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Abstract 

Relationship inference from sparse data is an important task with applications 

ranging from product recommendation to drug discovery. A recently proposed linear 

model for sparse matrix completion has demonstrated surprising advantage in speed and 

accuracy over more sophisticated recommender systems algorithms. Here we extend the 

linear model to develop a shallow autoencoder for the dual neighborhood-regularized 

matrix completion problem. We demonstrate the speed and accuracy advantage of our 

approach over the existing state-of-the-art in predicting drug-target interactions and 

drug-disease associations. 

1 Introduction 

Algorithms for sparse matrix completion are used in recommender systems to predict user preferences 

to items such as news, movies, or songs [1]. The same methods can be successfully applied in other 

fields, for instance in systems biology to predict gene-disease associations or in computational 

systems pharmacology to predict adverse drug reactions [2] and to repurpose FDA approved drugs 

[3]. Matrix completion is the task of filling out missing entries in an observed sparse matrix. A low 

rank solution to matrix completion problem can be obtained via matrix factorization, a technique that 

approximates the input sparse matrix as a product of two lower dimensional matrices of users’ and 

items’ latent vectors [4]. Despite efforts to develop more sophisticated techniques, such as the 

methods based on artificial neural networks [5], matrix factorization remains the method of choice in 

recommender systems due to its efficiency and high accuracy [6]. Surprisingly however, a simple 

linear model, called EASE [ 7 ], has been recently shown to outperform other widely used 

recommender systems algorithms [7,8]. Aside from having competitive ranking accuracy, EASE is 

extremely fast as it based on an explicit, closed form solution. The method can be viewed as a shallow 

autoencoder that employs a single hyperparameter to optimize item-item weights, which are then 

applied to fill out the missing entries of the input sparse matrix. Recently, Jeunen et al. extended the 

EASE algorithm to incorporate side-information encoded in the tag-item matrix [9,10]. 
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Here we show how the approaches in [7,9,10] can be adopted and further generalized to improve 

the ranking accuracy of recommender systems algorithms and particularly algorithms for biological 

relationship inference. To predict associations of elements from two biological domains ℒ1 (which 

can be thought of as the user domain) and ℒ2 (thought of as the item domain), we utilize homophily 

information in the form of pairwise similarities between elements of ℒ1  and pairwise similarities 

between elements of ℒ2. This technique is further extended to incorporate multiple other sources of 

information encoded in a heterogenous biological network. We show that our dual-regularized 

autoencoder, called DUET, yields more accurate classification scores when compared to both the 

EASE method and a state-of-the-art logistic matrix factorization technique.  

This paper is organized as follows. In section 2.1, we present a straightforward extension of the 

EASE method that computes and utilizes user-user weights. In section 2.2, we discuss a special form 

of the procedure given in [9,10], namely one capable of incorporating homophily information into the 

learning process. Section 2.3 presents a further generalization of methods in [7,9,10] that incorporates 

multiple sources of side information to better model relationships between elements of two biological 

domains. Finally, in the Results section, we demonstrate the benefits of our approach in the example 

settings of predicting drug-target and drug-disease associations.  

2  Methods 

2.1 Computing user-user weights 

To fill out the missing entries of a binary, sparse user-item interaction matrix 𝑋, the EASE algorithm 

learns the item-item weight matrix 𝐵 by solving  

min
𝐵

‖𝑋 − 𝑋𝐵‖𝐹
2 + 𝜆1‖𝐵‖𝐹

2     (1) 

       s.t. 𝑑𝑖𝑎𝑔(𝐵) = 0,  

where ‖ ‖𝐹
2   denotes the Frobenius norm, 𝑑𝑖𝑎𝑔(𝐵) is the vector of diagonal elements of 𝐵 and 𝜆1 is 

a trainable parameter. As noted in [7], the constraint 𝑑𝑖𝑎𝑔(𝐵) = 0 allows the model to generalize, 

giving rise to the completed user-item interaction matrix 𝑋𝐵.   

We note that the above approach does not take advantage of user-user weighs, although they can 

be easily learned by solving 

min
𝑈

‖𝑋 − 𝑈𝑋‖𝐹
2 + 𝜆2‖𝑈‖𝐹

2     (2)  

       𝑠. 𝑡.   𝑑𝑖𝑎𝑔(𝑈) = 0. 

Specifically, to solve (2) one can apply the procedure in [7] to the transpose of 𝑋. With both weight 

matrices 𝑈 and 𝐵  in place, the completed matrix of user-item interactions can be defined as a 

(weighted) average of 𝑈𝑋 and 𝑋𝐵. 

2.2 Utilizing homophily information 

A more accurate model can be designed in cases of available user-user and item-item similarity 

scores. For instance, in the setting of drug-target interaction prediction (drugs and proteins are here 

viewed as users and items, respectively), drug-drug similarities may be computed as Tanimoto scores 

(Jaccard indices) between drug feature vectors [11]. Protein-protein similarity scores may be defined 
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as the pairwise similarity scores between the protein amino-acid sequences, which can be computed 

using the Smith-Waterman [12] or similar algorithms. 

 

 

Fig. 1. Dual-regularized EASE algorithm (DUET) takes advantage of user-user (𝑈1) and item-item (𝐵1) 

similarity scores (where available) to better predict user-item associations. 
 

 

We recall that the original EASE method learns item-item weights 𝐵 solely based upon the user-item 

interactions. In contrast, our DUET method is capable of learning both, user-user and item-item 

weights (𝑈  and 𝐵 , respectively) based upon not only the user-item interactions, but also on the 

pairwise similarities of users, and the pairwise similarities of items (labelled 𝑈1  and 𝐵1  in Fig. 1, 

respectively). The actual algorithm is presented as part of a more general procedure in the next 

section. 

2.3 Utilizing multiple sources of side information 

While the underlying idea behind the DUET algorithm has been described and used in a different 

setting in [9,10], here we describe a generalization of the method in [9,10],  namely the one that takes 

account of other types of associations between users, items, and other relevant entities, as shown in 

Fig. 2. We note that the network in Fig. 1 is a special case of the network in Fig. 2, where 𝑚 = 𝑛 = 1, 

𝐽1 = 𝑈𝑠𝑒𝑟𝑠 (𝑈1 = pairwise similarities of users), and 𝐿1 = 𝐼𝑡𝑒𝑚𝑠 (𝐵1 = pairwise similarity of items). 

 

 

Fig. 2. Generalized DUET algorithm takes account of relationships between users and entities from multiple 

domains 𝐽1, … , 𝐽𝑚. It also takes account of relationships between items and entities from multiple related domains 

𝐿1, … , 𝐿𝑛. 

 

 

Specifically, given the heterogenous network in Fig. 2, we first optimize item-item weights 𝐵 by 

solving 

 

min
𝐵

‖𝑋 − 𝑋𝐵‖𝐹
2 + ∑ 𝛽𝑖‖𝐵𝑖 − 𝐵𝑖𝐵‖𝐹

2
𝑖 + 𝜆1‖𝐵‖𝐹

2    (3) 

     𝑠. 𝑡.  𝑑𝑖𝑎𝑔(𝐵) = 0, 
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where {𝐵𝑖}1
𝑛  are the input matrices representing associations between items and elements from 

multiple other domains {𝐿𝑖}𝑖=1
𝑛 . For example, in case where items represent movies, an example 

domain may consist of a set of movie festivals. A movie is “associated” with a festival if it won a 

festival’s award. Other biological examples are provided later in this article. 

We optimize user-user weights 𝑈 by solving  

min
𝑈

‖𝑋 − 𝑈𝑋‖𝐹
2 + ∑ 𝛾𝑖‖𝑈𝑖 − 𝑈𝑈𝑖‖𝐹

2
𝑖 + 𝜆2‖𝑈‖𝐹

2    (4) 

     𝑠. 𝑡.  𝑑𝑖𝑎𝑔(𝑈) = 0.  

where {𝑈𝑖}1
𝑚 are the sparse matrices representing associations of users and elements from multiple 

other domains {𝐽𝑖}𝑖=1
𝑚 .  

As in [7], a closed form solution of (3) can be obtained by minimizing the error function 

      𝐸 = ‖𝑋 − 𝑋𝐵‖𝐹
2 + ∑ 𝛽𝑖‖𝐵𝑖 − 𝐵𝑖𝐵‖𝐹

2
𝑖 + 𝜆1‖𝐵‖𝐹

2 +  2𝛾𝑇𝑑𝑖𝑎𝑔(𝐵),  (5) 

where 𝛾 = (𝛾1, … , 𝛾𝑛)
𝑇  are Lagrange multipliers and {𝛽𝑖}  and 𝜆1  are trainable parameters. Setting 

𝜕𝐸/𝜕𝐵 = 0 we have 

      (𝑋𝑇𝑋 + ∑ 𝛽𝑖𝐵𝑖
𝑇𝐵𝑖𝑖 + 𝜆1𝐼)𝐵 = 𝑋𝑇𝑋 + ∑ 𝛽𝑖𝐵𝑖

𝑇𝐵𝑖𝑖 −  𝑑𝑖𝑎𝑔𝑀𝑎𝑡(𝛾),  (6) 

where 𝑑𝑖𝑎𝑔𝑀𝑎𝑡(𝛾) is the diagonal matrix with the elements of 𝛾 on the main diagonal. Hence, 

       𝐵 = 𝑃(𝑃−1 − 𝜆1𝐼 − 𝑑𝑖𝑎𝑔𝑀𝑎𝑡(𝛾)),    (7) 

where 

             𝑃 = (𝑋𝑇𝑋 + ∑ 𝛽𝑖𝐵𝑖
𝑇𝐵𝑖𝑖 + 𝜆1𝐼)

−1.    (8) 

Following further the general approach in [7], 

           𝐵 = 𝐼 − 𝑃(𝜆1𝐼 + 𝑑𝑖𝑎𝑔𝑀𝑎𝑡(𝛾)),    (9) 

or equivalently 

𝐵 = 𝐼 − 𝑃 ∙ 𝑑𝑖𝑎𝑔𝑀𝑎𝑡(�̅�),                 (10) 

where  

          �̅� = 𝜆11⃗ + 𝛾,                 (11) 

and where 1⃗  is the vector of 1s. Since 𝑑𝑖𝑎𝑔(𝐵) = 0, it follows that  

  1⃗ − 𝑑𝑖𝑎𝑔(𝑃) ⊙ �̅� = 0,                 (12) 

and thus 

       �̅� = 1⃗ ⊘ 𝑑𝑖𝑎𝑔(𝑃),                 (13) 
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where ⊙ and ⊘ denote elementwise product and division, respectively. Substituting (13) into (10) we 

get 

       𝐵 = 𝐼 − 𝑃 ∙ 𝑑𝑖𝑎𝑔𝑀𝑎𝑡 (1⃗ ⊘ 𝑑𝑖𝑎𝑔(𝑃)).                    (14) 

In a similar way, we can compute user-user weights 𝑈 in (4) as 

        𝑈 = 𝐼 − 𝑑𝑖𝑎𝑔𝑀𝑎𝑡 (1⃗ ⊘ 𝑑𝑖𝑎𝑔(𝑄)) ∙ 𝑄,                (15) 

where  

𝑄 = (𝑋𝑋𝑇 + ∑ 𝛾𝑖𝑈𝑖𝑈𝑖
𝑇

𝑖 + 𝜆2𝐼)
−1,                (16) 

and where {𝛾𝑖} and 𝜆2 are trainable parameters. 

3 Results 

3.1 DrugBank benchmark 

We first assessed the added value of our method on the task of predicting drug-target interactions. Our 

experimental setup uses the DrugBank database consisting of 9,881 interactions between 1482 FDA-

approved drugs and 1408 target proteins [13]. Sparse interaction matrix 𝑋 and the matrices of protein-

protein (𝐵1) and drug-drug (𝑈1) similarity scores used in our benchmarking experiment are available 

at www.cs.uni.edu/~poleksic/drugbank_files.tar.gz. This experimental setup corresponds to the special 

case of biological network in Fig. 2, namely the one depicted in Fig. 1. 

To provide insight into the speed and accuracy of our algorithm, we compare it with the EASE 

method and the in-house logistic matrix factorization (MF) algorithm COSINE [4]. The COSINE 

method generalizes some popular matrix factorization algorithms [14,15] by utilizing weights on 

drug-target interactions. However, since drug-target interaction weights are not available in our test 

setting, the version of the COSINE algorithm benchmarked here is equivalent to the well-known 

NRLMF method described in [15]. In numerous studies published over the last decade, the logistic 

matrix factorization algorithms are shown to compare favorably to other state-of-the art methods for 

predicting drug-target interactions. 

 

 

Table 1. DrugBank benchmark 

 AUPR NDCG100 PREC50 PREC100 

MF0 0.483±0.002 0.988±0.004 0.991±0.005 0.985±0.004 

EASEd 0.451±0.002 0.989±0.006 0.995±0.006 0.987±0.006 

EASEt 0.487±0.003 0.987±0.015 0.976±0.008 0.967±0.003 

EASEdt 0.492±0.003 0.992±0.002 0.997±0.002 0.991±0.002 

MF 0.549±0.004 0.982±0.002 0.992±0.004 0.979±0.003 

DUET 0.580±0.002 0.997±0.001 1.000±0.000 0.997±0.001 
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Our benchmarking procedure uses three rounds of the classical 5-fold cross-validation (CV). In 

each CV round, the input drug-target association matrix 𝑋 is randomly split into 5 groups. Each group 

is used once as test data, while the remaining four groups represent training data.  The final 

classification scores (AUPR, NDCG100, PREC@50, and PREC@100) are computed by averaging the 

classification scores obtained across different CV rounds. 

Table 1 shows the performance of six different methods in the DrugBank benchmark after a 

thorough optimization of the methods’ parameters. The first four methods, namely MF0, EASEd, 

EASEt, and EASEdt do not utilize any drug-drug or target-target similarity information. Specifically, 

MF0 is the barebone logistic matrix factorization algorithm (as implemented in COSINE) that has no 

access to homophily information. EASEt denotes the original EASE method which learns and applies 

target-target weights to predict missing drug-target interaction probabilities while EASEd optimizes 

drug-drug weights (section 2.1). The EASEdt method combines the results of EASEt and EASEd by 

averaging their prediction scores, exactly as described in section 2.1. The MF method is the full-

blown matrix factorization algorithm that utilizes homophily information [4,15]. Finally, as 

previously noted, the DUET algorithm is simply EASEdt but guided by the input drug-drug and 

target-target similarity scores (as described in section 2.2 and shown in Fig. 1). 

As seen in Table 1, EASEdt significantly outperforms (t-test p-value less than 0.01) not only MF0 

but also both EASEt and EASEd, underlying the importance of computing and utilizing both drug-

drug and target-target weights for more accurate relationship inference. More importantly, the DUET 

method significantly outperforms all other algorithms across all classification metrics. The advantage 

of DUET over EASEdt emphasizes the importance of utilizing side information from both drugs and 

targets in predicting drug-target associations. 

3.2 Drug repurposing benchmark 

In our second benchmark, we assessed the accuracy of the DUET algorithm in predicting drug-disease 

associations from a small drug-gene-disease network. This network is shown in Fig. 3 and is a part of 

the more comprehensive biological network called Hetionet [16, 17]. It can be thought of as a special 

case of the graph shown in Fig. 2 (Users = Compounds, Items = Diseases, 𝑋 = Compound-treats-

Disease, 𝐽1 = 𝐿1  = Genes, 𝑈1=Compound-binds-Gene, 𝐵1=Disease-associates-Gene). The files used 

in our test can be downloaded at www.cs.uni.edu/~poleksic/hetionet_files.tar.gz. 

 

 
Fig. 3. Drug-gene-disease network. 

 

Just like the drug-target interaction benchmark, our drug-disease benchmark uses three rounds of 

5-fold cross validation to assess the prediction accuracy of three methods: EASE, MF, and DUET. 

The EASE method is equivalent to the previously described EASEdt algorithm (section 3.1). For 
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improved accuracy, the MF algorithm tested here is given side information in terms of compound-

compound similarity scores and disease-disease similarity scores. The similarity of two compounds is 

defined as the Jaccard similarity [11] of their (binary) gene profiles, where the gene profile of a 

compound is simply a binary vector in which a 1 represents a known gene-target interaction. The 

same approach is used to define and quantify pairwise similarities of diseases.  

As seen in Table 2, the neighborhood-regularized matrix factorization compares favorably to the 

bare-bone EASE algorithm. This is somewhat expected since the latter method can only access sparse 

data on the compound-disease associations. However, the DUET algorithm has a significant 

advantage over both methods across all four different classification metrics employed in our 

benchmark (t-test p-value less than 0.01). 

 

 

Table 2. Drug repurposing benchmark 

 AUPR NDCG100 PREC50 PREC100 

EASE 0.287±0.021 0.530±0.022 0.627±0.020 0.451±0.007 

MF 0.371±0.008 0.567±0.013 0.652±0.024 0.503±0.009 

DUET 0.400±0.003 0.609±0.004 0.696±0.007 0.544±0.003 

 

3.3 Speed advantage 

DUET has the speed comparable to EASE which is significantly faster than algorithms based on 

matrix factorization. Fig. 4 shows the speed comparison between the MATLAB implementations of 

MF and DUET in completing a single DrugBank interaction matrix (with all hyperparameters held 

fixed). The speed analysis was carried out on a Ubuntu 22.04 system with 11th Gen Intel(R) 

Core(TM) i9-11950H @ 2.60GHz CPU and 32GB of RAM.  

 

 

 

 
Fig 4. Speed comparison: DUET vs. matrix 

factorization. 

 

 

The speed advantage of the DUET method is further pronounced in cases where the methods’ 

hyperparameters need to be fine-tuned for optimal performance. This is because MF employs at least 

eight of those parameters including latent dimension, number of iterations, learning rate, etc. In 
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contrast, DUET has only three parameters, namely the regularization parameter 𝜆1 = 𝜆2  and the 

parameters 𝛽1 and 𝛾1 that quantify the role of side information in the learning process (section 2.3). 

4 Conclusion 

We present a generalized linear model for sparse matrix completion. Specifically, we show how the 

recently proposed shallow autoencoder can utilize multiple sources of side information to increase its 

ranking accuracy. Our DUET algorithm compares favorably in speed and accuracy to the widely used 

state-of-the art methods for predicting drug-target interactions and drug-disease associations. Further 

improvements can be obtained by utilizing more diverse sources of side information. In predicting 

drug-disease associations, for instance, those sources can include adverse reactions of drugs, drug 

pharmacologic classes, disease locations, and disease symptoms, to name a few. 
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