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Abstract

Heap and data structures represent one of the biggest challenges when applying model
checking to the analysis of software programs: in order to verify (unbounded) safety of a
program, it is typically necessary to formulate quantified inductive invariants that state
properties about an unbounded number of heap locations. Methods like Craig interpola-
tion, which are commonly used to infer invariants in model checking, are often ineffective
when a heap is involved. To address this challenge, we introduce a set of new proof and
program transformation rules for verifying object-oriented programs with the help of space
invariants, which (implicitly) give rise to quantified invariants. Leveraging advances in
Horn solving, we show how space invariants can be derived fully automatically, and how
the framework can be used to effectively verify safety of Java programs.

1 Introduction

One of the challenging areas for software verification is automatic reasoning about heap data.
In order to be fully precise, one needs to model heap manipulation in an expressive logic that
includes, for example, the theory of arrays with quantifiers [5] where reasoning is undecidable
and support for common abstraction techniques, such as Craig interpolation, is limited.

A sound alternative is to abstract the effect of heap interactions using invariants that cap-
ture properties of relevant heap regions. For type-safe, object-oriented languages, like Java, this
requires finding invariants that summarize the possible states of all objects that a particular
reference might point to at a given program point. For instance, in the setting of deductive
verification, it is common practice to use annotations like object invariants [22] and class in-
variants [19] to capture all possible states of objects of a given type throughout its lifetime,
including both object and static fields. While these approaches are powerful and can be used
to verify complex behavioral properties of programs, invariants are in general hard to infer
automatically: it can frequently be necessary to find invariants that span multiple objects, or
whole data-structures, and often additional information like specifications of library methods
is needed before program safety can be shown.

In this paper, we propose the concept of space invariants,1 a lightweight notion of invariant
inspired by frameworks such as refinement types and liquid types (e.g., [1, 11, 16, 28, 31]). Our

1The name is derived from the fact that space invariants can capture both data and shape properties of
heap data-structures.
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motivation is to automatically find invariants to summarize the states of an object, specific to
one particular program and a set of properties to be proven. The approach is also motivated
by the success of model checkers in finding loop invariants, where the inferred invariants are
just sufficient to verify the program and, by no means, need to precisely describe the program
states reachable in the loop.

In contrast to class or object invariants, as commonly used in deductive verification systems,
a particular feature of space invariants is the ability to capture context-sensitive information:
space invariants are able to focus on the subset of objects that can be referenced by a variable
at a certain program point, and space invariants can distinguish different object states based
on the current control state of a program.

We propose a simple but effective solution for automatically computing such space invari-
ants, leveraging recent advances in Horn solving technology. The presented technique is part of
a verification algorithm for single-threaded Java programs and is implemented in the JayHorn
verification tool [15].

To obtain space invariants, we first simplify the heap interaction of programs by a set of
program transformations that re-arrange heap read and write statements, in a way that allows
us to read or write as many fields of an object as possible in a single transaction (instead of
accessing these fields one-by-one). We refer to these transactions as pull (to read all fields
of one object into local variables) and push (to update all fields of an object on the heap
simultaneously). We show how programs can be transformed to use pull and push, and also
provide a simplification step to eliminate unnecessary heap interactions.

Heap interactions in the resulting program can be abstracted using (symbolic) space invari-
ants: a space invariant is assumed when fields of an object are read (pulled), and asserted when
fields are updated (pushed). After replacing pull and push by space invariants, our program
does not have any heap interaction and can be passed to a Horn clause solver like Spacer [17]
or Eldarica [29], which will then try to instantiate the symbolic space invariants with concrete
formulas to verify the assertions encoded in the original Java program.

The contributions of the paper are: (1) a new automatic verification paradigm for object-
oriented programs using space invariants and a translation to Horn constraints; (2) supporting
this paradigm, a set of program transformations for restructuring and optimizing heap access in
object-oriented programs, and a number of extensions to tune the precision of the verification
methodology; (3) experimental evaluation using Java benchmarks from different sources.

2 Verification Example

We demonstrate how space invariants can be used to verify safety properties of Java programs
that allocate an unbounded amount of memory. Figure 1 shows a program that will serve as our
running example; while the example itself is contrived, we believe that it illustrates a realistic
scenario of deriving properties about unbounded data-structures. The main method allocates
an array table in line 13. From line 16 to 23, it generates two lists, l1 and l2, of Node objects.
It adds all args with a value between zero and size to l1, and all other args to l2. From
line 24 to 27, the main method iterates over all elements in l1 and accesses the array table at
a position determined by the data field of the current node in l1 (line 24).

In the following, we show how we can use space invariants to prove that the array access
in line 25 is always within bounds.2 Verifying the correctness of the array access in line 25 is

2Note that the program may still throw an exception if args contains an element that cannot be parsed
as an integer, in which case Integer.parseInt in line 17 throws an exception; for this example we are only
interested in the safety of the array access in line 25.
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1 public static class Node {

2 final Node next;

3 final int data;

4
5 public Node(Node next , int data) {

6 this.next = next;

7 this.data = data;

8 }

9 }

10
11 public static void main(String [] args) {

12 final int size = 10;

13 final int[] table = new int[size] ;

14 Node l1 = null;

15 Node l2 = null;

16 for (int i=0; i<args.length; i++) {

17 int d = Integer.parseInt(args[i]);

18 if (d >= 0 && d < size) {

19 l1 = new Node(l1, d);

20 } else {

21 l2 = new Node(l2, d);

22 }

23 }

24 while (l1 != null) {

25 table[l1.data] = table[l1.data] + 1;

26 l1 = l1.next;

27 }

28 }

Figure 1: Running example to illustrate our encoding of Java and how space invariants help to
prove safety properties of Java programs. The main method builds up two lists of Node objects
(line 16-23) and then increments elements in an array at positions determined by the data in
the first list. Our goal is to prove that the array access in line 25 is always within bounds.

challenging for automated tools, since it requires combined reasoning about the shape of heap-
allocated linked data-structures, and about arithmetic properties of the stored data. Indeed,
to the best of our knowledge no fully-automatic tool is able to verify the program in Figure 1,
with the exception of our own JayHorn verifier [15].

To verify the program, intuitively we need to find an invariant that captures the property
that any allocated Node object that can be referenced by the variable l1 has the property that
0 ≤ l1.data < 10. A näıve choice would be an invariant of the form:

∀(o : Node). 0 ≤ o.data < 10

Unfortunately, this invariant does not hold for the objects in list l2: we need to be able to
distinguish between objects occurring in l1 and l2. This could, for instance, be done by adding
a reachability assumption to the invariant:

∀(o : Node). (l1
∗→ o)→ 0 ≤ o.data < 10

where l1
∗→ o expresses that o occurs in list l1. Due to its expressiveness, the resulting logic
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is difficult to handle in a fully-automated model checker, however, and useful primarily for
interactive verification (e.g., as in [26]).

We can instead make the simpler observation that objects can also be classified based on the
allocation site, since objects for list l1 will always be created in line 19, objects for l2 always
in line 21. To be able to make this classification, we add an additional field to each class:

final int allocSite;

that is assigned during object construction to the location of the new statement that creates
the object (we enumerate all new statements in the program, and pass the number associated
with a new as additional argument to the constructor). With this field, we can express a more
specific invariant about objects of type Node:

∀(o : Node). o.allocSite = l19→
(
0 ≤ o.data < 10 ∧ (o.next = null ∨ o.next.allocSite = l19)

)
The invariant states that, if an object of type Node has been allocated at line 19 then the

value of data is between zero and ten, and the object referenced by next has also been allocated
at line 19 or is null. This invariant holds for all Node objects on the heap and is sufficient to
verify that the array access is safe.

The important thing to note is that this invariant does not need to mention l2 or any other
object on the heap. All we need to know can be expressed using simply the allocation site
variable. Automatically inferring invariants like this, which hold for all allocated objects of a
given class, is the main goal of this paper. Apart from the allocation site, space invariants
can take various other (immutable) features of objects into account, as well as results from
standard static analysis techniques (Section 3.2). We show that with this added information,
space invariants can be precise enough to construct proofs of realistic programs, while also
simple enough to be inferred automatically by off-the-shelf Horn solvers.

Inferring space invariants. We show how we can infer such space invariants automatically
with our JayHorn tool [15]. The tool and all examples from this paper are available online.3

Before we can find the space invariant for this example, we have to transform the program a
little. This is done as part of the translation into our intermediate verification language (IVL),
which we describe in detail in Section 3.1. These transformations include replacing exceptional
flow by conditional choices and helper variables (e.g., methods return pairs of return value and
thrown exception, and callers have to check if this exception is non-null before using the return
value) and making dispatch of virtual calls explicit by adding switch cases over the dynamic type
of objects. Further, all methods are transformed into static methods (taking the this pointer
as first argument), and all fields are made public (essentially turning them into structs). The
resulting program looks a lot like type-safe C code. During that transformation, we also add the
allocSite field to each class. Since allocSite is final, we also add an additional parameter to
each constructor that takes an integer to initialize this field. Then, each constructor call gets
changed to pass an integer to the constructor that uniquely identifies the new statement. For
example, line 19 in Figure 1 will be changed to l1 = new Node(l1, d, 19) and line 21 will
be changed to l2 = new Node(l2, d, 21).

Since the goal of space invariants is to abstract heap behavior, we want to transform the
program in a way that minimizes the points of heap interaction to avoid unnecessary loss of
precision. For example, without minimization of heap interaction, in line 25 we read l1.data

twice (once for each look-up in the array), and in line 26 we read l1.next. When working

3https://github.com/jayhorn/jayhorn/releases/tag/v0.5.1
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with space invariants, we can assume that the space invariant holds before every heap read
access, and we have to verify that the invariant is preserved by every write access. This would
significantly increase the size of our verification conditions: for the two lines, six statements
have to be added (two for the reads of data, one for the write of data, two for read and write
of table, and one for the read of next).

Instead, we introduce two new statements: pull to read all fields of an object into local
variables, and push to update all fields of an object with data stored in local variables. With
these statements, lines 25 and 26 can be rewritten as:

while l1 6= null

data, next, allocSite = pull(l1)

assert(0<=data<10)

tmp, allocSite = pull(table, data)

push(table, data, tmp+1, allocSite)

l1 = next

With this encoding, we have reduced the points where we need to invoke the heap from six
to three. As we show in Section 4, we can now abstract the heap by replacing all pull and
push statements by symbolic space invariants. For each class, we introduce a predicate for
which the arity corresponds to the number of fields of that class. For the class Node, we
create the symbolic invariant φNode(this, data,next , allocSite). For the int-array, we create
φint[](this, idx , val , allocSite), where idx refers to the index for this array read/write. The
index is added for the same reason as the allocation site: to allow differentiation between ar-
ray cells where possible. A pull or push statement can then be translated to assumption or
assertion, respectively, of the space invariant.

With these symbolic invariants, we can rewrite the snippet above, as follows:

while l1 6= null

havoc(data,tmp,next,allocSite1,allocSite2)

assume φNode(l1, data, next, allocSite1)

assert(0<=data<10)

assume φint[](table, data, tmp, allocSite2)

assert φint[](table, data, tmp+1, allocSite2)

l1 = next

The transformation added a havoc statement that assigns non-deterministic values to all its
arguments. We need this non-determinism because we have to make sure that the assumption
resulting from a pull reasons about fresh values in consecutive loop iterations.

After this transformation, we have abandoned our concrete semantics of the original Java
program and replaced it by an abstract semantics that relies on space invariants. Since we
already made method calls static and all fields public, the resulting program is a simple imper-
ative program that only uses local variables and invariants. The translation of such a program
into Horn logic is mostly standard. Now we can employ an off-the-shelf Horn solver to find our
space invariants by searching for assignments to φNode and φint[].

Encoding of References as Tuples. As shown in the running example, it is important
to identify distinguishing features of objects to precisely capture their properties using space
invariants. Such features can, for example, include the dynamic type of an object (that is, the
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type it has on the heap, not the type of the current reference), the values of final fields, and, in
particular, the value of the allocSite variable that we just introduced. Note that such features
are immutable (i.e., they do not change after object creation), and that they cannot be read
via field access (i.e., by assuming the space invariant), since this would defeat the purpose of
distinguishing different object contexts: e.g., in line 25 of Figure 1 it has to be known that the
reference l1 points to an object with allocation site l19.

For this reason, we encode references using tuple types. A reference is represented by a
tuple (id, type, f0, ...fn), where id is an integer representing the address on the heap4, type is
the dynamic type of the object (which can be a subtype of the declared type), followed by all
immutable (or final) fields. This includes our allocSite field and the length field of the array
table. We have to make one exception in the tuple encoding: the next field of Node cannot
be encoded as part of the tuple because it would recursively inline all other objects. That is,
we do not add fields to the tuple if their type definition is recursive. These fields will still be
accessed using pull and push, even if they are final.

With the tuple encoding, the variable l1 is of type Int × Type × Int × Int , where the first
component represents the id, the second represents the type, the third the value of allocSite,
and the fourth the value of data. In case l1 points to null, the id is 0. For readability, we use
the field name as identifier for accessing tuple elements. For example, the fourth element of l1
will be written as l1↓data.

Note that we can now shorten φNode(this, data,next , allocSite) to φNode(this, data,next) and
φint[](this, idx , val , allocSite) to φint[](this, idx , val), as the allocation site can be accessed
through the tuple (i.e. with this ↓ allocSite). The statements from above can be encoded
as Horn clauses as follows:

p0(l1, table) ∧ l1↓id 6= 0→ p1(l1, table)

φNode(l1, l1↓data, next) ∧ p1(l1, table)→ p2(l1, table, next)

p2(l1, table, next)→ 0 ≤ l1↓data < 10

φint[](table, l1↓data, tmp) ∧ p2(l1, table, next)→ p3(l1, table, next, tmp)

p3(l1, table, next, tmp)→ φint[](table, l1↓data, tmp+1)

p3(l1, table, next, tmp)→ p0(next, table)

We can see that, with this encoding of the loop, if p1(l1, table) implies that l1↓allocSite = l19,
then we can verify the assertion with the following space invariants:

φint[](o, idx, data) := true

φNode(o, data, next) := o↓allocSite = l19→
(
0 ≤ data < 10 ∧ (next↓id = 0

∨ next↓allocSite = l19)
)

We omitted several details in this example for the sake of readability, such as the encoding
of constructors and how it ensures that the allocation site field is correctly set, or method
calls in general, and other more advanced problems like space invariants in combination with
sub-typing. In the following, we formalize our IVL and describe the most relevant parts of the
translation from Java into this IVL. For more detailed explanations and some background on
how design decisions were made, we also refer to the development blog.5

4It does not have to be the real address. Any numbering of heap locations that ensures that non-aliased
objects are represented by different numbers does the job.

5http://jayhorn.github.io/jayhorn/jekyll/2016/08/01/model-checking-java/
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Program ::= Method∗

Method ::= f(x1, . . . , xn){Stmt;∗}
Stmt ::= label : Stmt | goto {t→ label}+ | x := t

| (x1, . . . , xn) := pull(p) | push(p, t1, . . . , tn)

| x := pull(ar, tidx) | push(ar, tidx, t)

| (x1, . . . , xm) := f(t1, . . . , tn) | return (t1, . . . , tm) | p := new type

| assume(t) | assert(t) | havoc(x1, . . . , xn)

Figure 2: The syntax of our IVL. Here, t is an arithmetic expression; x is a local variable; p is
a local variable of reference type; ar is a local variable of array type; type is a class type.

3 Optimizing Programs for Verification

We first define a simplified programming language used to represent programs for the purpose
of verification. Our Intermediate Verification Language (IVL) is simple, but expressive enough
to encode a reasonable subset of Java (without threads or reflection). It serves as the platform
for simple static analysis, as well as to encode the results of that analysis to later be leveraged
by the solver. We do not go into details of the translation of Java to this language, but instead
refer the interested reader to [15], a tool paper about JayHorn.

3.1 Intermediate Verification Language

In our IVL, local variables are either of numeric type (mathematical integers), or of reference
type p. Every reference p is a tuple of a heap address id, dynamic type type, and the final fields
of the object. Every class type type is associated with a set f1 . . . fn of fields of either integer or
reference type.

We define the syntax of our IVL in Figure 2. Throughout the paper, we use the following
conventions: x, y, z refer to local variables; p, r are local variables of reference type, and t, s are
side-effect-free expressions over variables and constants. A program in our language consists of
a set of methods (functions) with one distinct main method. Each method consists of a sequence
of (possibly labeled) statements. Labels are symbolic representations of the program counter
associated with a particular statement. The first statement in the sequence is the entry point
of the method; we make the further simplifying assumption that all methods have a result,
and that the last statement in a method is a return statement (but the method might contain
multiple returns).

Control flows from one statement to the next as the program counter increases, or to a
specific location if the condition t in a goto evaluates to true. Assignment statements x := t
update a variable x to the value of t. The statement (x1, . . . , xn) := pull(p) loads the values of all
fields p.f1, . . . , p.fn of p into local variables x1, . . . , xn. Conversely, push(p, t1, . . . , tn) updates
the fields of p to the values of expressions t1, . . . , tn. For arrays, pull and push includes the
index to read or write, respectively. Note that the length field of an array is immutable and
therefore part of the reference tuple, so it does not need to be accessed via pull and push. A
function call (y1, . . . , ym) := f(t1, . . . , tn) to a method f(x1, . . . , xn) executes the body of the
method f until a return (t1, . . . , tm) statement is reached, at which point control returns and
the values of the expressions ret1, . . . , retm are assigned to y1, . . . , ym. A new object of class
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type type is allocated with new type. To be able to distinguish objects on the heap (also from
null), each allocated object gets a unique id. The statement assume(t) blocks the execution if
t evaluates to false on the current state and has no effect otherwise. The statement assert(t)
terminates the execution of a program exceptionally if t evaluates to false on the current state,
and has no effect otherwise. The statement havoc(x1, . . . , xn) assigns non-deterministic values
to the variables x1, . . . , xn.

For class types, we assume a subtyping relationship similar to that in Java. A subtype type′

of a type type contains all fields f1, . . . , fn of type, but can possibly add fields fn+1, . . . , fn′ . The
dynamic type of a reference is stored in its tuple representation.

In addition, a variable of reference type type might actually point to objects of any sub-
type type′, which implies the need for dynamic method dispatch as usual in object-oriented
languages. Dynamic dispatching of method invocation may however be replaced with a condi-
tional over the dynamic type of the object, which we assume has been done in the translation
to the IVL. To handle object state, we adopt the philosophy that invariants φtype only hold for
objects that have exactly type type, i.e., not for objects of subtypes.

A path in a program is a sequence of statements starting from the first statement in the
main method of a program. A trace is an initial state and the resulting path. We say a trace
terminates if its path is finite. A trace terminates erroneously if its path ends with an assertion
violation. A trace is infeasible if its path ends with an assumption violation. In this paper, we
say that a program is correct if none of its traces terminates erroneously.

3.2 Extensions and Optimizations

A number of simple extensions are possible that significantly increase the precision of the overall
space invariants approach, and that can be integrated very organically. We introduce some of
the most important techniques in this section.

Optimized Push/Pull Placement As a first optimization of our framework, it is natural
to minimize the number of required heap interactions by eliminating redundant pull and push
instructions. Unnecessary heap interaction is detrimental to precision because push followed
by pull from the same object (after translation to space invariants, as outlined in Section 2)
will lose information about the precise values of fields. To this end, we apply a simplification
step where we use data-flow analysis techniques to remove as much heap interaction as possible.

When a pull or push is immediately followed by an identical statement, one may be re-
moved. When a pull is immediately followed by a push of the same local variables and the
same object, then the push may be removed. Dually, when a push is immediately followed
by a pull of the same object, the pull may be removed. In case (some of) the local variables
used are different, assignments from the pushed values to the variables used in the pull must
be added. A pull can move up in the program (towards the entry), past any statement S for
which it can be determined statically that S does not affect the pulled object. A push can
move down under the same conditions, with the addition that none of the pushed expression
may be affected by S.

Note that these optimization rules all depend on data-flow analysis of the IVL program, in
particular a points-to analysis. The question whether two references point to the same location
on the heap is not decidable in general. The effectiveness of this optimization step depends
directly on the precision of the data-flow analysis.
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// Push site 1

push(p, 0)

goto {b → l1,¬b → l2}

l1: x := pull(p)

// Push site 2

push(p, x + 1)

goto l3

l2: x := pull(p)

// Push site 3

push(p, x + 2)

goto l3

l3: x := pull(p)

assert(x > 0)

(a) Diamond-shaped code

// Push site 1

push(p, 0, 1)

goto {b → l1,¬b → l2}

l1: (x, lastPush) := pull(p)

assume(lastPush == 1)

// Push site 2

push(p, x + 1, 2)

goto l3

l2: (x, lastPush) := pull(p)

assume(lastPush == 1)

// Push site 3

push(p, x + 2, 3)

goto l3

l3: (x, lastPush) := pull(p)

assume(lastPush == 2 || lastPush == 3)

assert(x > 0)

(b) Code with flow-sensitive invariants

Figure 3: Flow-sensitive space invariants.

Flow-Sensitive Space Invariants A related extension concerns the order in which updates
to objects are performed. For any concrete program, the order of statements determines which
push instructions can influence a pull, i.e., where the data read by pull can originate from,
which can be exploited to make space invariants flow-sensitive.

Fig. 3 illustrates the situation. The program in Fig. 3a is correct, but cannot be verified
with näıve translation to space invariants, since the first push implies that 0 is a possible value
of the field x; this violates the assertion. It is clearly the case that the pull at l3 can only read
from push sites 2 or 3, and that the assertion therefore holds in any actual program execution.

To improve precision and handle this situation, we can add a numeric ghost field lastPush to
every type type storing the index of the last push site that updated the object. Standard data-
flow analysis can be used to over-estimate the set of push statements that might influence
a pull: for each l := pull(p) we compute a set of statements s = push(q, . . .) such that s
occurs on a feasible trace before l, references p, q may alias, and in between l and s there is no
push(q′, . . .) such that q, q′ must alias.

We can then exclude influence of other push statements by adding an assumption that
lastPush must be in that set. The instrumented code is shown in Fig. 3b. A Horn solver can
now determine a disjunctive invariant for x, where x > 0 in case the last push was 2 or 3. As
other cases are excluded by the assumption, the assertion can now be proved correct.

Method Inlining As a general preprocessing step that supports the other optimizations,
methods that are small and/or are only called few times can be inlined.

Optimization of push/pull placement is applied intra-procedurally. Inlining therefore in-
creases the effectiveness of the optimization by allowing simplification over statements from
invoked methods, too.

Furthermore, when a method is invoked from multiple locations, inlining is a means to
distinguish between these calls. This increases precision for flow-sensitive space invariants. For

376



Quantified Heap Invariants Kahsai, Kersten, Rümmer and Schäf

instance, if o.setField(i) is invoked twice, inlining ensures that there will be two different
push statements. Data flow analysis will be able to use that information in order to more
precisely state which of these can influence a later pull from object o.

Array Invariants As arrays are difficult to handle for solvers, we avoid using an array
theory in our Horn clauses. Instead, we extend space invariants with the array index that
is accessed. We thus use push(ar, tidx, t) to write the value of expression t to array ar at
index tidx. Analogously, we read an array location with x ← pull(ar, tidx). This allows the
construction of invariants that are disjunctive with respect to the accessed index. Leveraging
the other improvements presented in this section, this enables proofs for many programs with
arrays, e.g. our running example.

A multi-dimensional array of dimension d > 1 is accessed by first reading/writing the outer
array, then treating the value at the given index as an array of dimension d− 1. For instance,
an array read x = ar[i][j] is translated to ari ← pull(ar, i);x← pull(ari, j).

4 Generating Constrained Horn Clauses

The representation of heap accesses using push and pull enables us to make the step from
precise program execution semantics to summarization of states using space invariants. For this
we need a further assumption about the considered programs, namely we rule out programs
that can access uninitialized memory:

Definition 1. We say that a program P does not access uninitialized memory if, on every path
through P , every (x1, . . . , xn) := pull(p) is preceded by a push(q, t1, . . . , tn) where p↓ id = q↓ id.

Although it is in general undecidable whether a program can access uninitialized memory, in
practice the type system of higher-level languages (in particular of Java) prevents such accesses.
For the purpose of verification, the convention does not lead to a loss of generality either, since
programs can always start with an initialization phase in which heap data structures are (non-
deterministically) created. We can, thus, assume the property from Def. 1.

It is then possible to replace push/pull pairs with symbolic invariants representing possible
states of objects of the accessed type. Suppose a reference tuple has elements (id, type, f1, . . . , fm)
and objects of type type have additional fields fm+1, . . . , fn (remember that only final non-
recursive fields go in the tuple). A space invariant is a formula φtype over pairwise distinct (fresh)
variables id, x1, . . . , xn, and will be used to capture the possible states of an object of type type
at address id. As a convention, for expressions id′, t1, . . . , tn, we write φtype(id

′, t1, . . . , tn) for
the result of the substitution φtype[id/id

′, x1/t1, . . . , xn/tn].

The elimination of push and pull through the space invariant φtype is performed by ex-
haustive application of the following replacement rules (replace statements above line with
statements below line):

push(p, tm+1, . . . , tn)

assert(φp↓type(p↓ id, p↓ f1 , . . . , p↓ fm , tm+1, . . . , tn)) (1)

(xm+1, . . . , xn) := pull(p)

havoc(xm+1, . . . , xn); assume(φp↓type(p↓ id, p↓ f1 , . . . , p↓ fm , xm+1, . . . , xn)) (2)
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In other words, instead of actually writing data to memory, the resulting program asserts
that the data satisfies the stipulated invariant φtype; reading data from memory is translated
to generating arbitrary values satisfying the invariant. This transformation is sound:

Lemma 1. Let PPP be a program in our IVL, and Pinv the result of exhaustively applying (1)
and (2). If PPP does not access uninitialized memory, then PPP is correct if Pinv is correct
(but in general not vice versa).

After replacing memory access via pull and push by space invariants, our IVL only contains
local variables and translation into logic becomes simple. To prove the safety of all assertions
in a program, we encode the program into a set of constrained Horn clauses (CHC).

A constrained Horn clause is a formula C ∧B1 ∧ · · · ∧Bn → H where C is a constraint over
variables and interpreted predicates (e.g. >, or +). Each Bi is an application of a relational
symbol p(t1, . . . , tn) to terms ti in first-order logic. We refer to C ∧ B1 ∧ · · · ∧ Bn as the body
of a Horn clause. The head of a Horn clause H is, similar to Bi, an application p(t1, . . . , tn), or
false. A set of CHCs is called solvable if there is an instantiation of the used relational symbols
for which all Horn clauses are valid. As shown in [3], the assertion checking problem can be
reduced to solvability of Horn clauses.

Suppose a method f(x1, . . . , xn) with n arguments and k results. To represent the contract
of f , we follow the standard encoding (see, e.g., [12]) and assume two predicates pref and
postf , where pref has arity n and postf has arity n + k; those predicates will represent the
precondition and postcondition of f .

We further assume one predicate pci per program location pc = i. The arity m = n + l of
this symbol is determined by the number n of arguments of f , and the number l of program
variables that can be alive at this program point (live variables can be computed statically). In
addition to that, we create one predicate φtype for each type used in the program. The arity k+1
of φtype is determined by the number k of fields in type (one additional argument is needed for
the object reference). These predicates are shared between all methods.

For the method entry point, we introduce one Horn clause connecting the precondition with
the method entry pc = 1:

pref (x1, . . . , xn) → pc1(x1, . . . , xn, . . .)

For each statement s at program counter pc = i whose execution transitions to pc = j, we
can then create Horn clauses of the general shape:

pci(x1, . . . , xn, . . .) ∧ ψ → pcj(x1, . . . , xn, . . .)

The method arguments are always carried through in this clause (since postconditions can refer
to the method arguments), while further predicate arguments, and the guard ψ, depend on the
nature of the statement s. Intuitively, the Horn clause expresses that, if we are at program
counter i and the invariant pci and the condition ψ hold, then we can transition to program
counter j where the invariant pcj has to hold. Additional clauses are introduced for method
calls, return, and assert statements.

The translation from the individual statements to clauses is mostly straightforward, we only
show the most interesting cases.

A statement assert(φ) at pc = i is translated to two Horn clauses:

pci(x1, . . . , xn, y1, . . . , yl) ∧ ¬φ → false (3)

pci(x1, . . . , xn, y1, . . . , yl) → pci+1(x1, . . . , xn, . . .)
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where we assume that φ is formulated over the live variables y1, . . . , yl.
As a special case, for a statement assert(φ(p, t1 . . . tn)) introduced by (1), clause (3) is

turned into an implication

pci(x1, . . . , xn, y1, . . . , yl) → φtype(p, t1 . . . tn)

A call (y1, . . . , yk′) := g(t1, . . . , tn′) to method g is represented by two clauses, one asserting
the precondition of g, and one applying the postcondition:

pci(x1, . . . , xn, y1, . . . , yl) → preg(t1, . . . , tn′)

pci(x1, . . . , xn, y1, . . . , yl) ∧
postg(t1, . . . , tn′ , r1, . . . , rk′)

→ pci+1(x1, . . . , xk, . . . , r1, . . . , rk′ , . . .)

Expressions t1, . . . , tn′ are again formulated over live variables y1, . . . , yl, while the result vari-
ables r1, . . . , rk′ are used in the second clause to update relevant live variables in the post-state.

A return statement return (t1, . . . , tk) at pc = i is dually represented as a clause asserting
the postcondition:

pci(x1, . . . , xn, y1, . . . , yl) → postf (x1, . . . , xn, t1, . . . , tk)

Finally, we add one more Horn clause: true → premain to assert that the precondition of
main has to be true (i.e., no input can violate an assertion). In practice, we have to add a
prelude to the Horn clauses representing main. The representation discussed above assumes
that the execution of the program starts with a completely empty heap but, for example, the
main method of a Java program takes an array of strings as input that exists prior to the
execution of main. Hence, we need to add a short prelude that allocates this array and fills it
with non-deterministic values.

5 Implementation and Experimental Evaluation

The encoding of Java into our IVL and from there to Horn clauses is implemented in JayHorn6.
JayHorn takes Java bytecode as input and tries to prove that no exception of a pre-defined set
can leave the main method. This includes user-defined exceptions, Java assertions (which are
represented as exceptions in bytecode) and implicit exceptions that are thrown by null-pointer
dereferences, array bounds violations, and illegal casts. More details on the implementation are
given in [15].

In its default configuration, JayHorn checks for null-pointer, array bounds, and cast excep-
tions, as well as any non-runtime exception. Library calls are assumed to not throw exceptions.
That is, in its default configuration, JayHorn would not check if parseInt in our example from
Section 2 throws an exception. This is a convenient assumption because we do not have to
model libraries per se, but can simply havoc all local variables a library can may touch. If
needed, JayHorn can be configured to be either pedantic and assume that library calls always
may throw explicitly declared exceptions, or to provide summaries in the form of Horn clauses.

JayHorn supports two solver backends, Eldarica and Spacer. In its default configuration,
JayHorn uses Eldarica and can be run from a single fat Jar. The implementation is modular to
ensure that it can be extended to support other Horn solver backends with reasonable effort.
Soundness. JayHorn is sound w.r.t. programs written in the intermediate verification language
and soundy [20] for single-threaded Java. All benchmarks used below only use Java features for

6http://jayhorn.github.io/jayhorn/
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which JayHorn is sound, but some language features are not supported (see website for details).
Notably, reflection is not supported and the current implementation has limited support for
static initializers.
Completeness. JayHorn is not complete. We trade completeness for efficiency (i.e. the ability
to verify more programs faster). In addition to inherently undecidable problems, other sources
of incompleteness are numeric types other than integer, restricted expressiveness of space in-
variants, coarse abstraction of library calls, etc.

Evaluation. In the following we evaluate how JayHorn performs on different verification prob-
lems and how the two JayHorn backend solvers Spacer and Eldarica perform. For the evaluation,
we use three sets of benchmarks7.

The first set is our own benchmark set. We have compiled a set of 82 benchmark problems,
available in the JayHorn repository. 20 of the benchmarks are synthetic problems, such as
calculation of Fibonacci numbers or the Ackermann function; the rest are algorithms and data-
structures implementations (e.g., sorted binary trees) that require non-trivial invariants.

The second benchmark set is the MinePump set provided by CPAChecker [2]. This is a
Java version of a well known benchmark set for C program verification. It contains 64 different
versions of a MinePump controller and its environment together with safety properties that
need to be verified.

We also compare JayHorn with the CPAChecker [2] tool, which combines model-checking
with other program analysis techniques. CPAChecker currently only handles a smaller subset of
Java than JayHorn, so the results cannot be generalized.

The third benchmark set is provided by CBMC. It contains 42 Java programs with assertions.
The benchmarks mostly test support of language features, such as sub-typing, casting between
numeric types, etc. For our evaluation, we did not compare with the Java version of CBMC
since the version of this tool that we evaluated was limited to only handle single class files
without dependencies and thus could not be run on most of our benchmarks.

Discussion. Table 1 shows the result of running JayHorn and CPAChecker on the three bench-
mark sets. As stated above, not all benchmarks are suitable for all tools and hence we will not
draw conclusions about the capabilities of the other tools from benchmarks on which they do
not perform well.

The first observation is that JayHorn can solve almost 90% of the benchmarks. It solves these
within one minute (increasing the time-out to 60 minutes does not help solve the remaining
problems). This supports our claim that our encoding using space invariants is an effective and
lightweight way to verify realistic problems.

Our incompleteness caused imprecise results for less than 8% of the benchmarks. Most of
the imprecise results are reported on MinePump. We manually inspected these cases and came
to the following conclusion: the MinePump benchmarks implement a state machine whose state
is encoded in an Enum that is set in different method calls. When computing a space invariant
for the field that holds the state of the pump, JayHorn over-approximates the possible states the
pump can be in. One way to address this is to fine-tune the inlining of methods in JayHorn to
this example. Without manual fine-tuning, JayHorn is slower and solves fewer of these problems
than CPAChecker.

On the other examples, JayHorn gives many more correct answers than CPAChecker. This
is in part due to Java language features that are currently not supported by the CPAChecker.

7Benchmarks used for the experiments can be found in https://github.com/jayhorn/benchmarks/tree/

master/lpar17-benchmarks
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Table 1: Experimental results. We show, for each set of benchmarks and for both tools, the
number of cases where the tool’s result is correct or incorrect, distinguishing cases where the
expected answer for the program is safe or unsafe. Note that while incorrectly answering that a
program is unsafe is a matter of precision (the program cannot be proved correct), incorrectly
answering that a program is safe means that the tool is not sound. The “TO” column lists the
benchmarks for which the tool timed out after 60 seconds. The “N/A” lists benchmarks that
are not applicable to a tool, since they use unsupported language features.

Correct Incorrect
TO N/A

Safe Unsafe Imprecise Unsound

JayHorn
benchmarks

(41 safe, 41 unsafe)

JayHorn (Eldarica) 33 41 3 0 5 0

JayHorn (Spacer) 37 41 3 0 1 0

CPAChecker 5 5 0 0 0 72

MinePump
(43 safe, 21 unsafe)

JayHorn (Eldarica) 32 21 11 0 0 0

JayHorn (Spacer) 32 19 8 0 5 0

CPAChecker 43 21 0 0 0 0

CBMC benchmarks
(35 safe, 7 unsafe)

JayHorn (Eldarica) 29 7 3 0 0 3

JayHorn (Spacer) 29 7 3 0 0 3

CPAChecker 6 0 0 0 0 36

Total

(119 safe, 76 unsafe)

JayHorn (Eldarica) 94 69 17 0 5 3

JayHorn (Spacer) 98 67 14 0 6 3

CPAChecker 54 26 0 0 0 108

For three of the CBMC benchmarks, JayHorn could not parse the input. We assume that
these benchmarks are malformed since the Soot bytecode parser rejected them. For three other
benchmarks, JayHorn was incomplete. These benchmarks contain double and float types, which
are currently treated as opaque objects in JayHorn.

Overall, the Spacer backend performed slightly better than Eldarica. This is largely due to
preprocessing and simplification tricks that Spacer uses to simplify the problem. For example,
if we modify our program from Section 2 by setting the size variable to the length of args,
Eldarica is not able to solve the problem anymore because it can’t use the length field of args
in the space invariant for Node, but Spacer is able to solve it by introducing a ghost symbol.

In summary, we can say that space invariants are a practical approach to verify programs
that allocate an unbounded amount of heap. The approach is able to handle many practical
problems, and its incompleteness does not significantly limit the number of problems that can
be solved.

6 Related Work

Numerous approaches have been presented that generate quantified inductive invariants. Our
approach has some similarities with the work of Bjørner et. al. [4], in which a Horn solver is
guided by constraining the form of the proof, enabling it to find suitable (quantified) invariants
even in challenging cases. A related technique for approximation of array behavior was recently
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presented in [23]. A number of abstract interpretation methods have domains that represent
universally quantified facts [9, 13]. In our approach, like in [4] we aim to avoid the explicit
construction of abstract post operators, widening and refinement procedures needed in these
approaches. The work in [18] synthesizes a class of universally quantified linear invariants of
array programs. Our technique aims to synthesize a general class of invariants.

Other approaches, such as [21] and [25] provide semi-automated ways to analyze program
with unbounded data. Our approach does not require user-provided information.

At a very high level, we are inspired by techniques based on dependent refinement and
liquid types [28]. Variations of refinement types and their applications have been studied in
many settings (e.g. [1, 11, 16, 31]). Liquid types [28] allow automatic inference of dependent
types precise enough to prove a variety of properties. Our approach is formulated in terms
of invariants (in contrast to types), and mainly focuses on derivation of heap invariants for
object-oriented programs.

The use of push and pull in our approach is similar to unfold/fold techniques used for program
transformation [6] on purely functional programs. A similar technique called unroll/roll was
later used in alias types [30] to manually witness the isomorphism between a recursive type and
its unfolding. The Viper [24] tool uses the constructs inhale and exhale which are similar in
spirit to our pull and push operations but their approach targets permission logic which is not
immediately comparable.

Separation logic [14, 27] is widely used to reason about heap structure. Bi-abduction [8]
based tools such as jStar [10] or Infer [7] have delivered impressive results. Our approach is
orthogonal in the sense that we reason about heap data rather than heap structure.

7 Conclusion

We have introduced a new methodology to verify object-oriented programs with the help of
space invariants. We have demonstrated an encoding of Java programs into Horn clauses that
allows a Horn solver to automatically infer space invariants and verify non-trivial examples.

We have demonstrated an implementation that is capable of solving problems fully auto-
matically that cannot be solved easily with other encodings. Our experiments show that the
encoding is sufficiently general to deliver good results with the Horn solvers Eldarica and Spacer.

In the future we plan to introduce invariants that can speak about multiple objects to
help the Horn solver to find more advanced properties, such as sortedness. Adding additional
predicates can also help to restore completeness which is an essential part of our future work.

We believe that space invariants give rise to an elegant, lightweight and scalable method of
encoding heap access in Java-like programs. They are easy to implement, have a high potential
for automation, and can verify interesting properties that are expensive to show with more
heavyweight approaches.

The basic approach of space invariants through pull and push instructions is introduced,
along with a series of refinements. The presented technique has been implemented in the tool
JayHorn, the effectiveness of which is demonstrated on a large set of benchmarks.

To summarize: we have demonstrated a new encoding of Java-like languages into Horn
clauses that allows the Horn solver to infer space invariants that summarize heap regions and
make it possible to find proofs for non-trivial programs. The approach is implemented in
JayHorn and available for download.
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