and random forests provided the relatively lower MAEs 
regardless of the mixture type. This clearly indicates that the two techniques have the better ability to 
predict |E*| than the other three methods. It was also noticed that linear regression showed the poorest 
results indicating an inferior ability of |E*| prediction followed by SVM. Deep learning is placed in 
the third place.  
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Within each ML group, the air-blown and asphalt rubber materials stand out except for the deep 
learning group where the |E*| predictions of asphalt rubber mixtures are not close to each other. The 
best prediction combination (material and ML method) was found to be asphalt rubber with decision 
trees followed by asphalt rubber with random forests. This trend is consistently found with the other 
two evaluation metrics: MSE and RMSE. The decision trees and random forests showed exceptional 
prediction capabilities compared to the other three for all mixture types.  
 

 

Figure 2. Comparison of MAE of All ML Techniques 
 
 

 
Figure 3. Comparison of MSE of All ML Techniques 
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Figure 4. Comparison of RMSE of All ML Techniques 
 
Figure 5 presents a comparative analysis of the EVS for the five ML methodologies. The analysis 
revealed that both the SVM and linear regression models exhibited suboptimal performance, aligning 
with the findings obtained from the MAE, MSE, and RMSE metrics. The approaches exhibited low 
expected value of EVS for all non-conventional mixing types, along with high MAE, MSE, and 
RMSE, as previously demonstrated. This observation suggests that the methods were not successful in 
accurately predicting the value of |E*|. The deep learning approach exhibited superior performance 
compared to SVM and linear regression, while falling short of the performance achieved by decision 
trees and random forests. The findings are consistent with a prior study (Gong et al., 2018) that 
demonstrated the superior performance of neural networks, a component of deep learning, compared 
to linear regression. The performance of decision trees and random forests surpassed that of 
conventional machine learning algorithms, yielding outstanding results. These methods provide the 
highest levels of accuracy. Both methods yielded EVS values that were more than or equal to 0.99.  
 
The outcomes between the two methods exhibit a high degree of similarity, with random forests 
demonstrating a modest superiority in performance. Upon examining the data visually presented in 
the figure for all types of mixtures, it can be observed that random forests exhibit a superior EVS 
value. As previously stated, the EVS demonstrates the efficacy of the method in accurately 
forecasting the value of |E*|. In general, decision trees and random forests provide outstanding 
performance compared to the other five ML algorithms. 
 

Summary and Conclusions 
 

In this study, ML techniques were applied to predict |E*| of non-conventional asphalt mixtures. The 
goal of using ML techniques was to relatively evaluate the accuracy and effectiveness of ML in 
predicting |E*| within different ML methods. The ML techniques selected in this study include linear 
regression, SVM, decision trees, random forest, and deep learning. These ML techniques were applied 
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to seven non-conventional asphalt mixture groups and one conventional mixture group. The following 
performance metrics MAE, MSE, RMSE, and EVS were used as evaluation guidance.  
 

 
Figure 5. Comparison of EVS of All ML Techniques 

 
When all the methods are compared using the metrics, decision trees and random forests provided the 
best results which consisted of all excellent accuracies for all non-conventional material types as well 
as conventional mixture group. Random forests had slightly better results than decision trees. 
However, both methods had excellent results and outperformed the other ML techniques. The results 
of deep learning were not as good as the results from decision trees and random forests. Overall linear 
regression and SVM did not perform well. SVM had slightly better results than linear regression. 
 
In conclusion, the present study determined that certain ML techniques yielded superior outcomes 
compared to others when applied to the |E*| dataset of non-conventional asphalt mixtures. In general, 
decision trees and random forests are two methodologies that exhibit higher predictive accuracy in 
estimating the value of |E*|, irrespective of the types of mixtures involved. The asphalt rubber asphalt 
mixtures are well orchestrated with all ML methods. Nevertheless, it is important to exercise caution 
when interpreting this result as the study in question possesses certain limitations. One of the 
disadvantages of this study is the unequal distribution of data points among different types of asphalt 
mixtures. As depicted in Table 1, the data utilized in the study exhibits a distribution, wherein certain 
asphalt mixture types have a greater abundance of data in comparison to others. For example, the 
dataset for RAS has 2,358 data points, while the dataset for asphalt rubber consists of only 90 data 
points. The variation in data quantity and data variety might have an impact on the outcomes and 
predictive accuracy of |E*|. This was not addressed within the scope of this study; however, it merits 
consideration for future investigations. 
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