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The main aim of this talk is twofold. Firstly, to present an elementary method based on
Farkas’ lemma for rationals how to embed any finite partial subalgebra of a linearly ordered
MV-algebra into Q [0; 1] and then to establish a new elementary proof of the completeness
of the Lukasiewicz axioms for which the MV-algebras community has been looking for a long
time. Secondly, to present a direct proof of Di Nola’s representation Theorem for MV-algebras
and to extend his results to the restriction of the standard MV-algebra on rational numbers.

1 Introduction

The representation theory of MV-algebras is based on Chang’s representation Theorem [4],
McNaughton’s Theorem and Di Nola’s representation Theorem [5]. Chang’s representation
Theorem yields a subdirect representation of all MV-algebras via linearly ordered MV-algebras.
McNaughton’s Theorem characterizes free MV-algebras as algebras of continuous, piece-wise
linear functions with integer coefficients on [0, 1]. Finally, Di Nola’s representation Theorem
describes MV-algebras as sub-algebras of algebras of functions with values into a non-standard
ultrapower of the MV-algebra [0, 1].

The main motivation for our paper comes from the fact that although the proofs of both
Chang’s representation Theorem [4] and McNaughton’s Theorem are of algebraic nature the
proof of Di Nola’s representation Theorem is based on model-theoretical considerations. We
give a simple, purely algebraic, proof of it and its variants based on the Farkas’ Lemma for
rationals [6] and General finite embedding theorem [3].

1.1 Generalized finite embedding theorem

By an ultrafilter on a set I we mean an ultrafilter of the Boolean algebra P(I) of the subsets of
I.

Let {Ai; i ∈ I} be a system of algebras of the same type F for i ∈ I. We denote for any
x, y ∈

∏
i∈I Ai the set

[[x = y]] = {j ∈ I;x(j) = y(j)}.
If F is a filter of P(I) then the relation θF defined by

θF = {〈x, y〉 ∈ (
∏
i∈I

Ai)
2; [[x = y]] ∈ F}

is a congruence on
∏

i∈I Ai. For an ultrafilter U of P(I), an algebra

(
∏
i∈I

Ai)/U := (
∏
i∈I

Ai)/θU
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is said to be an ultraproduct of algebras {Ai; i ∈ I}. Any ultraproduct of an algebra A is called
an ultrapower of A. The class of all ultraproducts (products, isomorphic images) of algebras
from some class of algebras K is denoted by PU(K) (P(K), I(K)). The class of all finite algebras
from some class of algebras K is denoted by KFin.

Definition 1. Let A = (A,F) be a partial algebra and X ⊆ A. Denote the partial algebra
A|X = (X,F), where for any f ∈ Fn and all x1, . . . , xn ∈ X, fA|X (x1, . . . , xn) is defined if and
only if fA(x1, . . . , xn) ∈ X holds. Moreover, then we put

fA|X (x1, . . . , xn) := fA(x1, . . . , xn).

Definition 2. An algebra A = (A,F) satisfies the general finite embedding (finite embedding
property) property for the class K of algebras of the same type if for any finite subset X ⊆ A
there are an (finite) algebra B ∈ KE and an embedding ρ : A|X ↪→ B, i.e. an injective
mapping ρ : X → B satisfying the property ρ(fA|X (x1, . . . , xn)) = fB(ρ(x1), . . . , ρ(xn)) if
x1, . . . , xn ∈ X, f ∈ Fn and fA|X (x1, . . . , xn) is defined.

Finite embedding property is usually denoted by (FEP). Note also that a quasivariety K
has the FEP if and only if K = ISPPU(KFin) (see [2, Theorem 1.1] or [1]).

Theorem 1. [3, Theorem 6] Let A = (A,F) be a algebra and let K be a class of algebras of the
same type. If A satisfies the general finite embedding property for K then A ∈ ISPU(K).

Theorem 2. [3, Theorem 7] Let A = (A,F) be an algebra such that F is finite and let K be a
class of algebras of the same type. If A ∈ ISPU(K) then A satisfies the general finite embedding
property for K.

1.2 Farkas’ lemma

Let us recall the original formulation of Farkas’ lemma [6, 7] on rationals:

Theorem 3 (Farkas’ lemma). Given a matrix A in Qm×n and c a column vector in Qm, then
there exists a column vector x ∈ Qn, x ≥ 0n and A · x = c if and only if, for all row vectors
y ∈ Qm, y ·A ≥ 0m implies y · c ≥ 0.

In what follows, we will use the following equivalent formulation:

Theorem 4 (Theorem of alternatives). Let A be a matrix in Qm×n and b a column vector in
Qn. The system A · x ≤ b has no solution if and only if there exists a row vector λ ∈ Qm such
that λ ≥ 0m, λ ·A = 0n and λ · b < 0.

2 The Embedding Lemma

In this section, we use the Farkas’ lemma on rationals to prove that any finite partial subalgebra
of a linearly ordered MV-algebra can be embedded into Q∩ [0, 1] and hence into the finite MV-
chain Lk ⊆ [0, 1] for a suitable k ∈ N.

Lemma 1. Let M = (M ;⊕,¬, 0) be a linearly ordered MV-algebra, X ⊆ M \ {0} be a finite
subset. Then there is a rationally valued map s : X ∪ {0, 1} −→ [0, 1] ∩Q such that

1. s(0) = 0, s(1) = 1,
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2. if x, y, x⊕y ∈ X∪{0, 1} such that x ≤ ¬y and x, y ∈ X∪{0, 1} then s(x⊕y) = s(x)+s(y).

3. if x ∈ X then s(x) > 0.

Lemma 2 (Embedding Lemma). Let us have a linearly ordered MV-algebra M = (M ;⊕,¬, 0)
and let X ⊆ M be a finite set. Then there exists an embedding f : X ↪→ Lk, where X is a
partial MV-algebra obtained by the restriction of M to the set X and Lk ⊆ [0, 1] is the linearly
ordered finite MV-algebra on the set {0, 1k ,

2
k , · · · , 1}.

3 Extensions of Di Nola’s Theorem

In this section, we are going to show Di Nola’s representation Theorem and its several variants
not only via standard MV-algebra [0, 1] but also via its rational part Q ∩ [0, 1] and finite MV-
chains. To prove it, we use the Embedding Lemma obtained in the previous section. First, we
establish the FEP for linearly ordered MV-algebras.

Theorem 5. 1. The class LMV of linearly ordered MV-algebras has the FEP.

2. The class MV of MV-algebras has the FEP.

Note that the part (1) of the preceding theorem for subdirectly irreducible MV-algebras
can be easily deduced from the result that the class of subdirectly irreducible Wajsberg hoops
has the FEP (see [1, Theorem 3.9]). The well-known part (2) then follows from [1, Lemma
3.7,Theorem 3.9]. We are now ready to establish a variant of Di Nola’s representation Theorem
for finite MV-chains (finite MV-algebras).

Theorem 6. 1. Any linearly ordered MV-algebra can be embedded into an ultraproduct of
finite MV-chains.

2. Any MV-algebra can be embedded into a product of ultraproducts of finite MV-chains.

3. Any MV-algebra can be embedded into an ultraproduct of finite MV-algebras (which are
embeddable into powers of finite MV-chains).

The next two theorems cover Di Nola’s representation Theorem and its respective variants
both for rationals and reals.

Theorem 7. 1. Any linearly ordered MV-algebra can be embedded into an ultrapower of
Q ∩ [0, 1].

2. Any MV-algebra can be embedded into a product of ultrapowers of Q ∩ [0, 1].

3. Any MV-algebra can be embedded into an ultrapower of the countable power of Q∩ [0, 1].

4. Any MV-algebra can be embedded into an ultraproduct of finite powers of Q ∩ [0, 1].

Theorem 8. 1. Any linearly ordered MV-algebra can be embedded into an ultrapower of
[0, 1].

2. Any MV-algebra can be embedded into a product of ultrapowers of [0, 1].

3. Any MV-algebra can be embedded into an ultrapower of the countable power of [0, 1].

4. Any MV-algebra can be embedded into an ultraproduct of finite powers of [0, 1].

Proof. (1)-(4) It is a corollary of Theorem 6.
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