
EPiC Series in Computing

Volume 55, 2018, Pages 54–67

GCAI-2018. 4th Global Con-
ference on Artificial Intelligence

Learning to Plan from Raw Data in Grid-based Games

Andrea Dittadi, Thomas Bolander, and Ole Winther

Technical University of Denmark,
Lyngby, Denmark

{adit, tobo, olwi}@dtu.dk

Abstract

An agent that autonomously learns to act in its environment must acquire a model of
the domain dynamics. This can be a challenging task, especially in real-world domains,
where observations are high-dimensional and noisy. Although in automated planning the
dynamics are typically given, there are action schema learning approaches that learn sym-
bolic rules (e.g. STRIPS or PDDL) to be used by traditional planners. However, these
algorithms rely on logical descriptions of environment observations. In contrast, recent
methods in deep reinforcement learning for games learn from pixel observations. However,
they typically do not acquire an environment model, but a policy for one-step action selec-
tion. Even when a model is learned, it cannot generalize to unseen instances of the training
domain. Here we propose a neural network-based method that learns from visual obser-
vations an approximate, compact, implicit representation of the domain dynamics, which
can be used for planning with standard search algorithms, and generalizes to novel domain
instances. The learned model is composed of submodules, each implicitly representing an
action schema in the traditional sense. We evaluate our approach on visual versions of the
standard domain Sokoban, and show that, by training on one single instance, it learns a
transition model that can be successfully used to solve new levels of the game.

1 Introduction

Automated planning has efficient methods for computing an action sequence leading to a desired
goal under the condition that the initial state, actions and goal are all beforehand described
in a logical language. Automated planning systems can for instance be used to solve puzzles
in the classical Sokoban video game [7]. For a planning system to solve a specific Sokoban
level, it only needs to be fed the logical description of the initial state of the level, of the
available actions, and of the goal. The standard language for describing these is (some version
of) PDDL. A planning system can thus solve Sokoban levels without any previous experience
with the game, as long as the game is suitably described in PDDL.

However, a human player playing the game for the first time will normally only be provided
with the information that there are four available actions, Up, Down, Left, and Right, but
will not be given any formal description of the transition models of these actions. The human
player will have to learn the transition models from observing how her actions affect the state
of the domain. Although current planning systems can be extended so that they can also learn
action models from observing state transitions in the domain [19, 1, 28, 32, 20, 17], the human
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Figure 1: A state from the Sokoban training level. Left: the agent is represented as a green
circular shape, target cells as large blue squares, boxes as smaller and lighter blue squares, and
walls are black. Right: each cell is represented by one pixel, so the superimposition of box and
target is not evident.

novice player is still facing a more complicated task. The existing frameworks for learning
action models require that observations are made as transitions between logically described
states (conjunctions of propositions or ground atoms). The human player, on the other hand,
can only make observations based on the pixels on the screen, the raw data.

Learning to play video games exclusively from pixel input has caught a lot of attention in the
machine learning community in the last few years [16, 15, 18, 5, 10]. However, most state-of-the-
art algorithms use model-free reinforcement learning (RL) to learn a policy. The disadvantage
of learning a policy for a specific instance of the domain rather than a general transition model
of the domain is that for instance in a game like Sokoban, if a policy is learned to solve level 1,
then this can not be immediately used to solve level 2. On the other hand, model-based RL
methods applied to these domains currently lack the generalization and planning capabilities
that are typical of traditional planning approaches [3, 5, 4, 30].

Our approach allows to learn a compact representation of the transition model that can be
used in automated planning techniques. Since we would like to stay as close as possible to the
problem that a novice human player would be facing, we are only providing our agent with raw
pixel input. The proposed method differs significantly from the standard approach in automated
planning by the lack of explicit logical action schemas. Instead, we train neural networks to give
a compact and approximate representation of the transition function. However, it still shares
some important properties with classical planning. First of all, the state space is not explicitly
represented, but compactly represented by structures that can be exponentially more succinct
than the state space they induce. Second, standard tree and graph search techniques like BFS,
DFS and A* can be used to compute plans based on those compact action descriptions. Ideally,
one should do informed search with an efficient heuristic, but if we want to solve the problem
without providing our system with more information than a human player would have available,
this heuristic also needs to be learned. Learning heuristics from raw pixel data is outside the
scope of this paper. We test our agent on Sokoban (see Fig. 1), a classical planning domain in
which an agent in a 2D world pushes boxes and moves in 4 possible directions [7]. The goal is
to place a box on all target locations. Boxes can not be pulled, and a box can only be pushed
if the cell that the box is attempted to be pushed to is currently unoccupied. For this reason,
one of the major challenges in solving Sokoban puzzles is the risk of deadlocks that would make
the puzzle irreversibly unsolvable.

The main contribution of this paper is a framework for learning a compact and general
representation of the transition model exclusively from raw data. This learned model can then
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be employed in standard search algorithms to solve problems and play games. We make the
assumption that actions have local preconditions and effects in the environment, and that these
are typically limited. The predictive model can thus learn to focus on a small subset of inputs,
leading to efficient learning and generalization.

2 The Learning Framework

The planning problems considered in this work can be modeled as tuples (S,A, T ,G, s0) where
S is a finite set of states, A is a finite set of actions, T : S ×A → S is a deterministic transition
function, G ⊆ S is a set of goal states, and s0 ∈ S is an initial state. In each state s, starting
from s0, an agent chooses an action a ∈ A that leads to s′ = T (s, a). No distinction is made
regarding the applicability of actions: s′ = T (s, a) is defined for all s and a, with s′ = s if a is
not applicable in s. The agent’s task is to find a plan, a sequence of actions, that leads from
s0 to a goal. In contrast to typical RL settings in which the goals are given in the form of a
reward signal, the set of goal states is given as a goal test function g : S → {0, 1}, g(s) = 1G(s),
with 1A the indicator function of a set A. The states are fully observable, and each observation
is a visual frame, i.e. a matrix of numbers in the range [0, 1]. Moreover, we assume that the
agent is aware of its own position in the environment.

We assume that the preconditions and effects of all actions are restricted to a local K-
neighbourhood of the agent, defined as the K ×K submatrix of the state centered around the
agent’s location (i, j), with K an integer denoting the neighbourhood size:1

LKi,j(s) = s
[
i−K−1

2 : i+K−1
2 , j−K−1

2 : j+K−1
2

]
.

This assumption, which we call the K-locality assumption, implies that s′ only differs from s in
the submatrix LKi,j(s), and the changes in that submatrix only depend on the submatrix itself.
We here only consider domains for which the K-locality assumption holds for some K. The
value of K is not necessarily initially known, and has to be learned. When K is given (explicitly
or implicitly), we call local state a local K-neighbourhood, and denote it by sL ∈ SK , with SK
the set of all possible local states of size K. Let K∗ be the least value of K for which a domain
satisfies the K-locality assumption. We will assume that early on in the learning phase the
agent observes transitions where the K-locality assumption does not hold for K < K∗. Thus,
we can consider K∗ known for each domain after a few environment interactions.

Given s, a, and the agent’s position (i, j), s′ is completely defined by the changes in the
local neighbourhood following action a. Let T ′ : SK × A → SK be a function that maps a
local neighbourhood and an action to the new local neighbourhood after action execution. This
function is well-defined due to the locality assumption, and it determines LKi,j(T (s, a)) from

LKi,j(s), i.e.

T ′(LKi,j(s), a) = LKi,j(T (s, a)). (1)

The submatrix of T (s, a) that is affected by a (i.e. LKi,j(T (s, a))) can be updated by using T ′
and its two arguments, and the remaining part of the matrix is unchanged. It follows that T
does not carry more information than T ′.

The state space typically varies between different problems in the same domain. This is
an issue for RL approaches, as it makes generalization hard [30]. Planning languages like
STRIPS or PDDL deal with this by representing the transition function T (s, a) compactly

1 We consider the center of the agent to be a pair (i, j) such that 2i and 2j are either both even or both
odd. In the former case K has to be odd, otherwise it is even. This ensures that LK

i,j(s) is a submatrix of s.
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through action schemas – symbolic rules that describe the dynamics of the environment in
any situation. Although there is a line of work dealing with learning action schemas, a major
limitation of this approach is that it relies on symbolic observations – an unrealistic assumption
in real-world scenarios. Our decompositional approach allows for compact action descriptions
that generalize to new domain instances, similarly to action schemas. In contrast to traditional
planning approaches such descriptions are implicit, and they naturally handle high-dimensional
raw observations, conditional effects, and some degree of noise. Moreover, compared to usual
approaches in RL our framework strongly simplifies the learning task, as the area to be predicted
is relatively small.

3 Learning the Transition Model

Our agent will actually observe a preprocessed version of the states (and the local states), by
a transformation function Φ, which downscales and quantizes the image, and in the case of
RGB observations averages the channels to obtain a single channel. This approach is similar to
the one in [16]. In practice, Φ plays the role of a hard-coded vision system, so that the agent
observes, learns, predicts, and plans, in a visual domain that is transformed through Φ. By
abusing the notation for the sake of simplicity, we will still denote by SK the set of possible
local states in this pre-processed domain, and by sL a generic local state.

We will use neural networks to learn an approximation

T̂ ′(sL, a;θ) ≈ T ′(sL, a), (2)

where T̂ ′ : SK × A → SK is parameterized by the vector θ. The local prediction system can
be described as follows:

T̂ ′(sL, a;θ) = NNa(sL;θa) + sL (3)

with |A| neural networks denoted by NNa, and θ = [θ>0 ,θ
>
1 , . . . ,θ

>
|A|−1]>. The neural networks

are trained as follows. Given an observation of a local transition for action a, the current
observed local state is sL and the observation of the same local neighbourhood after the action
is T ′(sL, a). The network for action a is trained to predict their difference (the changes in the
local neighbourhood) from sL: the learning input and target are

x = sL, t = T ′(sL, a)− sL. (4)

The neural networks learn to predict the changes in the local neighbourhood, given an action
– in other words, the action’s effect, similarly to the add and delete lists in STRIPS action
schemas. This differential encoding of transitions makes learning and generalization easier: On
the one hand, the focus of the predictors is only the region of the input that changes, which is
typically even smaller than the local neighbourhood. On the other hand, the invariant areas can
simply be disregarded by the predictors, leading to substantial improvements in generalization.

The neural networks are trained in minibatches of size b, using stochastic gradient descent
(SGD) to minimize the sum-of-squares error function between the network predictions and the
targets. Each experience sample of the form (x, a, t), where a is the executed action, is stored
in the a-th replay memory, which holds the NUER most recent experience samples of that
action. Our agent is then trained by uniform experience replay (UER) as in [16]. Prioritized
experience replay (PER) makes learning more data-efficient by focusing training on samples
where mispredictions occurred. In addition to the UER memories, the agent has |A| PER
memories, each storing the NPER most recent experience samples of the corresponding action
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that were mispredicted. Each network is trained on NPER samples every TPER mispredictions
by that network, so that the computational effort invested in accelerating learning depends on
the current predictive accuracy. The usefulness of a transition for learning is estimated by the
“surprise” [2] of the network, i.e. whether the network can predict it correctly.

Regularization. We designed a custom regularization term for the agent’s transition predic-
tors. Let n be the number of inputs, m the number of units in the first hidden layer, w the
weight vector, and wji the weight that connects the input i with the hidden node j. Then, we
define a function that indicates whether one input is active:

Eireg(w) = tanh

(
β ·
∑m
j=1 |wij | · eα·|wij |∑m

j=1 e
α·|wij |

)
, (5)

for i = 1, . . . , n, where α and β are empirically determined parameters. The fraction is a smooth
differentiable maximum: for α = 0 it is equal to the mean weight magnitude from one input
to the next layer’s nodes, and it tends to the maximum magnitude for α → ∞. The overall
regularization term is the sum over all network inputs

Ereg(w) =

n∑
i=1

Eireg(w), (6)

approximately indicating the number of active inputs. By adding this differentiable term to the
cost function, we encourage the model to take into account as few input locations as possible,
when predicting a transition.

Exploration. In a RL framework, exploration is often related to the value function or policy
that is being learned. However, in absence of rewards this is not an option [18]. Among
exploration strategies that do not rely on a reward signal, we consider the random exploration
policy π(a | s) = 1/|A| for all a ∈ A and for all s ∈ S, and a count-based exploration policy that
prioritizes the least explored state–action pairs [13, 25]. Let dt(sL, a) be the number of times
the state–action pair (sL, a) was visited up to the time step t, and let Amin(sL, t) be the set of
actions that were executed the least in local state sL up to time t:

Amin(sL, t) = arg min
a∈A

dt(sL, a) (7)

The count-based exploration policy at time t selects a random action among the ones that were
chosen the least in the local state sL up to time t, i.e.

πt(a | sL) =
1

|Amin(sL, t− 1)|
(8)

for all a ∈ Amin(sL, t − 1). Both policies are one-step policies, as they only look forward one
step.

4 Planning

Our agent can use tree or graph search planning, choosing as initial state the current observation,
and simulating the environment by means of the learned function T̂ ′, which plays the role of
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action schemas in traditional planning. Nodes are gradually expanded until a goal state is
reached: at that point the agent executes the sequence of actions that is predicted to lead to
the goal state. Extrinsic goals are given explicitly by the environment through the goal test
function. They typically represent the game’s goal but they can also represent an external
agent assigning a task. Intrinsic goals, e.g. curiosity-based, can be set by the agent itself. Since
planning relies on the learned model, it should be attempted only when the model is accurate
enough. The quality of the learned model is estimated by the online misprediction rate, i.e. the
current rate of mispredictions that the agent observes during exploration.

Unlike most machine learning approaches for learning environment models, the proposed
framework allows the learned domain knowledge to be applied to unseen instances of the training
domain. In our implementation, the agent interleaves exploration and planning in an adaptive
fashion, and updates the model at each environment interaction. Although there could be a
planning attempt after each exploratory step, it is reasonable to adaptively limit the frequency
of planning, based on recent successes or failures – if recent plans failed or no useful plan was
found, it is probably more fruitful to reserve some time steps for exploration before attempting
again. When a plan to reach a goal is found, the plan is immediately executed, overriding the
exploration policy. If the plan is correctly executed, the goal is achieved, otherwise the agent
returns to its usual exploratory behaviour.2

Curiosity-driven planning to improve exploration. By providing the planning module
with intrinsic goals, the agent can perform a number of self-assigned tasks, e.g. improving
exploration by trying to maximize the learning potential. One naive approach for achieving
this objective is to maximize the number of distinct local state–action pairs encountered by
the agent, increasing the variety of the training set. The count-based exploration strategy goes
in this direction, albeit in a shortsighted way. Being our agent endowed with the ability of
planning, it can set as goals those states in which the local neighbourhood hasn’t been observed
before, which is in effect a farsighted exploration strategy.

5 Experiments

In this section we test our agent on Sokoban, where it learns the dynamics of the environment by
training only on one level for less than 105 steps. By design, the learned knowledge generalizes
well to new randomly generated levels without any further training. First, we directly assess the
accuracy of the local transition model on a held out test set, and then we show the effectiveness
of the model when applied to tree search to solve unseen instances.

5.1 Model Learning

We train our agent to predict Sokoban dynamics by exploration of one fixed level of size 9× 14
with 6 boxes (Fig. 1). In this level the agent can observe the main features of the game –
e.g., which locations are relevant for prediction, how walls and boxes interact with the agent
and with other boxes, what happens when the agent or a box goes on a target. We consider a
low-dimensional visual representation, in which the agent observes one pixel per cell. Although
such a simple representation could lend itself to symbolic learning methods, here we present
a proof of concept – a different approach that can scale well to high-dimensional inputs, by
leveraging recent progress in deep learning.

2In deterministic domains, failure always implies that the learned model is incorrect. Thus, replanning is
not immediately attempted.
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Figure 2: Transition misprediction rate on a randomly generated test set. The agent achieving
the best performance uses count-based exploration, planning for exploration, UER and PER,
and is followed by an agent that does not use planning for exploration and PER. In the last
experiment (worst performance) the best agent is trained on a simple level with two boxes.
Mean and standard deviation of 10 runs.

Each neural network has K2 inputs,3 followed by 4 fully connected layers of size 64, 128,
128, and 64, each with a leaky ReLU activation function h(x) = max(ax, x) with a = 0.01.
Each layer computes a linear map of its inputs, followed by an element-wise application of
the nonlinear activation function. The linear output layer has K2 outputs, each representing
the change occurring in a pixel of the input neighbourhood following action execution.4 Unless
otherwise stated, in our experiments we used b = 100, NUER = 80000, NPER = 100, TPER = 2,
α = 1, β = 50.

While training our agent, we measure its current prediction capability by testing it on a
randomly generated test set of 100k local state–action pairs. In Fig. 2 we show examples of the
resulting learning curve. In the plot, which compares our best algorithm with an agent learning
only through UER, we observe that the former outperforms the latter after some time, as it
keeps on learning and generalizing successfully, and after 50k time steps its misprediction rate
is half. It can also be observed that an agent trained on a small level containing only two boxes
cannot learn well and generalize, as there is not enough domain information for generalization.

High-dimensional Noisy Observations. Here we present an experimental evaluation of
model learning with noisy high-dimensional visual observations. The agent’s observations are
a preprocessed version of the visual frame on the left in Figure 1. We model noisy sensors by
adding a Gaussian independent noise with variance σ2 = 16/256 to each pixel. The resulting
noiseless and noisy observations are depicted in Figure 3.

Figure 4 shows the transition misprediction rate when training on visual observations of
the training level. PER is based on observed transition mispredictions, which will occur at all
times if observations are noisy, thereby making PER degenerate into online training. As this
defies the purpose of UER, which is to decorrelate model updates, the agents trained from noisy

3 The smallest K for which Sokoban satisfies the K-locality assumption is 5.
4Regarding learning the neighbourhood size, K is increased by enlarging the input and output layers of each

network, with the new weights initialized to small values.
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Figure 3: Noiseless and noisy observations of the high-dimensional visual Sokoban environment
on the left of Figure 1.
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Figure 4: Transition misprediction rate on a test set of 100k transitions, while training on the
standard level. Both training and testing are based on the preprocessed visual observations in
Figure 3.

observations only use UER. In the plot we can observe the impact of noise by comparing the
agents without PER, and at the same time appreciate the effect of PER in the noiseless case.

The higher dimensionality of observations clearly poses a challenge to the efficiency and
quality of learning. This comes as no surprise, though, since the models we used are very
simple neural networks. When dealing with high-dimensional observations, especially image-
based, the transition model would greatly benefit from convolutional neural networks [12, 16,
23]. Noise further degrades the performance through 3 factors: The first two are the limitations
in exploration and training just described. The third is that from noisy observations it can be
very hard to distinguish objects – in particular, empty cells can be mistaken for boxes, and a
box on a goal is easily interpreted as an empty goal. For example, in the cell at row 5 and
column 4 in Fig. 3 there is a box on a goal, but it looks very similar to the nearby goal cells
without boxes. Nonetheless, the environment model can still learn a reasonably good transition
function. With independent noise, a possible approach to mitigate these problems is to take
into account previous frames for noise reduction. We remark that our approach does not include
any specific efforts towards noise robustness.
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5.2 Applying the Model to New Levels

In the previous section we have shown that the agent learns to predict a domain’s dynamics
by training on one single level. Now we proceed to demonstrate how the gained knowledge
can be immediately applied to new domain instances, with a different state space, initial state,
and goal set, in contrast to typical model-based RL approaches. Note, however, that solving
Sokoban instances efficiently is outside the scope of this work, which instead focuses on whether
the learned model is accurate and general enough to eventually solve them. Results of clas-
sical planners solving Sokoban can be found for example in the 2008 and 2011 issues of the
International Planning Competition (IPC).

We train our agent on the fixed training level, in the low-dimensional noiseless case. During
training, we make the agent solve new levels “offline”, with learning disabled. Its ability to solve
levels is continuously assessed as it explores the training level and learns the game’s dynamics
from it. Each test set contains Sokoban levels (randomly generated as in [30]) with the same
board size and number of boxes. We let the agent try to solve all levels in a test set, given a
goal test function that returns true if and only if the state is a goal state. The top plot in Fig. 5
shows the percentage of solved test levels as a function of the number of training steps.

The specific search algorithm does not affect the results, as we are not considering the
quality of the solution, nor the time to compute it. We use Breadth-First Search (BFS), except
for the 30× 30 levels where we use A* search with a simple domain-specific heuristic. Since we
are only assessing whether a level is solved, it does not matter whether we are using BFS or A*.
The only difference is that more nodes will be expanded using BFS, which takes prohibitively
long in the 30 × 30 case. The initial state for planning is the current state, and the goal test
function provides a termination condition. The plot shows that our agent can solve most levels
after 60k training steps, with little dependence on their complexity and size. Levels with only
one box are the only exception, as less training is required to solve them. The reason is that
only relatively simple domain dynamics are involved there. On the other hand, dynamics of
multiple-box interactions are more complex and encountered less often during training, and
therefore are learned later.

The bottom plot in Fig. 5 shows the success rate when trying to achieve a different goal
than solving the level. The new task consists in placing a box next to each target location,
and is assigned to the agent through the goal test function. This task can often be completed
without having learned dynamics that involve placing objects and agents on targets. These
dynamics are the hardest to learn due to the lack of compositional entity-level information
from the environment: a box on top of a target is perceived as one distinct entity that shares
no evident property with the original box or target. For this reason, our agent is on average
more successful in completing this new task in a given level, than in solving that level.

We believe that in this regard a traditional planning approach, with an explicitly assigned
goal rather than a reward signal, can sometimes be reasonable. In contrast with a RL setting,
in which a new policy or value function has to be learned from an updated reward signal, in
automated planning it is sufficient to change the goal explicitly. This seems to be a desirable
feature when dealing with complex or long-term tasks. The underlying motivation for this
framework is that an agent can learn a model of the world independently of the specific task,
and then plan using the world model in order to complete an arbitrary given task.
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Figure 5: Percentage of tasks solved offline (learning disabled) by agents during training. There
are 20 test levels for the 30 × 30 boards, and 200 for each of the other 3 configurations. Top:
the task is always solving the level. Bottom: the test set with 8 × 10 levels with two boxes
is also used with a modified task (green line). Mean and standard deviation for 6 agents are
shown.

6 Related Work

In the recent years, there has been a growing interest in RL applied to high-dimensional domains,
where deep network architectures have proven to be useful [16, 15, 22, 14]. However, state-of-
the-art model-free deep RL models tend to be biased towards training experience, unable to
generalize to similar tasks [10, 21]. Moreover, in many complex or temporally extended tasks,
some degree of planning is necessary, as short-term reactive decisions typical of model-free
methods are not powerful enough.

Research in model-based RL has partially overcome such limitations. Next-frame video
prediction [18, 5], a typical approach for model learning in RL, can in principle allow for
planning, but it does not generalize well to unseen situations, and can especially fail when
performing long-term rollouts. However, they have a significantly more advanced approach to
learning a model from pixels, compared to the neural network modules our agent uses for model
learning. Incorporating these methods into our agent would therefore allow it to learn from
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higher-dimensional visual observations. The Interaction Network [3] and the Neural Physics
Engine [4] learn models of intuitive physics that are more general than pixel-based prediction,
but they rely on explicit object-level representations and hard-coded relations between entities.
Another promising research direction is indicated by Value Iteration Networks [26] and the Pre-
dictron [24], which implement end-to-end learning and planning, although their generalization
and planning capability are still limited [11].

The focus of our work is to learn an environment model such that learning is efficient and
the model generalizes well to new scenarios. To achieve this, we make a locality assumption on
the domain’s dynamics, and we assume that any arbitrary goal can be assigned to the agent
(no reward signal is involved). In [30] an environment model is also learned separately, but
no particular assumption is made about the environment except for a fixed board size that is
used throughout all experiments. Thus, the model learns general Sokoban dynamics only for a
fixed, relatively small board size, and it needs about 109 training steps to do so (more than 4
orders of magnitude more than our approach). The agent (called I2A) also learns a policy from
observing a reward signal, whereas we decouple learning from goal-oriented behaviour (and
when planning to demonstrate the model effectiveness, we assume the goal is given from the
start) and do not consider learning a policy. This would make the comparison unfair to our
advantage, although I2A can exploit shaping rewards that constitute domain knowledge. The
environment model proposed by Kansky et al. [11] efficiently learns the relationships between
objects, thereby allowing causal reasoning and planning also in new scenarios. In contrast to
our approach, the model relies on entity-level observations, and the problem is still framed as
an RL problem, with a reward signal that is used for planning to test the model’s effectiveness.

Although more sparse and spread out in time, the literature on learning action models for
automated planning is also rich. Many proposals in this area rely on prior domain knowledge
such as examples of successful plans, or learn offline, after the training data has been gath-
ered [29, 31, 19, 32, 6]. Among those which do not make such assumptions, e.g. [1, 20], the
work by Mourão et al. [17] is the most similar to ours. Their system learns implicit action mod-
els from partial and noisy symbolic observations, then extracts symbolic rules and combines
them into STRIPS-like action schemas. However, conditional effects are not supported, whereas
our proposed method naturally learns them. A common characteristic of action model learning
approaches is that they learn from logical descriptions of environment observations. Although
such descriptions might be automatically generated from a low-dimensional input, this is not
easy with high-dimensional observations. And even when the input is low-dimensional, it can-
not generally be assumed to be entity-based: if a number of predicates are true for x (e.g. cell
x is a target and a box is on x), in the framework of our paper the agent will not be able to
distinguish the different predicates (e.g. it will only observe that in x there is a box-on-target
entity, and the decoupling of box and target would have to be learned).

A different line of work deals with learning generalised policies for planning problems [8,
27]. These proposals present methods to learn a mapping from a state to an action that should
lead closer to the goal. They do so by learning a planning computation that can be applied to
any instance of a domain, as opposed for example to the policies in typical RL approaches. In
the method proposed by Toyer et al. [27], the observations are in PDDL, and the model is a
novel neural network architecture that exploits the structure of symbolic planning languages.
On the other hand, in [8] states are represented visually, and the model for action selection is
a convolutional neural network. Here, the model also outputs a heuristic value for the given
state, which can be used in informed state-space search and would therefore complement our
work in a promising way.
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7 Conclusions and Future Work

We presented an approach that learns from raw visual observations an implicit transition model
of planning domains. The learned dynamics can be applied to tree search to solve new instances
of the training domain, given a goal. In contrast to action model learning in automated plan-
ning, our approach does not rely on logical or entity-based observations of the environment.
Compared to model learning methods in machine learning, it naturally generalizes to unseen
instances, and in practice it learns more efficiently. Moreover, since goals are assigned to the
agent explicitly, if the task is changed one simply needs to assign the new goal to the agent,
instead of having it learn a new policy from an updated reward signal.

One main limitation of our approach is that the locality assumption imposes a restriction on
the type of domains that can be used. Although many standard planning domains in which the
STRIPS scope assumption holds [28] are in principle supported, there are domains – including
both video games and real-world applications – in which this does not hold. In future work we
want our method to rely on a weaker locality assumption. Furthermore, the learning algorithm
does not produce explicit action schemas, and thus cannot be directly used with traditional off-
the-shelf planners (e.g. FastDownward [9]). Future work also includes extending the method
to handle stochastic environments and higher-dimensional visual representations.
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