An elementary proof of the completeness of the Łukasiewicz axioms

Michal Botur

Department of Algebra and Geometry
Faculty of Science, Palacký University
tr. 17.listopadu 1192/12, 771 46 Olomouc, Czech Republic
michal.botur@upol.cz

The main aim of this talk is twofold. Firstly, to present an elementary method based on Farkas’ lemma for rationals how to embed any finite partial subalgebra of a linearly ordered MV-algebra into \(Q \ [0; 1] \) and then to establish a new elementary proof of the completeness of the Łukasiewicz axioms for which the MV-algebras community has been looking for a long time. Secondly, to present a direct proof of Di Nola’s representation Theorem for MV-algebras and to extend his results to the restriction of the standard MV-algebra on rational numbers.

1 Introduction

The representation theory of MV-algebras is based on Chang’s representation Theorem \[4\], McNaughton’s Theorem and Di Nola’s representation Theorem \[5\]. Chang’s representation Theorem yields a subdirect representation of all MV-algebras via linearly ordered MV-algebras. McNaughton’s Theorem characterizes free MV-algebras as algebras of continuous, piece-wise linear functions with integer coefficients on \([0, 1]\). Finally, Di Nola’s representation Theorem describes MV-algebras as sub-algebras of algebras of functions with values into a non-standard ultrapower of the MV-algebra \([0, 1]\).

The main motivation for our paper comes from the fact that although the proofs of both Chang’s representation Theorem \[4\] and McNaughton’s Theorem are of algebraic nature the proof of Di Nola’s representation Theorem is based on model-theoretical considerations. We give a simple, purely algebraic, proof of it and its variants based on the Farkas’ Lemma for rationals \[6\] and General finite embedding theorem \[3\].

1.1 Generalized finite embedding theorem

By an ultrafilter on a set \(I \) we mean an ultrafilter of the Boolean algebra \(\mathcal{P}(I) \) of the subsets of \(I \).

Let \(\{A_i; i \in I\} \) be a system of algebras of the same type \(F \) for \(i \in I \). We denote for any \(x, y \in \prod_{i \in I} A_i \) the set

\[
[x = y] = \{j \in I; x(j) = y(j)\}.
\]

If \(F \) is a filter of \(\mathcal{P}(I) \) then the relation \(\theta_F \) defined by

\[
\theta_F = \{(x, y) \in (\prod_{i \in I} A_i)^2; [x = y] \in F\}
\]

is a congruence on \(\prod_{i \in I} A_i \). For an ultrafilter \(U \) of \(\mathcal{P}(I) \), an algebra

\[
(\prod_{i \in I} A_i)/U := (\prod_{i \in I} A_i)/\theta_U
\]
is said to be an ultraproduct of algebras \(\{ A_i : i \in I \} \). Any ultraproduct of an algebra \(A \) is called an ultrapower of \(A \). The class of all ultraproducts (products, isomorphic images) of algebras from some class of algebras \(K \) is denoted by \(P_U(K) \) (\(P(K), I(K) \)). The class of all finite algebras from some class of algebras \(K \) is denoted by \(K_{\text{Fin}} \).

Definition 1. Let \(A = (A, F) \) be a partial algebra and \(X \subseteq A \). Denote the partial algebra \(A|_X = (X, F) \), where for any \(f \in F_n \) and all \(x_1, \ldots, x_n \in X \), \(f^{A|_X}(x_1, \ldots, x_n) \) is defined if and only if \(f^A(x_1, \ldots, x_n) \in X \) holds. Moreover, then we put

\[
f^{A|_X}(x_1, \ldots, x_n) := f^A(x_1, \ldots, x_n).
\]

Definition 2. An algebra \(A = (A, F) \) satisfies the general finite embedding property for the class \(K \) of algebras of the same type if for any finite subset \(X \subseteq A \) there are an (finite) algebra \(B \in K_E \) and an embedding \(\rho : A|_X \hookrightarrow B \), i.e. an injective mapping \(\rho : X \rightarrow B \) satisfying the property \(\rho(f^{A|_X}(x_1, \ldots, x_n)) = f^B(\rho(x_1), \ldots, \rho(x_n)) \) if \(x_1, \ldots, x_n \in X, f \in F_n \) and \(f^{A|_X}(x_1, \ldots, x_n) \) is defined.

Finite embedding property is usually denoted by (FEP). Note also that a quasivariety \(K \) has the FEP if and only if \(K = \text{ISP}_U(K_{\text{Fin}}) \) (see [2, Theorem 1.1] or [1]).

Theorem 1. [3, Theorem 6] Let \(A = (A, F) \) be a algebra and let \(K \) be a class of algebras of the same type. If \(A \) satisfies the general finite embedding property for \(K \) then \(A \in \text{ISP}_U(K) \).

Theorem 2. [3, Theorem 7] Let \(A = (A, F) \) be an algebra such that \(F \) is finite and let \(K \) be a class of algebras of the same type. If \(A \in \text{ISP}_U(K) \) then \(A \) satisfies the general finite embedding property for \(K \).

1.2 Farkas’ lemma

Let us recall the original formulation of Farkas’ lemma [6, 7] on rationals:

Theorem 3 (Farkas’ lemma). Given a matrix \(A \in \mathbb{Q}^{m \times n} \) and \(c \) a column vector in \(\mathbb{Q}^m \), then there exists a column vector \(x \in \mathbb{Q}^n \), \(x \geq 0_n \) and \(A \cdot x = c \) if and only if, for all row vectors \(y \in \mathbb{Q}^m \), \(y \cdot A \geq 0_m \) implies \(y \cdot c \geq 0 \).

In what follows, we will use the following equivalent formulation:

Theorem 4 (Theorem of alternatives). Let \(A \) be a matrix in \(\mathbb{Q}^{m \times n} \) and \(b \) a column vector in \(\mathbb{Q}^n \). The system \(A \cdot x \leq b \) has no solution if and only if there exists a row vector \(\lambda \in \mathbb{Q}^m \) such that \(\lambda \geq 0_m \), \(\lambda \cdot A = 0_n \) and \(\lambda \cdot b < 0 \).

2 The Embedding Lemma

In this section, we use the Farkas’ lemma on rationals to prove that any finite partial subalgebra of a linearly ordered MV-algebra can be embedded into \(\mathbb{Q} \cap [0, 1] \) and hence into the finite MV-chain \(L_k \subseteq [0, 1] \) for a suitable \(k \in \mathbb{N} \).

Lemma 1. Let \(M = (M; \oplus, \neg, 0) \) be a linearly ordered MV-algebra, \(X \subseteq M \setminus \{0\} \) be a finite subset. Then there is a rationally valued map \(s : X \cup \{0\} \rightarrow [0, 1] \cap \mathbb{Q} \) such that

1. \(s(0) = 0, s(1) = 1 \),

36
2. if \(x, y, x \oplus y \in X \cup \{0, 1\} \) such that \(x \leq \neg y \) and \(x, y \in X \cup \{0, 1\} \) then \(s(x \oplus y) = s(x) + s(y) \).

3. if \(x \in X \) then \(s(x) > 0 \).

Lemma 2 (Embedding Lemma). Let us have a linearly ordered MV-algebra \(\mathbf{M} = (\mathbb{M}; \oplus, \neg, 0) \) and let \(X \subseteq \mathbb{M} \) be a finite set. Then there exists an embedding \(f : X \hookrightarrow \mathbb{L}_k \), where \(X \) is a partial MV-algebra obtained by the restriction of \(\mathbf{M} \) to the set \(X \) and \(\mathbb{L}_k \subseteq [0, 1] \) is the linearly ordered finite MV-algebra on the set \(\{0, \frac{1}{k}, \frac{2}{k}, \ldots, 1\} \).

3 Extensions of Di Nola’s Theorem

In this section, we are going to show Di Nola’s representation Theorem and its several variants not only via standard MV-algebra \([0, 1]\) but also via its rational part \(\mathbb{Q} \cap [0, 1] \) and finite MV-chains. To prove it, we use the Embedding Lemma obtained in the previous section. First, we establish the FEP for linearly ordered MV-algebras.

Theorem 5.

1. The class \(\mathcal{LMV} \) of linearly ordered MV-algebras has the FEP.

2. The class \(\mathcal{MV} \) of MV-algebras has the FEP.

Note that the part (1) of the preceding theorem for subdirectly irreducible MV-algebras can be easily deduced from the result that the class of subdirectly irreducible Wajsberg hoops has the FEP (see \[1\, Theorem 3.9\]). The well-known part (2) then follows from \[1\, Lemma 3.7, Theorem 3.9\]. We are now ready to establish a variant of Di Nola’s representation Theorem for finite MV-chains (finite MV-algebras).

Theorem 6.

1. Any linearly ordered MV-algebra can be embedded into an ultraprodct of finite MV-chains.

2. Any MV-algebra can be embedded into a product of ultraprodcts of finite MV-chains.

3. Any MV-algebra can be embedded into an ultraprodct of finite MV-algebras (which are embeddable into powers of finite MV-chains).

The next two theorems cover Di Nola’s representation Theorem and its respective variants both for rationals and reals.

Theorem 7.

1. Any linearly ordered MV-algebra can be embedded into an ultrapower of \(\mathbb{Q} \cap [0, 1] \).

2. Any MV-algebra can be embedded into a product of ultrapowers of \(\mathbb{Q} \cap [0, 1] \).

3. Any MV-algebra can be embedded into an ultrapower of the countable power of \(\mathbb{Q} \cap [0, 1] \).

4. Any MV-algebra can be embedded into an ultraprodct of finite powers of \(\mathbb{Q} \cap [0, 1] \).

Theorem 8.

1. Any linearly ordered MV-algebra can be embedded into an ultrapower of \([0, 1] \).

2. Any MV-algebra can be embedded into a product of ultrapowers of \([0, 1] \).

3. Any MV-algebra can be embedded into an ultrapower of the countable power of \([0, 1] \).

4. Any MV-algebra can be embedded into an ultraprodct of finite powers of \([0, 1] \).

Proof. (1)-(4) It is a corollary of Theorem 6.
References