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Abstract

Estimate query results within limited time constraints is a challenging problem in the
research of big data management. Query estimation based on simple random samples per-
forms well for simple selection queries; however, return results with extremely high relative
errors for complex join queries. Existing methods only work well with foreign key joins,
and the sample size can grow dramatically as the dataset gets larger. This research imple-
ments a scalable sampling scheme in a big data environment, namely correlated sampling
in map-reduce, that can speed up search query length results, give precise join query esti-
mations, and minimize storage costs when presented with big data. Extensive experiments
with large TPC-H datasets in Apache Hive show that our sampling method produces fast
and accurate query estimations on big data.

1 Introduction

Big data is everywhere. Approximately 2.5 quintillion bytes (2.5 billion Gigabytes) of data is
produced each day. Ninety percent of the data created in the world has been created in the
past two years [9]. To put that into perspective, IBM created the IBM Model 350 Disk File
in 1956. It was the size of a compact-size car, and had a storage capacity of five megabytes.
If one were to place these machines side by side, based off the amount of data we use in one
day, they would circle the earth nine thousand one hundred and ninety times. With the sizes
of company databases reaching terabytes and even petabytes, and at the speed of which this
data is being accumulated, the need for query optimization has never been so high.

Query optimization [8] is the process of using statistics about the database, as well as
assumptions about the attribute values, to acquire the best execution plans for queries. Some
databases are large, and data streams in so fast that queries can take minutes, hours, even
days to process. Correlated sampling [16] is a statistical summary scheme for a database, and
through unique methods, aims to provide a fast and precise result size estimation for queries
with joins and arbitrary selections. The aim of this work is to extend the methods of CS2,
apply them to join query estimations on big data, and present the findings.
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The rest of this work is organized as follows. Section 2 states the background of the problem.
Correlated sampling on big data is elaborated in section 3. Experiment results are presented
in section 4. Section 5 concludes the work.

2 Background

2.1 Big Data Management

Big Data may just be one of the most misunderstood terms in the technology field. It is
miscommonly referred to as a large volume of data. While not entirely incorrect, there is much
more to Big Data then just size. In the following sections, the origins of big data, as well as
what defines data as “Big data”, will be discussed.

The term “Big Data” was first coined in 1998 by John Mashey of Silicon Graphics, Inc., al-
though this is debated [13]. Others had written about big data before this date, but Mr.Mashey
was the first that used the term in the context of computing. Even though the term Big Data
was created in the 90’s it was not until the early 2000’s that it took the form of what is is
considered today. In February 2001, Doug Laney created the three V’s of Big Data, which are
Volume, Variety, and Velocity. [6]

The Apache Hadoop framework [15] consists of multiple modules, each having its own dis-
tinctive responsibilities. Hadoop Common is the storehouse for other Hadoop Modules. It holds
all of the files in which the other Hadoop Modules need to run properly. Hadoop Distributed
File System, or HDFS for short,[2] deals with the storage of data of a Hadoop cluster. A major
issue with storing streaming, large sets of data, is hardware failure. HDFS is built to combat
this, by using a process called replication. HDFS consists of a name node, which stores all meta
data of all files stored. It also has data nodes as well, which hold all of the actual data. Each
data node consists of a multitude of blocks, with each block of data being stored into 3 different
data node locations in the cluster. If at any time there is a node that fails, or a machine in the
cluster fails, another block copy is made on another node or machine.

2.2 Database Systems on Big Data

With the rise of big data, many database systems have been developed on big data for scalable
data management and processing such as Hive[12], HBase[14], Dynamo[5], etc. Among them,
Hive was created to make it easier for users to be able to use Hadoop’s Map-Reduce and HDFS
without an advanced knowledge of Java. As mentioned earlier, Hive uses a similar language
to SQL, called HQL or Hive Query Language. With the use of this language users are able
to perform data queries, as well as summarize and analyze data. Users can use traditional
command line to work in Hive, or us HWI (Hive Web Interface). HWI is a graphical user
interface, or GUI, that simplifies the use of hive.

2.3 Join Graph of a Database

Definition 1. (Join Graph) A join graph [11] is a visual representation of a database in which
the flow of joins is explained. It can be created to take into consideration the relational type of
joins,(many-to-many, many-to-one, one-to-one), and also if there are multiple attributes that
can be used within the join. It is a general representation in which the join relations of a
database are mapped out [16].
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Figure 1: A Basic Join Graph

Definition 2. (Joinable Relations) Two relations considered joinable, Ri and Rk, i 6= k, when
there is a path with length ≥ 1 between the relations Ri and Rk [16].

Definition 3. (Joinable Tuples) Under the assumption that Ri and Rk is a joinable relation,
a tuple in Ri,denoted by ti, and a tuple in Rk, denoted tk, is considered joinable if ti can find
a match ti+1 in Ri+1, ti+1 can find a match ti+2 in Ri+2, and tk−1 can find a match tk in Rk

[16].

Figure 1 is a basic join graph of a database. It shows that Relation 1 denoted as R1, has
joinable attributes with Relation 2, as well as Relation 3, denoted with R2 and R3 respectively.
R2 has joinable attributes with Relation 4, denoted with R4, but does not have any joinable
attributes with R3 or Relation 5, denoted with R5. R3 has joinable attributes with R5, but no
joinable attributes with R2 or R4.

2.4 Random Sampling

Random sampling has been widely adopted for query size estimations. Simple Random Sample
Without Replacement, or SRSWOR, [7, 10] has previously been tested as a random sample
synopsis. A SRSWOR of each relation is taken separately, and then the resulting independent
samples are joined. Unfortunately, the final results end in massive errors of the join size estima-
tion [3]. SRSWOR is beneficial if one is only seeking to get a size estimation on an individual
relation.

2.5 Join Synopses

While Join Synopses (or JS) [1] use SRSWOR in its mechanics, the process does adds a join
correlation between individual relations, causing a much better relative error. JS uses foreign
key joins and computes samples of a small set of joins, procuring samples of all possible joins
in a schema. These samples are then stored, and joined with individual SRSWOR relations to
form a unbiased finalized set of correlated random tuples that can be used for query estimation.
A major draw back this approach is it is quite time consuming in the sampling process. JS
requires a SRSWOR on each relation in the database followed by correlated sampling on each
joinable relation along the path in the join graph. For a path in a join graph consists of n
relations starting from R1 to Rn, O(n2) sampling operations have to be performed to generate
a JS. Figure 2a depicts an example of JS creation with three joinable relations in a path of the
join graph.

43



Scalable Correlated Sampling for Join Query Estimations on Big Data Wilson, Hou and Yu

(a) Sampling of Join Synopses (b) Correlated Sampling of CS2

Figure 2: Join Synopses and Correlated Sampling

3 Correlated Sampling on Big Data

3.1 Correlated Sample Synopsis

To mitigate the sampling costs of JS, Yu et al. proposed Correlated Sample Synopsis (or CS2)
[16] which is a statistical summary for a database and can be used for both query estimation
and approximate query processing (AQP). The purpose of CS2 is to create a unbiased, fast,
and precise estimation for queries with all types of joins and selections. CS2 preserves join
relationships between tuples and their relations. Unlike JS, CS2 doesn’t require SRSWOR on
every relation in the join graph but employs a special value called Join Ratio (or JR) with a
Reverse Estimator (or RV Estimator) to provide unbiased join query estimations.

Figure 2b illustrates a sample example of the process that transpires once the source relation
and path selection are decided on. A simple random sample without replacement is performed
on the source relation denoted as R1, with results of this SRSWOR being placed in a sample
relation, denoted as S∗1 with a star to signify it is a SRSWOR of R1. The next relation, denoted
R2 is now ready to be moved to. To create the correlation between relations and preserve the join
relationships, S∗1 is joined with R2, with the results being placed into a second sample relation,
denoted as S2. In this example, the source relation only consists of one edge to another relation.
In the case that there are multiple edges to multiple relations, one would exhaust all possibilities
by creating sample relations for each relation until all edges are accounted for. Relation three,
denoted as R3, is then joined with S2 with the results being placed in the third sample relation,
denoted as S3. The combination of all of the sample relations is considered the CS2 synopsis.

3.2 Sampling in Map-Reduce

In big data file systems, such as HDFS, access to data is required to be translated into operations
of map and reduce. Sampling operations on traditionally centralized database systems are not
exceptional when converted to the environment of map-reduce. JS and CS2 preserves the
joinable relations of tuples between sampled relations by performing join operations which are
categorized into two different operations in big data, namely map join and reduce join. Given
two relation tables R and S, when joining R and S, denoted by R./S in traditional databases,
if R is smaller than S and can be fit into the memory heaps of data nodes in a big data cluster,
then R is mapped to all data nodes where S is distributed where a map join is performed,
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denoted by R
map

./S. However, if both relation tables are too large to be fit into memory heaps,
then a common map-reduce procedure will be initiated to compute the join result, called reduce

join, denoted by R
reduce

./ S. Given the same data, reduce join is more resource and time consuming
compared to map join. To mitigate the sampling cost, correlated sampling on big data aims to
control the sample size small enough and use map join as much as possible during the process.

3.3 Join Graph Path Creation and Source Relation Selection

Correlated Sampling begins with the creation of a join graph of the database, as well as the
determined size preferred for the sample relations. A source relation selection must then be
made.

It is important to note, CS2 does work with any join relationship (one-to-many, many-to-
one, many-to-many). However, when selecting your sampling path and source relation it is
suggested to use and follow a many-to-one relationship, as using a one-to-many or many-to-
many relationship can cause the synopsis to grow considerably, subtracting from the overall
number of sample tuples that can be taken from the source relation. For a complicated join
graph, multiple source relations are allowed to follow many-to-one-relationships.

3.4 Correlated Sampling in Map-Reduce

Algorithm 1: Correlated Sampling in Map-Reduce

Input: G — Join Graph of the Database; na — Sample Size
for Ra ∈ Source Relations(G) do

Sa =, Si = (∀i 6= a)
Sa=Map-Reduce(SRSWOR(Ra,na))//simple random sampling on Ra

W = {Ra}//mark relation as visited
while ∃ unvisited edge 〈Ri, Rj〉 with Ri ∈W do

Sj=ΠRj
(Si

map

./Rj)//sample the next relation
W = W ∪ {Rj} //mark Rj as visited

end
S = Reduce({Sa} ∪ {∪j 6=aSj})

end
return S — Generated CS2 in Map-Reduce

Algorithm 1 shows the process of correlated sampling in map-reduce. For a complicated
join graph, multiple source relations are allowed and the join graph can be partitioned into
multiple join graph paths. For each source relation Ra in a join graph path, a SRSWOR is
first performed by a map function with a small number of na tuples sampled from Ra. To
retain the joinable relations, the correlated tuples are collected in Rj when map joined with
Si, which is the parent joinable relation along the join path. Note that, the join graph path
in CS2 are recommended to follow many-to-one relationships; therefore, the size of Sj is no
larger than Si and the map join can be continued along the join path since the sample size will
generally decrease. Finally, a reduce function is initiated to collect all sampled relations into S
as the generated CS2 in map-reduce. Section 4 includes the details of implementing correlated
sampling in Apache Hive.
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3.5 Query Estimation

The process of query estimation is taking the results from a sample query, and using said results
to estimate query result sizes.

3.5.1 Source Query Estimation

Source Query Estimation, is the process of estimating query results using sample queries that
includes the source relation. Referring back to Figure 2b, a source query would be considered
a join of relations S∗1 and S2, or a join between relations S∗1 and S3. The results of these joins
could then be used to estimate the join query size of joins between R1, and R2, as well as R1

and R3.
Given S∗1 , a SRSWOR of the source relation R1 the estimation of the query result is esti-

mated by

Ŷsource =
N1

n1

n1∑
i=1

yi (1)

where N1 = |R1| and n1 = |S1|, and yi is the number of result tuples generated by the ith tuple
in S∗1 .

3.5.2 No-Source Query Estimation

No-Source Query Estimation, is the process of estimating query results using sample queries
that do not include the source relation. In Figure 2b, a join of S2 and S3 would be considered
a No-Source Query. Due to the conditions of a No-Source query not containing a SRSWOR
based off the source relation, additional steps must be taken for accurate estimation. Joinable
Tuple Sampled Ratio, or JR, is a procedure of backtracking to the source relation in a no-source
query (reverse sampling), and supplying it with the ability to estimate the join query size.

Given Rh the top relation in the given query and Sh the correlated sample of Rh, the
estimation of the query result is estimated by

Ŷno source =
N1

n1

nh∑
j=1

rjyj (2)

where nh = |Sh|, yj is the number of result tuples generated by the jth tuple in Sh, and rj is
the JR value associated with the jth tuple in Sh. The JR value of rj associated with a tuple ti
in Rh equals the total number of joinable tuples in S1 divided by the total number of joinable
tuples in R1 [16].

4 Experiments

4.1 Experiment Setup

A cluster of five nodes on a remote server were created in the Sarah Cloud created in YSU Data
Lab1. This cluster consists of two master nodes and three worker nodes. Master Node One has
four Intel Xeon CPU’s (E5-2630 v4 @ 2.20 GHz) and 16GB of RAM. Master Node Two has
two Intel Xeon CPU’s (E5-2630 v4 @ 2.20 GHz) and 10GB of RAM. All worker nodes consist

1http://datalab.ysu.edu
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Figure 3: Sampling Graph of the TPC-H Dataset

of the same setup, a Intel Xeon CPU (E5-2630 v4 @ 2.20 GHz) processor and 8GB of RAM.
The cluster is running Hadoop with Hive setup.

Two datasets are used, both datasets are generated using TPC-H benchmark[4]. The first
dataset created has a total size of 1GB. The second dataset created has a total size of 10GB.
Each dataset holds eight relations. The relations are Lineitem, Customer, Orders, Partsupp,
Part, Supplier, Nation, and Region.

The following steps are taken to prepare for experimentation on the big data.
Step 1. Using the source dataset, a source relation as well as a join graph path must be

decided on. Lineitem table holds the most many-to-one relationships, and is selected as the
source relations. The sampling path that was chosen based on relationships was as follows:

Lineitem → Orders, Lineitem → Partsupp, Orders → Customer, Partsupp → Part,

Partsupp → Supplier, Customer → Nation, Nation → Region

Step 2. A empty set must be created to store the samples of the source dataset. The 1GB
and 10GB datasets were denoted as tpch1g and tpch10g respectively. The sample datasets
were denoted as s tpch1g and s tpch10g respectively.

Step 3. Before creating the SRSWOR a sample dataset size must be selected. The decision
was made that the sample dataset size would be one percent of the source dataset. The HQL
to create the SRSWOR is as follows:

create table s_tpch10g.lineitem as

select * from tpch10g.lineitem where rand () <= 0.01

distribute by rand () sort by rand ();

The HQL lines distribute by rand (), and sort by rand () were added to create a
higher rate of randomness. distribute by rand () takes the entire set of tuples from a table,
and distributes them randomly to different reducers. sort by rand () then takes these sets
of random tuples and sorts them randomly on each reducer.

Step 4. Using the created SRSWOR, and following the join graph path, the rest of the
sample relations are constructed.

4.2 Results

Overall, a total of 15 queries were tested five times each, over both the 1GB and 10GB source
dataset, as well as the 1GB and 10GB sample dataset. The original dataset, is denoted as the
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Table 1: Query Search Times

Dataset Type Average (sec)
Average
Speedup (1.0x)

High (sec) Low (sec)

1GB
source 16.26

3.05
23.24 11.57

sample 5.33 7.81 3.71

10GB
source 437.49

45.91
1692.87 69.57

sample 9.53 14.84 7

“source” on all graphs, and the correlated sample dataset, is denoted as “sample”. Discussion
about the results for the 1GB dataset will be presented first, followed by the 10GB dataset
results, and finishing with discoveries made through the testing phase. The datasets were
tested on speed of queries, as well as accuracy of the estimations.

For accuracy tests, we compare the estimated query results by CS2 (Qestimated) with the
ground truth query results from the source database (Qground truth) and calculate the absolute
relative error. The formula of the absolute relative error is given by:

Absolute Relative Error =

∣∣∣∣Qground truth −Qestimated

Qground truth

∣∣∣∣× 100%

1GB Experiments. Depicted in Figure 4, the 1GB dataset source dataset tests averaged a
total query time of 16.26 seconds, with a high average of 23.24 seconds in Query 11, and a low
average of 11.57 seconds in Query 10. The 1GB sample dataset tests averaged 5.33 seconds,
with a high average of 7.81 on Query 12, and a low average of 3.71 on Query 14. The average
speed up from the sample, over the source would be a 205%. The largest speed up was Query
14 at 321.71%, and the lowest speed up was Query 9 at 141.65%. The results were impressive
on the 1GB dataset with the sample dataset processing much faster than the source.

The average count of tuples for the source dataset was 2,520,952. The average count of
tuples for the sample dataset was 25,385. The average join estimation results based off source
join estimation was 2,538,533. The average Relative Error for the 1GB dataset was .96%. The
highest relative error was 2.50% on Query 3 with the source dataset holding 592,794 tuples,
the sample dataset holding 6076 tuples and source join estimation showing 607,600 tuples. The
lowest relative error was .09% on query 7, with the source dataset showing 24,877, the sample
dataset showing 249, and the source join estimation showing 24,900.
10GB Experiments. Depicted in Figure 5, the 10GB dataset source dataset tests averaged a
total query time of 437.49 seconds, with a high average of 1692.87 seconds in Query 11, and a
low average of 69.57 seconds in Query 7. The 1GB sample dataset tests averaged 9.53 seconds,
with a high average of 14.84 on Query 11, and a low average of 7 on Query 3. The average
speed up from the sample, over the source would be a 4489.44%. The largest speed up was
Query 11 at 16,071.90%, and the lowest speed up was Query 2 at 758.39%. This shows that
the larger the dataset, the better CS2 performs in speed.

The average count of tuples for the source dataset was 25,208,072. The average count of
tuples for the sample dataset was 251,168. The average join estimation results based off source
join estimation was 25,116,820. The average Relative Error for the 10GB dataset was .34%.
The highest relative error was .76% on Query 7 with the source dataset holding 248.493 tuples,
the sample dataset holding 2466 tuples and source join estimation showing 246600 tuples. The
lowest relative error was .01% on query 15, with the source dataset showing 6,047,718, the
sample dataset showing 60474, and the source join estimation showing 6,047,400. The results
show that not only does CS2 speed up the larger the data gets, but its accuracy also improves.
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(a) 1GB Dataset Query Search Length Results
(Seconds)

(b) 1GB Dataset Relative Error Results (%)

Figure 4: Experiments of 1GB Dataset

(a) 10GB Dataset Query Search Length (Seconds) (b) 10 GB Dataset Relative Error Results (%)

(c) 10GB Dataset Two Relation Join Query Re-
sults (Seconds)

(d) 10GB Dataset Three Relation Join Query Re-
sults (Seconds)

Figure 5: Experiments on 10GB Dataset

The advantage of CS2 in map-reduce was recognized. Not only does CS2 speed up the join
queries, but when moving from a two relation join, to a three relation join, the time increase is
very minimal for CS2. In Figure 5c, the two relation join query results, CS2 holds at about a
seven second average while the source averages around 180 seconds. When the queries switched
to a three relation join in Figure 5d, the average for CS2 bumps up to about 10 seconds, while
the source relation explodes and averages about 1100 seconds per query.

5 Conclusion and Future Works

In this research, the use of correlated sampling on big data was introduced. It was discovered
that not only does CS2 in map-reduce maintain the accuracy of tuples from its samples in join
query estimation, but increases in precision as the dataset grows larger. CS2 in map-reduce
also maintained a constant speed and did not increase much as the datasets expanded in size.
When the source relation query search length ballooned in size with the three relation joins, CS2
continued do produce low search query lengths. Based off the results, CS2 in map-reduce proved

49



Scalable Correlated Sampling for Join Query Estimations on Big Data Wilson, Hou and Yu

to be successful in query optimization and more efficient in regards to scalability and accuracy
requirements. Future research will seek to efficiently calculate JR in map-reduce proving that
CS2 excel with approximate query processing in big data.
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