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Abstract 

We show how to exploit enzymatic saturation -an ubiquitous nonlinear effects in 

biochemistry- in order to process information in molecular networks. The networks rely 

on the linearity of DNA strand displacement and the nonlinearity of enzymatic 

replication. We propose a pattern-recognition network that is compact and should be 

robust to leakage.  

1 Introduction 

Molecular programming aims to exploit chemical reactions and physical effects in order to process 

information at the molecular scale. Rather than solving complex mathematical problems (which is 

best left to electronic computers), molecular programming aims to provide robust and reliable 

methods to control and program chemical systems. For example, molecular computers would allow 

programmable chemical synthesis or smart therapeutics. 

DNA has proved to be a versatile polymer to build and program at the nanoscale. The 

predictability of DNA assembly has allowed the construction of a rich library of systems: molecular 

transporters
1
 , colloidal crystals 

2
 or a nanoscale map of the USA

3
. Adleman showed in 1994 that 

DNA can also solve computational problems such as the traveling salesman
4
. Since then, a variety of 

logic circuits have been demonstrated 
5-7

. Qian, Winfree and Bruck have recently built neural 

networks entirely based on the mechanism of DNA strand displacement 
8
. In this mechanism, a strand 

of DNA (the output) is selectively displaced from a logic gate by another strand of DNA (the input). 

Such gates are then assembled to build advanced neural networks such as associative memories or 

XOR functions.  

Neural networks compute linear and nonlinear functions: summation, in which a neuron sums 

input signals, and activation, in which the sum is nonlinearly amplified and outputted by the neuron. 

Strand displacement is excellent to implement summations since it follows mass action kinetics, 

which is linear in each reactant 
9, 10

. 

Strand displacement is leaky, which makes it difficult to cascade nonlinear computations because 

leakage is also cascaded. A leaky signal from one gate liberates other leaky signals from gates 

downstream, which amplifies exponentially leakages if the signals are catalytic or looped - a 

requirement for the activation of neurons.  

Enzymatic reactions are much more specific and selective than DNA strand displacement. 

Enzymes have been used to actuate various molecular devices oscillators 
11, 12

 encoded in DNA 

sequences. It is well known that enzymatic reactions are prone to saturation, generally described with 

the Michaelis-Menten equation. Moreover, when two different substrates compete for the same 



enzyme, saturation will indirectly couple their kinetic: increase in the concentration of one substrate 

automatically decreases the processing rate of the other 
13

. Far from being a nuisance, this 

phenomenon can produce a highly nonlinear effect known as winner-take-all, which digitally 

compares concentrations by amplifying infinitesimal differences
14

 . The winner-take-all scheme has 

computational implications. Maass has shown that a single k-winner-take-all unit (which amplifies the 

k strongest signals) offers the same computational power as a multi-layers perceptron 
15

. 

Here we propose neural networks that use the linearity of strand displacement for summation and 

the nonlinearity of enzymes for activation. A strand displacement layer computes several weighted 

sums of the inputs. This linear layer controls an enzymatic layer that absorbs all nonlinear 

computations through a winner-take-all effect. The enzymatic layer amplifies the maximal sum at the 

expense of the others.  

Such winner-take-all networks should be more robust than circuits only based on strand 

displacement because they shift the burden of non-linearity to the enzymatic layer. 

The chemical reactions used are presented thereafter. For illustration purpose, we base our 

demonstration on standard biochemical reactions classically used in molecular programming 

applications. We will also use reaction rates extracted from the corresponding reports. We note 

however that the presented mechanism is general and not restricted to this particular set of reactions.  

The inputs Ｘ
 
  are digital: the initial concentration of the input strand is either 0 (FALSE) or    

(TRUE). The summation is based on the mass action kinetics of strand displacement. An input Ｘ
 
 

displaces an inhibiting strand     from a weight complex             to yield an activated template    

  

The mass action constant     is on the order of         , which gives a half-time on the order of 

10 seconds for initial concentrations of inputs and weights at 100 nM. In this case, strand 

displacement give rise to an irreversible reaction. A summation of concentrations naturally appears 

when different inputs activate the same template (fan-in). The concentration of activated template 

   after completion is   
  ∑         

  
      

   . Because   
  is either 0 or   , and    is in large 

excess over the weights,   
  simplifies to the weighted sum  

  
  

 

  
∑    

 

 

   

  
  

  

In turn, an activated template     catalyzes the replication of an output      This autocatalysis 

proceeds as follows: the template binds to    to form a primer-template substrate, which triggers the 

polymerization of the 3’ end of     by a polymerase. A nicking enzyme recognizes this polymerization 

and nicks the elongated    to yield two output strands    and a free template.  

The input and output strands are continuously degraded by an exonuclease that recognizes single-

stranded DNA. The templates are chemically protected from degradation. The net reactions for Y j 

are:  

              

And 

      

  

The kinetics of    are summarized by the following equation:  

  
  

     

     ∑     
 
   

          

The first term corresponds to the polymerase-mediated replication of    following Michaelis-

Menten kinetics. The replication kinetics are nonlinear: the rate of replication is proportional to 



     for small concentrations, but for large concentrations the polymerase saturates and the rate 

becomes constant. The sum on the n outputs appears in the denominator because the polymerase is a 

resource shared by all outputs. This sum couples the kinetics of all outputs and generates the winner-

take-all effect. The second term corresponds to the degradation of     by the exonuclease, for which 

we assume pseudo first-order kinetics.  

 

Winner-take-all is a nonlinear effect that occurs as soon as several outputs compete for the 

polymerase. As can be seen in (1), an increase in the concentration of one output    accelerates its 

replication while it decelerates the replication of all other outputs. Small differences in concentration 

therefore snowball to such extent that, at the steady state, the fastest replicating output monopolizes 

the polymerase and bars access to the replication machinery to other outputs. Those losing outputs 

disappear due to their continuous degradation by the exonuclease.  

 

We therefore have a two steps process. Strand displacement computes several weighted sums of 

the inputs. A winner-take-all based on a saturated enzymatic amplification mechanism digitalizes 

these results by picking the maximal sum and extinguishing the others. The surviving output 

    corresponds to the template with the maximal concentration, i.e the template that maximizes the 

weighted sum   
  

 

  
∑     

  
     

 .  

  

Simulation of a network that recognizes patterns is shown in Figure 1. Following Qian and 

colleagues 
8
, the network takes as input the answers to four questions about a scientist and returns as 

output the corresponding scientist. Input strands Ｘ
 
 to Ｘ

 
 encode answers to the questions. A bias 

input Ｘ
 
, always set to   , encodes thresholds. The network’s answer is given by the surviving output 

strand at the steady state. A variant of the perceptron algorithm optimized the weights, such that the 

questions X associated to a scientist      maximize the weighted sum∑     
  

     
 . The results are 

shown in Figure 1. The simulation shows that the half-time for the computation is about 5 minutes. 

For comparison, the half-time for similar computations with a DNA-only network ranges from 30 

minutes to 10 hours 
8
.The network is compact because it requires only 22 strands. For comparison, a 

similar computation entirely based on DNA strand displacement would require about 120 strands 
8
. 

We can see two factors that contribute to this compactness. Firstly DNA strands encode the network 

and enzymes are in charge of the digitization machinery. In DNA-only networks, digitalization is 

done by a DNA machinery specific to each gate. Secondly, competitive inhibition between n outputs 

usually requires       connections between them. We do not need those mutual connections because 

the winner-take-all is a global effect: the variation of one output immediately affects the replication 

rate of all others.  

 

In summary, we have proposed neural networks that exploit the inherent strengths of linear and 

nonlinear kinetics. This combination should enable compact, quick and robust neural networks. 

 

 



 
Figure 1: Simulation of a pattern-recognition network. The network takes as input four questions 

about a scientist and returns the corresponding scientist. (a) Questions associated to scientists. (b) 

Organization of the network. The network's answer is given by the surviving output at the steady state 

(c) Simulated kinetic evolution of the network for a question. The inputs are injected at t=30 minutes. 
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