
Generating Asymptotically Non-Terminant

Initial Variable Values for Linear Diagonalizable

Programs

Rachid Rebiha1∗, Nadir Matringe2,3 and Arnaldo Vieira Moura1

1 Institute of Computing UNICAMP, University of Campinas, SP. Brasil.
rachid@ic.unicamp.br

2 Universit de Poitiers, Laboratoire Mathmatiques et Applications, France.
3 Institue de Mathematiques de Jussieu, Université Paris 7-Denis Diderot, France.

Abstract

We present the key notion of asymptotically non-terminant initial variable values for
non-terminant loop programs. We show that those specific values are directly associated to
inital variable values for which the corresponding loop program does not terminate. Con-
sidering linear diagonalizable programs, we describe powerful computational methods that
generate automatically and symbolically a semi-linear space represented by a linear system
of equalities and inequalities. Each element of this space provides us with asymptotically
non-terminant initial variable values. Our approach is based on linear algebraic methods.
We obtain specific conditions using certain basis and matrix encodings related to the loop
conditions and instructions.

1 Introduction

Research on formal methods for program verification [12, 15, 8, 17] aims at discovering math-
ematical techniques and developing their associated algorithms to establish the correctness of
software, hardware, concurrent systems, embedded systems or hybrid systems. Static program
analysis [12, 15], is used to check that a software is free of defects, such as buffer overflows or
segmentation faults, which are safety properties, or termination and non-termination, which are
liveness properties. Proving termination of while loop programs is necessary for the verification
of liveness properties that any well behaved and engineered system, or any safety critical em-
bedded system must guarantee. We could list here many verification approaches that are only
practical depending on the facility with which termination can be automatically determined.
Verification of temporal properties of infinite state systems [20] is another example.

Recent work on automated termination analysis of imperative loop programs has focused
on a partial decision procedure based on the discovery and synthesis of ranking functions. Such
functions map the loop variable to a well-defined domain where their value decreases further
at each iteration of the loop [9, 10]. Several interesting approaches, based on the generation
of linear ranking functions, have been proposed [3, 4] for loop programs where the guards and
the instructions can be expressed in a logic supporting linear arithmetic. For the generation of
such functions, there are effective heuristics [14, 10] and, in some cases, there are also complete
methods for the synthesis of linear ranking functions [16]. On the other hand, it is easy to
generate a simple linear terminant loop program that does not have a linear ranking function.
And in this case such complete synthesis methods [16] fail to provide a conclusion about the
termination or the non termination of such a program.

∗Supported by FAPESP grant 2011/08947-1 and FAPESP grant BEPE 2013/04734-9.

L. Kovacs, T. Kutsia (eds.), SCSS 2013 (EPiC Series, vol. 15), pp. 81–92 81

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

In this work we address the non-termination problem for linear while loop programs. In
other words, we consider the class of loop programs where the loop condition is a conjunc-
tion of linear inequalities and the assignments to each of the variables in the loop instruction
block, are affine or linear forms. In matrix notation, linear loop programs will be represented
in a general form as: while (Bx > b), {x := Ax + c} (i.e., A and B are matrices, b and c are
vectors of real numbers, and that x is a vector of variables.). Without loss of generality, the
termination/non-termination analysis for such a class of linear programs could be reduced to
the problem of termination/non-termination for homogeneous linear programs [6, 21]. Those
being programs where linear assignments consist of homogeneous expressions, and where the
linear loop condition consists of at most one inequality. Concerning effective program trans-
formations and simplification techniques, non-termination analysis for programs presented in a
more complex form can often be reduced to an analysis of a program expressed in this basic
affine form. Despite tremendous progress over the years [6, 5, 7, 13, 11, 2, 1], the problem of
finding a practical, sound and complete methods for determining or analyzing non termina-
tion remains very challenging for this class of programs, and for all initial variable values. We
started our investigation from our preliminary technical reports [19, 18] where we introduced a
termination analysis in which algorithms ran in polynomial time complexity. Here, considering
a non terminating loop, we introduce new static analysis methods that compute automatically,
and in polynomial time complexity, the set of initial input variable values for which the program
does not terminate, and also a set of initial inputs values for which the program does terminate.
This justifies the innovation of our contributions, i.e., none of the other mentioned related work
is capable of generating such critical information over non-terminating loops. We summarize
our contributions as follows:

• To the best of our knowledge, we introduce a new key notion for non-termination and ter-
mination analysis for loop programs: we identify the important concept of asymptotically
non-terminant initial variable values, ANT for short. Any asymptotically non-terminant
initial variable values can be directly related to an initial variable value for which the
considered program does not terminate.

• Our theoretical contributions provide us with efficient computational methods running in
polynomial time complexity and allowing the exact computation of the set of all asymp-
totically non-terminant initial variable values for a given loop program.

• We generate automatically a set of linear equalities and inequalities describing a semi-
linear space that represents symbolically the set of all asymptotically non-terminant initial
variable values. The set of ANT values contains the set of non-terminant initial variable
values. On the other hand the complementary set of ANT values is a precise under-
approximation of the set of terminant inputs for the same program.

Example 1.1. (Motivating Example) Consider the following program depicted below on the
left. We show a part of the output of our algorithm below on the right.

(i) Pseudo code:

while(2x+3y-z>0){

x:= y + z;

y:= -(1/2)x+(3/2)y -(1/2)z;

z:=(3/2)x -(3/2)y+(1/2)z;}

(ii) Output of our prototype:

Locus of ANT

[[4u[1]+u[2]+u[3]>0]

AND[u[1]+4u[2]+4u[3]>0]

AND[-u[1]+u[2]-u[3]=0]]

OR[[-u[1]+u[2]-u[3]>0]]

82

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

The semi-linear ANT = {u = (u1, u2, u3)> ∈ E | 4u1 + u2 + u3 > 0 ∧ u1 + 4u2 + 4u3 >
0 ∧−u1 + u2 − u3 = 0} ∪ {u = (u1, u2, u3)> ∈ E | − u1 + u2 − u3 > 0} represents symbolically
all asymptotically initial variable values that are directly associated to initial variable values
for which the program does not terminate. On the other hand, the complementary of this set
co-ANT = {u = (u1, u2, u3)> ∈ E | 4u1 + u2 + u3 ≤ 0 ∨ u1 + 4u2 + 4u3 ≤ 0 ∨−u1 + u2 − u3 6=
0} ∩ {u = (u1, u2, u3)> ∈ E | − u1 + u2 − u3 ≤ 0} is a precise under-approximation of the set
of all initial variable values on which the program terminates.

The rest of this article is organized as follows. Section 2 can be seen as a preliminary
section where we introduce some key notions and results from linear algebra, which will be used
to build our computational methods. In this section, we also present our computational model
for programs and some further notations. Section 3 introduces the new notion of asymptotically
non-terminant initial variable values. Section 4 provides the main theoretical contributions
of this work. This section also presents our computational methods that generate a symbolic
representation of the asymptotically non-terminant variable values for linear programs. We
provide a complete dicussion in Section 5. Finally, Section 6 states our conclusions.

2 Linear Algebra and Linear Loop Programs

Here, we present key linear algebraic notions and results which are central in the theoretical and
algorithmic development of our methods. We denote by M(m,n,K) the set of m× n matrices
with entries in K, and simplyM(n,K) when m = n. The Kernel of A, also called its nullspace,
denoted by Ker(A), is Ker(A) = {v ∈ Kn | A · v = 0Km}. In fact, when we deal with square
matrices, these Kernels are Eigenspaces. Let A be a n× n square matrix with entries in K. A
nonzero vector x ∈ K is an eigenvector for A associated with the eigenvalue λ ∈ K if A ·x = λx,
i.e., (A − λIn) · x = 0 where In is the n × n identity matrix. The nullspace of (A − λIn) is
called the eigenspace of A associated with eigenvalue λ. Let n be a positive integer, we will
denote Rn by E and its canonical basis by Bc = (e1, . . . , en). Let A be a square matrix in
M(n,R). Let us introduce the notation Spec(A) for the set of eigenvalues of A in R, and we
will write Spec(A)∗ for the set Spec(A)− {0}. For λ ∈ Spec(A), we will denote by Eλ(A) the
corresponding eigenspace. Throughout the paper we write dλ for the dimension of Eλ(A). We
will say that A is diagonalizable if E = ⊕λ∈Spec(A)Eλ(A). Let A be a diagonalizable matrix.
For each eigenspace Eλ(A), we will take a basis Bλ = (eλ,1, . . . , eλ,dλ), and we define

B = ∪λ∈Spec(A)Bλ

as a basis for E.

Definition 2.1. Let x belong to E. We denote by xλ its component in Eλ(A). If x admits the

decomposition
∑
λ∈Spec(A)(

∑dλ
i=1 xλ,ieλ,i) in B, we have xλ =

∑dλ
i=1 xλ,ieλ,i.

We denote by P the transformation matrix corresponding to B, whose columns are the vectors
of B, decomposed in Bc. Letting di denote the integer dλi for the ease of notation, we recall
the following lemma.

Lemma 2.1. We have P−1AP = diag(λ1Id1, . . . , λtIdt). We denote by D the matrix P−1AP .

As we will obtain our results using the decomposition of x in B, we recall how one obtains it
from the decomposition of x in Bc.

83

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

Lemma 2.2. Let x ∈ E. If x =
∑n
i=1 xiei = (x1, ..., xn)> ∈ Bc, and x decomposes as∑t

j=1(
∑dj
i=1 xλj ,ieλj ,i) in B, the coefficients xλj ,i are those of the column vector P−1x in Bc.

Throughout the paper we write < , > for the canonical scalar product on E, which is given by <
x, y >=

∑n
i=1 xiyi, and recall, as it is standard in static program analysis, that a primed symbol

x′ refers to the next state value of x after a transition is taken. Next, we present transition
systems as representations of imperative programs and automata as their computational models.

Definition 2.2. A transition system is given by 〈x, L, T , l0,Θ〉, where x = (x1, ..., xn) is a set
of variables, L is a set of locations and l0 ∈ L is the initial location. A state is given by an
interpretation of the variables in x. A transition τ ∈ T is given by a tuple 〈lpre, lpost, qτ , ρτ 〉,
where lpre and lpost designate the pre- and post- locations of τ , respectively, and the transition
relation ρτ is a first-order assertion over x ∪ x′. The transition guard qτ is a conjunction of
inequalities over x. Θ is the initial condition, given as a first-order assertion over x. The
transition system is said to be linear when ρτ is an affine form.

We will use the following matrix notations to represent loop programs and their associated
transitions systems.

Definition 2.3. Let P be a loop program represented by the transition system 〈x =
(x1, ..., xn), l0, T = 〈l, l, qτ , ρτ 〉, l0,Θ〉. We say that P is a linear loop program if the following
conditions hold:

• Transition guards are conjunctions of linear inequalities. We represent the loop condition
in matrix form as V x > b where V ∈ M(m,n,R) and b ∈ Rm. By V x > b we mean that
each coordinate of vector V x is greater than the corresponding coordinate of vector b.

• Transition relations are affine or linear forms. We represent the linear assignments in
matrix form as x := Ax+ c, where A ∈M(n,R) and c ∈ Rn.

The linear loop program P = P (A, V, b, c) will be represented in its most general form as
while (V x > b), {x := Ax+ c}.

In this work, we use the following linear loop program classifications.

Definition 2.4. We identify the following three types of linear loop programs, from the more
specific to the more general form:

• Homogeneous: We denote by PH the set of programs where all linear assignments consist
of homogeneous expressions, and where the linear loop condition consists of at most one
inequality. If P is in PH, then P will be written in matrix form as while (< v, x >>
0), {x := Ax}, where v is a (n× 1)-vector corresponding to the loop condition, and where
A ∈ M(n,R) is related to the list of assignments in the loop. We say that P has a
homogeneous form and it will also be denoted as P (A, v).

• Generalized Condition: We denote by PG the set of linear loop programs where the loop
condition is generalized to a conjunction of multiple linear homogeneous inequalities.

• Affine Form: We denote by P A the set of loop programs where the inequalities and the
assignments are generalized to affine expressions. If P is in P A, it will be written as
while (V x > b), {x := Ax+ c}, for A and V in M(n,R), b ∈ Rm, and c ∈ Rn.

84

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

Without lost of generality, the static analysis for the class of linear programs P A could be
reduced to the problem of termination/non-termination for homogeneous linear programs in
PH. In this work we consider programs in PH. The generalization to programs in P A can
already be done and it will be reported elsewhere.

3 Asymptotically Non-terminant Variable Values

In this section we present the new notion of asymptotically non-terminant variable values. It
will prove to be central in analysis of termination, in general. Let A be a matrix in M(n,R),
and v be a vector in E. Consider the program P (A, v) : while (< v, x >> 0), {x := Ax}, which
takes values in E. We first give the definition of the termination of such a program.

Definition 3.1. The program P (A, v) is said to be terminating on x ∈ E, if and only if
< v,Ak(x) > is not positive, for some k ≥ 0.

In other words, Definition 3.1 states that if the program P (A, v) performs k ≥ 0 loop
iterations from initial variables xin E, we obtain x := Ak(x). Thus, if < v,Ak(x) >≤ 0,
the loop condition is violated, and so P (a, v) terminates. Next, we introduce the following
important notion.

Definition 3.2. We say that x ∈ E is an asymptotically non terminating value for P (A, v) if
there exists kx ≥ 0 such that P (A, v) is non terminating on Akx(v). We will write that x is
ANT for P (A, v), or simply x is ANT. We will also write that P (A, v) is ANT on x.

Note that if P (A, v) is non terminating on Akx(x) then < v,Ak(x) > is > 0 for k ≥ kx.
The following result follows directly from the previous definition.

Corollary 3.1. An element x ∈ E is ANT if and only if < v,Ak(x) > is positive for k large
enough.

If the set of ANT points is not empty, we say that the program P (A, v) is ANT . We will
also write NT for non terminant. For the programs we study here, the following lemma already
shows the importance of such a set.

Lemma 3.1. The program P (A, v) is NT if and only if it is ANT .

Proof. It is clear that NT implies ANT (i.e., NT ⊆ ANT), as a NT point of P (A, v) is of
course ANT (with kx = 0). Conversely, if P (A, v) is ANT , call x an ANT point, then Akx(x)
is a NT point of P (A, v), and so P (A, v) is NT .

As one can easily see, the set of NT points is included in the set of ANT points. But the
most important property of the ANT set remains in the fact that each of its point provides us
with an associated element in NT for the corresponding program. In other words, each element
x in the ANT set, even if it does not necessarily belong to the NT set, refers directly to initial
variable values yx = Akx for which the program does not terminate, i.e., yx is an NT point.
We can say that there exists a number of loop iterations k[x], departing from the initial variable

values x, such that Akx correspond to initial variable values for which P (A, v) does not
terminate. But, it does not necessarily implies that x is also an NT point for P (A, v). In fact,
program P (A, v) could terminate on the initial variable values x by performing a number of

85

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

loop iterations strictly smaller than k[x]. On the other hand, the complementary set co-ANT
provides us with a quite precise under approximation of the set of all initial variable values for
which the program terminates.

The set of ANT points of a program is also important to the understanding of the termination
of a program with more than one conditional linear inequality, as well as for termination over
the rationals, for example. This will be reported elsewhere.

4 Automated generation of ANT loci

In this section we show how we generate automatically and exactly the ANT Locus, i.e., the set
of all ANT points for linear diagonalizable programs over the reals. We represent symbolically
the computed ANT Locus by a semi-linear space defined by linear equalities and inequalities.
Consider the program P (A, v) : while (< v, x >> 0), {x := Ax}. The study of ANT sets
depends on the spectrum of A. Recall the introductory discussion and Definition 2.1, at Section
2.

Proposition 4.1. For x in E, and k ≥ 1, the scalar product < v,Ak(x) > is equal to∑
λ∈Spec(A)

λk < v, xλ >=
∑

λ∈Spec(A)∗

λk < v, xλ > .

Proof. It is a direct consequence of the equality Ak(xλ) = λkxλ.

4.1 The regular case

We first analyze the situation where A is what we call regular:

Definition 4.1. We say that A is regular, if Spec(A) ∩
[
− Spec(A)

]
is an empty set, i.e.: if

λ belongs to Spec(A), then −λ does not belong to Spec(A).

In this case, we make the following observation:

Proposition 4.2. Let µ be the nonzero eigenvalue of largest absolute value, if it exists, such that
< v, xµ > is nonzero. For k large, the quantity < v,Ak(x) > is equivalent to µk < v, xµ >.

Proof. Indeed, we can write < v,Ak(x) > as

µk < v, xµ > +
∑

{λ,|λ|<|µ|}

λk < v, xλ >= µk(< v, xµ > +
∑

{λ,|λ|<|µ|}

λk

µk
< v, xλ >),

and λk

µk
approaches zero when k goes to infinity.

We then define the following sets.

Definition 4.2. For µ a positive eigenvalue of A, we define Sµ as follows:

Sµ = {x ∈ E,< v, xµ >> 0, < v, xλ >= 0 for |λ| > |µ|}

86

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

In order to obtain Sµ for all positive eigenvalues µ of A, one needs to calculate < v, xµ >,
and < v, xλ > for all eigenvalues λ such that |λ| > |µ|. For all eigenvalues λ involved in
the computation of Sµ, one also needs to evaluate the coefficients cλ,i =< v, eλ,i > for all

eigenvectors eλ,i ∈ B and 1 ≤ i ≤ dλ. Thus, we have < v, xλ >=
∑dλ
i=1 cλ,ixλ,i. Now, we only

need to compute the coefficient xλ,i, which are those of the column vector P−1x in Bc where
P is the transformation matrix corresponding to B. See Lemma 2.2.

We ca now state the following theorem, allowing the exact computation of the ANT Locus
for the regular case.

Theorem 4.1. The program P (A, v) is ANT on x if and only if x belongs to⋃
µ>0∈Spec(A)

Sµ.

Proof. Let x belong to E. If all < v, xλ > are zero for λ ∈ Spec(A), then < v,Ak(x) >= 0
and x is not ANT . Otherwise, let µ be the eigenvalue of largest absolute value, such that
< v, xµ > is nonzero. Then, according to Proposition 4.2, the sign of < v,Ak(x) > is the sign
of µk < v, xµ > for k large. If µ is negative, this sign will be alternatively positive and negative,
depending on the parity of k, and x is not ANT . If µ is positive, this sign will be the sign of
< v, xµ >, hence x will be ANT if and only if < v, xµ > is positive. This proves the result.

Example 4.1. (Running example) Consider the program P (A, v) depicted as follows:

(i) Pseudo code:

while(x+y-2z>0){

x:= x-4y-4z;

y:= 8x-11y-8z;

z:= -8x+8y+5z;}

(ii) Associated matrices:

A =

 1 −4 −4
8 −11 −8
−8 8 5

, and v =

 1
1
−2

.

Step 1: Diagonalization of the matrix A:

P =

 1 1 1
2 1 0
−2 0 1

, D =

1 0 0
0 −3 0
0 0 −3

 and P−1 =

 1 −1 −1
−2 3 2
2 −2 −1

.

Using our notations, the obtained eigenvectors (i.e., the column vectors of P) are denoted as
follows: e1,1 = (1, 2,−2)> ; e−3,1 = (1, 1, 0)> ; e−3,2 = (1, 0, 1)>.

Step 2: We compute Sµ for all positive µ ∈ Spec(A)∗:

• We compute first the coefficients cλ,i:
c1,1 =< v, e1,1 >=< (1, 1,−2)>, (1, 2,−2)> >= 7,

c−3,1 =< v, e−3,1 >=< (1, 1,−2)>, (1, 1, 0)> >= 2,

c−3,2 =< v, e−3,1 >=< (1, 1,−2)>, (1, 0, 1)> >= −1

• We compute the coefficient xλ,i, which are those of the column vector P−1 ·u in Bc, where
u = (u1, u2, u3) is the vector encoding the initial variable values.

P−1.

u1

u2

u3

 =

 u1 − u2 − u3)
−2u1 + 3u2 + 2u3)

2u1 − 2u2 − u3)

 =

 x1,1

x−3,1

x−3,2

.

We can now proceed to the generation of the linear constraints defining a semi-linear space

87

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

describing symbolically and exactly Sµ.
< v, x1 >= c1,1x1,1 = 7(u1 − u2 − u3)
< v, x−3 >= c−3,1x−3,1 + c−3,2x−3,2 = −6u1 + 8u2 + 5u3)
Hence, we have: S1 = {u = (u1, u2, u3)> ∈ E | (u1−u2−u3 > 0)∧(−6u1+8u2+5u3 = 0)}.

Step 3: We apply Theorem 4.1 to generate the ANT Locus. It reduces to the semi-linear space
S1 = {u = (u1, u2, u3)> ∈ E | (u1 − u2 − u3 > 0) ∧ (−6u1 + 8u2 + 5u3 = 0)}.

4.2 The general case: handling linear diagonalizable programs

For the general case, in the asymptotic expansion of < v,Ak(x) > one can have compensations
between λk < v, xλ > and (−λ)k < v, xλ >, as these terms can be zero when k is even, for
instance, and of a well determined sign when k is odd. We thus need to take care of this issue.
To this end, we introduce the following notation.

Definition 4.3. If λ does not belong to Spec(A), for any x ∈ E, we write xλ = 0.

We have the following propositions, which give the asymptotic behavior of < v,Ak(x) >.

Proposition 4.3. Let µ be the nonzero eigenvalue of largest absolute value, if it exists, such
that < v, x|µ| + x−|µ| > is nonzero. For k large, the quantity < v,A2k(x) > is equivalent to

|µ|2k(< v, x|µ| + x−|µ| >).

Proof. Indeed, we can write < v,A2k(x) > as

µ2k(< v, x|µ| > + < v, x−|µ| >) +
∑

{|λ|,|λ|<|µ|}

λ2k(< v, x|λ| > + < v, x−|λ| >)

= µ2k(< v, x|µ| > + < v, x−|µ| >) +
∑

{|λ|,|λ|<|µ|}

λ2k

µ2k
(< v, x|λ| > + < v, x−|λ| >)).

and λk

µk
approaches to zero when k goes to infinity.

Proposition 4.4. Let µ be the nonzero eigenvalue of largest absolute value, if it exists, such
that < v, x|µ| − x−|µ| > is nonzero. For k large, the quantity < v,A2k+1(x) > is equivalent to

|µ|2k+1(< v, x|µ| − x−|µ| >).

Proof. The proof is similar to the proof of Proposition 4.3.

As in the previous Section, we introduce the following relevant sets.

Definition 4.4. For |µ| in |Spec(A)∗|, we define the sets S0
|µ| and S1

|µ| as follows:

S0
|µ| = {x ∈ E,< v, x|µ| + x−|µ| >> 0, < v, x|λ| + x−|λ| >= 0 for |λ| > |µ|}, and

S1
|µ| = {x ∈ E,< v, x|µ| − x−|µ| >> 0, < v, x|λ| − x−|λ| >= 0 for |λ| > |µ|}.

In order to compute the sets S0
|µ| and S1

|µ|, we obtain the coefficients cλ,i =< v, eλ,i > for all
eigenvalues λ. If the λ appearing as index in the coefficient cλ,i is not an eigenvalue, then we fix

cλ,i = 0 and dλ = 0 (see Definition 4.3). Thus, we have < v, x|λ| + x−|λ| >=
∑d|λ|
i=1 c|λ|,ix|λ|,i +∑d−|λ|

i=1 c−|λ|,ix−|λ|,i, and < v, x|λ| − x−|λ| >=
∑d|λ|
i=1 c|λ|,ix|λ|,i −

∑d−|λ|
i=1 c−|λ|,ix−|λ|,i.

We finally obtain the following main theorem.

88

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

Theorem 4.2. The program P (A, v) is ANT on x if and only if x belongs to the set⋃
(|µ|,|µ′|)∈|Spec(A)∗|×|Spec(A)∗|

S0
|µ| ∩ S

1
|µ′|.

Proof. It is obvious that x is ANT if and only if < v,A2k(x) > and < v,A2k+1(x) > are both
positive for k large. Now, reasoning as in the proof of Theorem 4.1, but using Propositions 4.3
and 4.4 instead of Proposition 4.2, we obtain that < v,A2k(x) > is positive for k large if and
only if x belongs to S0

|µ| for some µ ∈ |Spec(A)∗|, and that < v,A2k+1(x) > is positive for k

large if and only if x belongs to S1
|µ′| for some µ′ ∈ |Spec(A)∗|. The result follows.

The following two examples illustrate how Theorem 4.2 applies to different cases.

Example 4.2. (Running example) Consider the program P (A, v) depicted as follows:

(i) Pseudo code:

while(2x+3y-z>0){

x:=15x+18y-8z+6s-5t;

y:=5x+3y+z-t-3s;

z:=-4y+5z-4s-2t;

s:=-43x-46y+17z-14s+15t;

t:=26x+30y-12z+8s-10t;}

(ii) Associated matrices:

A =

15 18 −8 6 −5
5 3 1 −1 −3
0 −4 5 −4 −2
−43 −46 17 −14 15
26 30 −12 8 −10

, v =

1
1
2
3
1

.

Step 1: Diagonalization of the matrix A:

P =

2 1 −1 1 1
−1 0 2 0 −1
−2 0 2 −1 −2
−4 −1 0 −2 −1
2 2 1 2 1

, D =

−3 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2

 and P−1 =

−3 −3 1 −1 1
−1 −2 1 0 1
−5 −4 1 −1 2
10 10 −3 2 −4
−7 −6 1 −1 3

.

We obtain the following eigenvectors written using our notation: e0,1 = (−1, 2, 2, 0, 1)>,
e1,1 = (1, 0,−1,−2, 2)>, e2,1 = (1,−1,−2,−1, 1)>, e−1,1 = (1, 0, 0,−1, 2)> and e−3,1 =
(2,−1,−2,−4, 2)>.

Step 2: Computing Sµ for all positive µ ∈ Spec(A)∗:

• Our algorithm first computes the coefficients cλ,i. We obtain : c0,1 = 6, c1,1 = −5,
c2,1 = −6, c−1,1 = 0 and c−3,1 = −13.

• Then, our algorithm computes the coefficients of the decomposition of the initial vari-
able values in B. They are those of the column vector P−1 · u in Bc where u =
(u1, u2, u3, u4, u5)> is the vector encoding the initial variable values.

P−1.

u1

u2

u3

u4

u5

 =

−3u1 − 3u2 + u3 − u4 + u5

−u1 − 2u2 + u3 + u5

−5u1 − 4u2 + u3 − u4 + 2u5

10u1 + 10u2 − 3u3 + 2u4 − 4u5

−7u1 − 6u2 + u3 − u4 + 3u5

 =

x−3,1

x−1,1

x0,1

x1,1

x2,1

.

Now, the algorithm obtains all the non-zero terms appearing in the definition of S0
|λ| and S1

|λ|:

< v, x|1| + x−|1| >= c1,1x1,1 = −5(10u1 + 10u2 − 3u3 + 2u4 − 4u5)
< v, x|2| + x−|2| >= c2,1x2,1 = −6(−7u1 − 6u2 + u3 − u4 + 3u5)

89

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

< v, x|−3| + x−|−3| >= c−3,1x−3,1 = −13(−3u1 − 3u2 + u3 − u4 + u5)
< v, x|−3| − x−|−3| >= −c−3,1x−3,1 = 13(−3u1 − 3u2 + u3 − u4 + u5)

All the sets S0
|λ| and S1

|λ| can now be computed exactly:

S0
|1| = {u ∈ E | 5(10u1 + 10u2 − 3u3 + 2u4 − 4u5) > 0 ∧ −6(−7u1 − 6u2 + u3 − u4 + 3u5) = 0 ∧

− 13(−3u1 − 3u2 + u3 − u4 + u5) = 0};

S1
|1| = {u ∈ E|5(10u1 + 10u2 − 3u3 + 2u4 − 4u5) > 0 ∧ −6(−7u1 − 6u2 + u3 − u4 + 3u5) = 0 ∧

13(−3u1 − 3u2 + u3 − u4 + u5) = 0};

S0
|2| = {u ∈ E| − 6(−7u1 − 6u2 + u3 − u4 + 3u5) > 0 ∧ −13(−3u1 − 3u2 + u3 − u4 + u5) = 0};

S0
|2| = {u ∈ E| − 6(−7u1 − 6u2 + u3 − u4 + 3u5) > 0 ∧ −13(−3u1 − 3u2 + u3 − u4 + u5) = 0};

S1
|2| = {u ∈ E| − 6(−7u1 − 6u2 + u3 − u4 + 3u5) > 0 ∧ 13(−3u1 − 3u2 + u3 − u4 + u5) = 0};

S0
|−3| = {u ∈ E| − 13(−3u1 − 3u2 + u3 − u4 + u5) > 0};

S1
|−3| = {u ∈ E| 13(−3u1 − 3u2 + u3 − u4 + u5) > 0}.

Step 3: We apply Theorem 4.2 to generate the ANT Locus:
The algorithm computes the following intersections: S0

1 ∩S1
1 , S0

1 ∩S1
2 , S0

1 ∩S1
3 , S0

2 ∩S1
1 , S0

2 ∩S1
2 ,

S0
2 ∩ S1

3 , S0
3 ∩ S1

1 , S0
3 ∩ S1

2 and S0
3 ∩ S1

1 .
In fact, the previous computational step already allows our algorithm to perform implicit sim-
plifications. For instance, it appears that S0

|1| = S1
|1|, S

0
|1| = S1

|1| = S0
|−1| = S1

|−1|, S
0
|2| = S1

|2|
and that S0

|−3| ∩ S
1
|−3| is the empty set. According to Theorem 4.2, the ANT locus reduces to

the following semi-linear space:

{u = (u1, u2, u3, u4, u5)> ∈ E | − 10u1 − 10u2 + 3u3 − 2u4 + 4u5 > 0 ∧
− 7u1 − 6u2 + u3 − u4 + 3u5 = 0 ∧

− 3u1 − 3u2 + u3 − u4 + u5 = 0}
⋃

{u = (u1, u2, u3, u4, u5)> ∈ E | − 10u1 − 10u2 + 3u3 − 2u4 + 4u5 > 0 ∧
− 3u1 − 3u2 + u3 − u4 + u5) > 0 ∧

− 7u1 − 6u2 + u3 − u4 + 3u5 = 0}
⋃

{u = (u1, u2, u3, u4, u5)> ∈ E | 7u1 + 6u2 − u3 + u4 − 3u5 > 0 ∧
− 3u1 − 3u2 + u3 − u4 + u5 = 0}.

5 Discussions

This work is complementary to our previous work [19], which dealt with termination analysis.
In [19] we first prove a sufficient condition for the termination of homogeneous linear programs.
This statement was conjectured in the important work of [21], where the first attempt to
prove this result contains non trivial mistakes. As we shown in [19], the actual proof of this
sufficient condition requires expertise in several independent mathematical fields. Also, the
necessary condition proposed in [21] does not apply as expected in practice. We then went
to generalize the previous result and, to the best of our knowledge, we presented the first
necessary and sufficient condition (NSC, for short) for the termination of linear programs.
In fact, this NSC exhibits a complete decidability result for the class of linear programs on all

90

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

initial values. Moreover, departing from this NSC, we showed the scalability of these approaches
by demonstrating that one can directly extract a sound and complete computational method,
running in polynomial time complexity, to determine termination or nontermination for linear
programs. On the other hand, all other related and previous works mentioned in this paper do
not provide any techniques capable of generating automatically the set of initial input variable
values for which a loop does not terminate. The main contributions of this paper remain on
a sound and complete computational method to compute the set of input variable values for
which the programs do not terminate. The overall time complexity of our algorithm is also of
order O(n3). As can be seen, the main results, i.e., Theorems 4.1 and 4.2, provide us with a
direct symbolic representation of the ANT set. Even if those theorems are rigorously stated and
proofs are quite technical, they are really easy to apply: we only need to compute the explicit
terms S0

|µ| and S1
|µ′| in order to directly obtain a formula representing exactly and symbolically

the ANT set. In a same manner, we extended this techniques to linear program not necessarily
diagonalizable and we obtained similar theoretical and practical results. As their associated
proofs are more technical, they would required more space to be fully expressed and we left them
for an ensuing report. In other more recent work on termination static analysis for programs
over the rationals or the integers with several conditional linear inequalities, we also show that
the notion ANT remains central.

6 Conclusion

We presented the new notion of asymptotically non-terminant initial variable values for linear
programs. Considering a linear diagonalizable program, our theoretical results provided us with
sound, complete and fast computational methods allowing the automated generation of the sets
of all asymptotically non-terminant initial variable values, represented symbolically and exactly
by a semi-linear space, e.g., conjunctions and disjunctions of linear equalities and inequalities.
Also, by taking the complementary set of the semi-linear set of ANT initial variable values, we
obtain a precise under-approximation of the set of terminant initial variable values for the (non
-terminant) program. Actually, this type of method can be vastly generalized, to tackle the ter-
mination and non-termination problem of linear programs not necessarily diagonalizable, with
more than one conditional linear inequality, on rational or integer initial values, for instance.
We leave this investigation for an ensuing report.

References

[1] Amir M. Ben-Amram and Samir Genaim. On the linear ranking problem for integer linear-
constraint loops. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’13, pages 51–62, New York, NY, USA, 2013. ACM.

[2] Amir M. Ben-Amram, Samir Genaim, and Abu Naser Masud. On the termination of integer loops.
In VMCAI, pages 72–87, 2012.

[3] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with reachability. In In
CAV, pages 491–504. Springer, 2005.

[4] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination analysis of integer linear
loops. In In CONCUR, pages 488–502. Springer-Verlag, 2005.

[5] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination of polynomial programs.
In In VMCAI’2005: Verification, Model Checking, and Abstract Interpretation, volume 3385 of
LNCS, pages 113–129. Springer, 2005.

91

Generating Asymptotically Non-Terminant Initial Variable Values Rebiha, Matringe and V. Moura

[6] Mark Braverman. Termination of integer linear programs. In In Proc. CAV06, LNCS 4144, pages
372–385. Springer, 2006.

[7] Hong Yi Chen, Shaked Flur, and Supratik Mukhopadhyay. Termination proofs for linear simple
loops. In Proceedings of the 19th international conference on Static Analysis, SAS’12, pages 422–
438, Berlin, Heidelberg, 2012. Springer-Verlag.

[8] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, Cambridge,
MA, 2000.

[9] Michael Colón and Henny Sipma. Synthesis of linear ranking functions. In Proceedings of the 7th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 2001, pages 67–81, London, UK, 2001. Springer-Verlag.

[10] Michael A. Colón and Henny B. Sipma. Practical methods for proving program termination. In
In CAV2002: Computer Aided Verification, volume 2404 of LNCS, pages 442–454. Springer, 2002.

[11] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems code.
SIGPLAN Not., 41(6):415–426, June 2006.

[12] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. Journal of
Logic Programming, 13(2–3):103–179, 1992.

[13] Patrick Cousot and Radhia Cousot. An abstract interpretation framework for termination. SIG-
PLAN Not., 47(1):245–258, January 2012.

[14] Dennis Dams, Rob Gerth, and Orna Grumberg. A heuristic for the automatic generation of ranking
functions. In Workshop on Advances in Verification, pages 1–8, 2000.

[15] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

[16] Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear ranking
functions. In VMCAI, pages 239–251, 2004.

[17] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems in
cesar. In Proceedings of the 5th International Symposium in Programming, pages 337–351, London,
UK, 1982. Springer-Verlag.

[18] Rachid Rebiha, Nadir Matringe, and Arnaldo V. Moura. A complete approach for termination
analysis of linear programs. Technical Report IC-13-08, Institute of Computing, University of
Campinas, February 2013.

[19] Rachid Rebiha, Nadir Matringe, and Arnaldo V. Moura. Necessary and sufficient condition for
termination of linear programs. Technical Report IC-13-07, Institute of Computing, University of
Campinas, February 2013.

[20] Henny B. Sipma, Tomás E. Uribe, and Zohar Manna. Deductive model checking. Form. Methods
Syst. Des., 15(1):49–74, July 1999.

[21] Ashish Tiwari. Termination of linear programs. In Rajeev Alur and Doron Peled, editors, Computer
Aided Verification, 16th International Conference, CAV 2004, Boston, MA, USA, volume 3114 of
Lecture Notes in Computer Science, pages 70–82. Springer, 2004.

92

	Introduction
	Linear Algebra and Linear Loop Programs
	Asymptotically Non-terminant Variable Values
	Automated generation of ANT loci
	The regular case
	The general case: handling linear diagonalizable programs

	Discussions
	Conclusion

