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Abstract

This paper introduces, philosophically and to a degree formally, the novel concept of learn-
ing ex nihilo, intended (obviously) to be analogous to the concept of creation ex nihilo.
Learning ex nihilo is an agent’s learning “from nothing”, by the suitable employment
of inference schemata for deductive and inductive reasoning. This reasoning must be
in machine-verifiable accord with a formal proof/argument theory in a cognitive calculus
(i.e., here, roughly, an intensional higher-order multi-operator quantified logic), and this
reasoning is applied to percepts received by the agent, in the context of both some prior
knowledge, and some prior and current interests. Learning ex nihilo is a challenge to con-
temporary forms of ML, indeed a severe one, but the challenge is here offered in the spirit
of seeking to stimulate attempts, on the part of non-logicist ML researchers and engineers,
to collaborate with those in possession of learning-ex nihilo frameworks, and eventually
attempts to integrate directly with such frameworks at the implementation level. Such
integration will require, among other things, the symbiotic interoperation of state-of-the-
art automated reasoners and high-expressivity planners, with statistical/connectionist ML
technology.

1 Introduction

This paper introduces, philosophically and to a degree logico-mathematically, the novel con-
cept of learning ex nihilo, intended (obviously) to be analogous to the concept of creation ex
nihilo.1 Learning ex nihilo is an agent’s learning “from nothing,” by the suitable employment
of inference schemata for deductive and inductive2 (e.g., analogical, enumerative-inductive, ab-
ductive, etc.) reasoning. This reasoning must be in machine-verifiable accord with a formal

1No such assumption as that creation ex nihilo is real or even formally respectable is made or needed in the
present paper. The concept of creation ex nihilo is simply for us an intellectual inspiration — but as a matter of
fact, the literature on it in analytic philosophy does provide some surprisingly rigorous accounts. In the present
draft of the present paper, we don’t seek to mine these accounts.

2Not to be confused with inductive logic programming (about which more will be said later), or inductive
deductive techniques and schemas (e.g. mathematical induction, the induction schema in Peano Arithmetic,
etc.). As we explain later, learning ex nihilo is in part powered by non-deductive inference schemata seen in
inductive logic. An introductory overview of inductive logic is provided in [39].
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proof/argument theory in a cognitive calculus, and this reasoning is applied to percepts re-
ceived by the agent, in the context of both some prior knowledge, and some prior and current
interests. While cognitive calculi are characterized later at more length in Appendices A & B,
at this point we can say that, provisionally, cognitive calculi include inferential components of
intensional higher-order multi-operator quantified logics, in which expressivity far outstrips off-
the-shelf modal logics and possible-worlds semantics is left aside in favor of fully proof-theoretic
semantics. A number of such calculi have been introduced as bases for AI that is unrelated to
learning; e.g. see [32], where the application area is AI ethics. The very first cognitive calculus,
a purely deductive one, replete with a corresponding implementation in ML, was introduced in
[2].

Learning ex nihilo is a challenge to contemporary forms of ML, indeed a severe one, because
contemporary ML, for example “deep learning,” which is based on (thoroughly non-declarative)
artificial neural networks (ANNs), fails to provide any proofs or formal arguments that certify
that learning of something has taken place. (As explained in [12], what is called there “real
learning” (RL) requires that the agent that has learned X via RL must be able to answer
queries about X, and prove or at least justify by rigorous argumentation that the answers to
these queries in fact hold.) However, the challenge to ML issued by the presentation herein of
learning ex nihilo is offered in the spirit of seeking to stimulate attempts, on the part of non-
logicist ML researchers and engineers, to collaborate with those in possession of learning ex
nihilo frameworks, and to integrate directly with such frameworks at the implementation level
[such spirit is in line with 9]. Such integration will require, among other things, the symbiotic use
of state-of-the-art automated reasoners (such as ShadowReasoner [33], the particular reasoner
that for us powers learning ex nihilo) with statistical/connectionist ML technology.

The plan for the paper is as follows: To start, §2 offers a rather mundane parable in which an
ordinary human Robert learns ex nihilo. Next, we explain that learning ex nihilo is ubiquitous
in human life (§3). In §4 we point out that learning ex nihilo produces in the agent that employs
it knowledge, specifically propositional or knowing-that knowledge (versus knowing-how which is
what statistical/connectionist ML can be viewed as producing in ANN-based artificial agents).
Given that the new form of learning we introduce herein is intended to yield propositional
knowledge, it’s incumbent upon us to defend this conception of knowledge against the famous
and seemingly fatal Gettier counter-examples; we do so in §5. Next, we quickly summarize
the logico-mathematics of learning ex nihilo (§6). We then briefly explain how we can bring
the formal elements of learning ex nihilo to concrete life with automated-reasoning technology
(§7). The following section, 8, is devoted to anticipating and rebutting a series of objections.
The paper proper ends with the obligatory discussion of next steps, and then follows two
appendices (A, in which a fuller account of what a cognitive calculus is is provided; and B, in
which a particular cognitive calculus is presented in synoptic form).

2 A Real-Life Parable

Let’s now consider a scenario of a type that routinely happens in real life.3 Consider Robert,
a person of the human variety4 who has just arrived for a black-tie dinner party at a massive

3Both this parable, and the next (§3), are based directly on the actual experiences of one of the authors of
the present paper, for what it’s worth.

4The concept of personhood is a mental one that guides us. Personhood rides well above such merely
biological categories as Homo sapiens sapiens, and for us is the target of and yardstick for measuring success in
AI (and, for that matter, computational cognitive science). In this regard, we are not alone; note e.g. that in
a dash of insight and eloquence, Charniak & McDermott [17] declare that “the ultimate goal of AI is to build
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and manicured stone mansion to which he has never been, hosted by a couple (who have told
him they own the home) he has never met, and is soon seated at an elegant table, every seat
of which is occupied by a diner Robert is now meeting for the very first time.5 A thin, tall,
crystal glass of his (arrayed among three others, each of a different shape, that are his as well)
is gradually filled with liquid poured from a bottle that he notices carries the words ‘Louis
Roederer,’ which have no particular meaning for him; as the pour unfolds, Robert notices tiny
bubbles in the liquid in his glass, and the white-tuxedoed server says, “Your apertif, sir.” At
this point, Robert is in position to learn an infinite number of propositions ex nihilo. He has
received no large dataset, and the only direct communication with him has been composed
solely of rather empty pleasantries and the one perfunctory declaration that he has been served
an apertif. Yet as Robert takes his first (stunning) sip of what he has already learned ex nihilo
is expensive Champagne,6 and as he glances at the other five guests seated at the table, he is
poised to learn ex nihilo without bound. How much new knowledge he acquires is simply a
function of how much time and energy he is willing and able to devote to the form of learning
in question. As his water glass is filled, first with a wafer-thin slice of lemon dropped in deftly
with silver tongs, and then with the water itself, he gets started:

For example, Robert now knows that his hosts find acceptable his belief that they are quite
wealthy. [They may not in fact be wealthy (for any number of reasons), but they know that
Robert’s perceiving what they have enabled him to perceive will lead to a belief on his part
that they are wealthy, and Robert knows that they know this.] Robert now also knows that
the menu, on the wine side, includes at least two additional options, since otherwise his array
of empty glasses wouldn’t number three, one of which he knows is for water. . . .

3 Learning Ex Nihilo is Ubiquitous: A Second Parable

Of course, where there is one parable, countless others can be found: Herman isn’t the black-tie
kind of person. Given a choice between the dinner Robert had versus one under the stars in
the wilderness, prepared on an open fire, Herman will take the latter, every time. Having just
finished such a meal, Herman is now supine beside the fire, alone, many miles from civilization
in the vast Adirondack Park, on a very chilly but crystal-clear summer evening. Looking up
at the heavens, he gets to thinking — and specifically gets to learning (ex nihilo, of course).
Herman knows next to nothing about astronomy. He sees a light traveling smoothly, steadily,
and quickly across his field of vision. Herman asks himself: What is this thing? He hears no
associated sound. He isn’t inclined to take seriously that this is an alien spacecraft — unless
what he is seeing is a total anomaly. “Is it?” he asks himself. He waits and looks. There is
another, but this one is a much smaller light. This seems routine, but if so, and if this is a UFO,
the papers would routinely be filled with UFO “sightings,” and so on; but they aren’t. So, no,
not a UFO. The larger light, he next notes, is traveling too quickly to be a jet at high altitude,
and in the dark like this, no light pollution whatsoever, jets at high altitude are hard to see.
Herman notes that the object, as it moves, blocks out his view of stars behind it. Ah! Herman

a person” (p. 7) — from which we can deduce that personhood is in no way inseparably bound up with the
particular carbon-based human case. The logico-computational modeling, in computational cognitive science,
of reasoning at the level of persons, crucial for learning ex nihilo, along with a synoptic account of personhood
itself, is provided in [13].

5Robert does know himself (and in fact self-knowledge is essential for learning ex nihilo), but, again, he
doesn’t know any of the other diners.

6Robert perceives that his beverage is sparkling wine, that it’s likely quite dear, and knows enough about
both the main countries that produce such a thing (viz. USA, Spain, France, and Italy), and linguistics, to
reason to the belief that his beverage’s origin is French, and hence that it’s Champagne.
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now knows that he has just seen two satellites in orbit, and with this knowledge now obtained,
before the night is out he will see two more. But why the amazing apparent size of the satellite
he first saw? Herman surmises that it must be the international space station, which, it stands
to reason, is quite large relative to unmanned satellites for communication, etc. Herman never
knew that you could just lay down under these conditions and see satellites; he also never knew
that there are a lot of satellites up there, going around Earth, but he reasons that since his
point of view is from one particular spot on the surface of Earth, it is likely to be representative
of any number of other locations, and hence there must be many of these satellites in orbit.
Herman has now come to learn many things, and the night is still young.

Robert and Herman are at the tip of an infinite iceberg of cases in which agents learn ex
nihilo, both in rather mundane fashion at fancy dinners and campfire dinners, and in the more
exotic cases seen in fiction (witness e.g. the eerie ability of Sherlock Holmes to quickly learn
ex nihilo myriad things when meeting people for the first time, a recurring and prominent
phenomena in PBS’ Sherlock7). Moreover, it turns out that learning ex nihilo is not only
ubiquitous, but is also — upon empirical investigation — a very powerful way to learn in the
academic sphere, where forcing oneself to be interested enough to ask oneself questions, and
then attempt to reason to their answers, can pay demonstrable academic dividends [18, 64].

4 Learning Ex Nihilo Produces Knowledge

Please note that while it may seem to the reader that learning ex nihilo is rather relaxed, free-
wheeling, and epistemically risky, the fact is that we have very high standards for declaring
some process, whether implemented in a person or a machine, to be learning. Put with brutal
simplicity here, genuine learning of φ by an agent, for us, must result in the acquisition of
knowledge by the agent, and knowledge in turn consists in the holding of three conditions, to
wit: (1) the agent must believe that φ holds; (2) must have cogent, expressible, surveyable
justification for this belief; and (3) φ must in fact hold.8 This trio constitute the doctrine that
knowledge consists of justified true belief; we shall abbreviate this doctrine as ‘k=jtb’. By
k=jtb, which reaches back at least to Plato, most of what is called “learning” in AI today (e.g.
the aforementioned so-called “deep learning”) is nothing of the sort.9 But in the case of our
Robert and Herman, conditions (1)–(3) obtain with respect to all the new knowledge we have
ascribed to them, and this would clearly continue to be true even if we added ad infinitum
propositions that they can come to learn ex nihilo, stationary physically, but moving mentally.
Unfortunately, k=jtb has come under considerable fire, something we now proceed to deal with.

5 Learning Ex Nihilo Includes Novel Solution to the Vex-
ing Gettier Problem

Since Plato it was firmly held by nearly all those who thought about the nature of human
knowledge that k=jtb — until the sudden, seismic publication of [29], which appeared to

7In the very first episode of Season 1, “A Study in Pink,” Watson, who at this point doesn’t know Sherlock,
imprudently classifies Sherlock as an “amateur”, and in response Sherlock recounts in rapid-fire a long chain of
reasoning (deductive, abductive, and analogical) that has enabled him to come to know many, many things. A
stupefied Watson thus comes to know that Sherlock is no amateur.

8Note that it’s knowledge of this genuine sort that’s needed to be human-level intelligent, for see the “cog-
nitive skills” listed and analyzed in [27].

9For an argument, with which at least the first two authors are very sympathetic, that contemporary
“machine learning” fails to produce knowledge for the agent that machine-“learns,” see [12].
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feature clear examples in which jtb holds, but not k. It would be quite fair to say that since
the advent of Gettier’s piece, to this very day, defenders of k=jtb have been rather stymied;
indeed, it wouldn’t be unfair to say that not only such defenders, but in fact all formally inclined
epistemologists, have since the advent of Gettier-style counter-examples been scurrying and
scrambling about, trying to pick up the pieces and somehow build up again a sturdy edifice.
Our account of learning ex nihilo includes a formal-and-computational solution to the Gettier
problem, which in turn allows AIs built with our automated-reasoning technology (described
below) to acquire knowledge in accord with k=jtb. But first, what is the Gettier problem?

Gettier [29] presents a scenario in which Smith has “strong evidence” for the proposition

f Jones owns a Ford.

The evidence in question, Gettier informs us, includes that “Jones has at all times in the past
within Smith’s memory owned a car, and always a Ford, and that Jones has just offered Smith
a ride while driving a Ford.” In addition, Smith has another friend, Brown, whose whereabouts
are utterly unknown to Smith. Smith randomly picks three toponyms and “constructs the
following three propositions.”

g Either Jones owns a Ford, or Brown is in Boston.

h Either Jones owns a Ford, or Brown is in Barcelona.

i Either Jones owns a Ford, or Brown is in Brest-Litovsk.

Of course, {f} ` g, {f} ` h, {f} ` i.10 “Imagine,” Gettier tells us, “that Smith realized
the entailment of each of these propositions he has constructed by” f , and on that basis is
“completely justified in believing each of these three propositions.” Two further facts in the
scenario yield the apparent counter-example, to wit: Jones doesn’t own a Ford, and is currently
driving a rented car; and, in a complete coincidence, Brown is in fact in Barcelona. Gettier
claims, and certainly appears to be entirely correct in doing so, that Jones doesn’t know h, yet
h is true, Smith believes h, and Smith is justified in believing h — which is to say that jtb

appears to be clearly instantiated!
Learning ex nihilo includes an escape from Gettier: Encapsulated to a brutal degree here,

we gladly allow that the characters like Smith in Gettier’s [29] cases do have knowledge on
the basis of a k=jtb-style account, but the knowledge in question can be cast at any number
of six levels, ranging from 1 (more likely than not), the weakest, to 6 (certain) the strongest.
Specifically, we hold that Smith knows at a level of 1, because belief in these cases is itself
at a strength level of 1, and that’s because the argument serving as justification for belief in
these cases only supports belief at that level. To our knowledge, this proposed solution to
the counter-examples in question is new, though there are echoes of it in [19].11 An AI-ready
inductive logic that allows Gettier to be surmounted in this fashion is presented in [31].

10We are here by the single turnstyle of course denoting some standard provability relation in a standard,
elementary extensional collection of inference schemata, such as that seen in first-order logic = L1, a familiar
logical system discussed below. The disjunction is of course inclusive.

11Echoes only. Chisholm’s main moves are flatly inconsistent with ours. E.g., his definition of the longstanding
jtb-based concept of knowledge includes not merely that the agent is justified in believing φ, but the stipulation
that φ is evident for the agent [19, p. 102]. In our multi-valued inductive scheme, evident is level 5, and is
reserved for propositions believed on the basis of direct perception, e.g. your belief when at your desk that there
is a book in the room with you. And Chisholm’s modifications of the j condition in the jtb triad are internalist,
whereas ours are externalist, inhering as they do in formal structures and methods. Somewhat amazingly, the
learning-ex nihilo diagnosis and resolution of Gettier cases is assumed in the literature to be non-existent. E.g.,
here is what’s said about Gettier cases in what is supposed to be the non-controversial and comprehensive SEP:
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6 On Logico-Mathematics of Learning ex Nihilo

Is there a logico-mathematics of learning ex nihilo? If so, what is it, at least in broad strokes?
The answer to the first of these questions is a resounding affirmative — but in the present
paper, intended to serve as primarily an introduction to a new form of human learning driven
by reasoning, and concomitantly as a challenge to learning-focused AI researchers (incl. and
perhaps esp. those in AI who pursue machine learning in the absence of reasoning carried out
in confirmable conformity with declarative inference schemata), the reader is accordingly asked
to be willing to rest content (at least provisionally) with but an encapsulation of the logico-
mathematics in question, and references (beyond those in the previous §) to prior work upon
which the formal theory of learning ex nihilo is based. This should be appropriate, given that
via the present paper we seek to place before the community a chiefly philosophical introduc-
tion to learning ex nihilo. We present the core of the relevant logico-mathematics, starting with
the next paragraph. Our presentation presumes at least some familiarity with formal compu-
tational logic (both extensional and intensional12) and late 20th- and 21st-century automated
deduction/theorem proving. (Learning ex nihilo is, as we shall soon see, explicitly based upon
automated reasoning that is non-deductive as well, but automated non-deductive reasoning is
something we can’t expect readers to be familiar with.) For readers in the field of AI who are
strong in statistical/connectionist ML, and/or reinforcement learning and Bayesian approach-
es/reasoning, but weak in formal computational logic, in either or both of its deductive and
inductive forms, we recommend [7, 32], and then working backwards through readily available
textbooks and papers cited in this earlier IJCAI-venue work, and in the next two sub-sections.

6.1 Logical Systems and Learning Ex Nihilo

The concept of a logical system, prominent in the major result known as Lindström’s Theorem,13

provides a detailed and rigorous way to treat logics abstractly and efficiently, so that e.g. we can
examine and (at least sometimes) determine the key attributes that these logics have, relative
to their expressive power. In keeping with this theorem, we take a logical system L to be a
triple

〈L, I,S〉

Epistemologists who think that the JTB approach is basically on the right track must choose
between two different strategies for solving the Gettier problem. The first is to strengthen the
justification condition to rule out Gettier cases as cases of justified belief. This was attempted by
Roderick Chisholm;12 . . . The other is to amend the JTB analysis with a suitable fourth condition,
a condition that succeeds in preventing justified true belief from being “gettiered.” Thus amended,
the JTB analysis becomes a JTB+X account of knowledge, where the ‘X’ stands for the needed
fourth condition. [37, §3, “The Gettier Problem”]

Yet the learning ex nihilo-solution, while retaining the jtb kernel, is based on neither of these two different
strategies.

12Roughly, extensional logic invariably assigns a semantic value to formulae in a purely compositional way,
and is ideal for formalizing mathematics itself; this is why the logical systems traditionally used in mathematical
logic are such things as first-order and second-order logic. Such logical systems, in their elementary forms, are
of course covered in the main AI textbooks of today, e.g. [59, 47]. In stark contrast, the meaning of a formula φ
in an intensional logic can’t be computed or otherwise obtained from it and what it’s composed of. For a simple
example, if φ is ψ → δ, and we’re in (extensional) zeroth-order logic (in which → is the material conditional),
and we know that ψ is false, then we know immediately that φ is true. But if φ is instead Baψ, where B is
an agent-indexed belief operator in epistemic logic, and ψ is what agent a believes, the falsity of ψ doesn’t at
all guarantee any truth-value for Baψ. Here, the belief operator is an intensional operator, and is likely to
specifically be a modal operator in some modal logic.

13Elegantly covered in [23].
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whose elements are, in turn, a formally specified language L (which would customarily be
organized in ways that are familiar in programming languages; e.g. types would be specified);
an inference theory I (which would be a proof theory in the deductive case, an argument
theory in the inductive case, and best called an inference theory when inference schemata from
both categories are mixed) that allows for precise and machine-checkable proofs/arguments,
composed of inference schemata; and some sort of semantics S by which the meaning of formulae
in L are to be interpreted. (As explained in Appendix A, in a cognitive calculus semantical
conditions are folded into inference schemata.)

Each of the elements of the abstract triple that individuates a given logical system can be
vast and highly nuanced, and perhaps even a substantive part of a branch of formal logic in its
own right. For example, where the logical system is standard first-order logic L1, S will include
all of established model theory for first-order logic. Lindström’s Theorem tells us (roughly) that
any movement to an extensional logical system whose expressive power is beyond L1 will lack
certain meta-attributes that many consider desirable. For instance, (standard) second-order
logic L2 isn’t complete, whereas L1 is. Despite this, some AI researchers work productively
with higher-order extensional logics.14

For learning ex nihilo, the most important element in the triple that makes for a logical
system is I, which can be viewed as a set of inference schemata.15 The reason is that learning
ex nihilo is based on reasoning in which each inference is sanctioned by some I ∈ I, and on
the automation of this reasoning, including when the inference schemata are non-deductive. In
computer science and AI, a considerable number of people are familiar with automated deductive
reasoners; after all, Prolog is based on automated deductive reasoning, using only one inference
schema (resolution), involving formulae in a fragment of L1. Learning ex nihilo, in contrast,
is based on automated reasoning over any inference schemata — not only deductive ones, but
inductive ones, e.g. ones that regiment analogical reasoning, abductive reasoning, enumerative
inductive reasoning, and so on.16 All the reasoning patterns seen in inductive logic, in their
formal expressions, are possible as inference schemata employed in learning ex nihilo.17 This
means that an inference schema is of the form

Condition(s)

Conclusion(s)
I

where both “top” and “bottom” can be built from any formal declarative statements pertaining
to formulae that are seen in formal logic, period. There are no restrictions even on the mixing

14E.g. the formal verification of Gödel’s famous ontological argument for God’s existence, an argument that
employs L3, has been verified by AI researchers; see e.g. [6].

15For simple logical systems, the phrase ‘inference rules’ is often used instead of the more accurate ‘inference
schemata,’ and in fact there is a tradition in places of using the former. Because even an individual inference
schema can be quite complex, and can involve meta-logical constructs and computation, talk of schemata is
more accurate. For instance, a common inference schema in so-called natural deduction is

φ(a), where a is a constant in formula φ
∃xφ(x)

but all sorts of further restrictions can be (and sometimes are) placed on φ(a), such as that it must be a ∆0

formula. As such things grow more elaborate, it quickly makes precious little sense to call them “rules,” and
besides which many think of them as programs.

16When automated reasoning ranges as generally as this, the first author maintains that all of computer
science can be captured in formal logic; see [14].

17For a particular example of formal, automated reasoning that blends deduction with analogical reasoning,
see [43]. For a readable overview of inference patterns in inductive logic that we formalize and automate, see
[39].
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of object-level formal logic with formal meta-logic or meta-meta-logic. For instance, to convey
the extreme openness of inference schemata for learning ex nihilo and cognitive calculi, consider
that the following is a perfectly acceptable inference schema that sanctions inferring a simple
atomic formula expressed in the language of first-order axiomatic (ZF) set theory, where ‘a’
denotes a particular set, and the condition in this case says that the cardinality of a equals that
of the natural numbers:

card(a) = card(N)

Big(a)
I′

6.2 From Logical Systems to Cognitive Calculi

Because learning ex nihilo frequently involves the mental states of other agents (as seen e.g.
in the parable regarding Robert, where iterated epistemic operators played a role), we — as
announced above — employ a novel class of logical systems called cognitive calculi, and they
form part of the singular basis of this new kind of learning. A cognitive calculus, put simply, is
a logical system in which L includes intensional operators (e.g. for such things as belief, desire,
intention, emotional states, communication, perception, and attention); I includes at least one
inference schema that involves such operators; and the meaning of formulae, determined by some
particular S, because they can in their expressive power far outstrip any standard, off-the-shelf
semantics (such as possible-worlds semantics), is generally proof-theoretic in nature. A more
detailed account of cognitive calculi is given in Appendix A, and some detailed information
about a particular one in Appendix B.

6.3 The Learning Ex Nihilo Loop

Learning ex nihilo happens when an agent loops through time as follows (put in broad strokes):
Identify Interest/Goal ⇒ Query ⇒ Discover Argument/Proof to Answer Query⇒ Learn ⇒
Identify Interest/Goal, etc. This cycle is at work in the two parables with which we began.
We do not have space to detail this process. In particular, the management of the agent’s
interests (or goals) requires planning — but the emphasis in the present paper, for economy, is
on reasoning. Below we do discuss not only the AI technology that brings this loop to life, but
some simulation of the process in our earlier parables.

7 The Automation of Learning Ex Nihilo

But how do we pass from the abstract logico-mathematics of learning ex nihilo to an artificial
agent that can bring such a thing to life? The answer should be quite obvious, in general: We
build an AI that can find the arguments that undergird the knowledge obtained by learning ex
nihilo. In turn, this means that we need an automated reasoner of sufficient power and reach
that can pursue epistemic interests, and a planner that can at least manage (e.g. prioritize)
interests. This brings us to the following progression, in which we now briefly describe one such
reasoner (ShadowReasoner), and then give an illustrative simulation made possible by this AI
technology.

7.1 Automated Reasoner: ShadowReasoner

A large amount of research and engineering has gone into building first-order theorem provers
in the last few decades. ShadowReasoner leverages this progress by splitting any logic into a
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first-order core and the “remainder,” and then calls a first-order theorem prover when needed.
Briefly, ShadowReasoner partitions the inference schemata for a given L ≡ 〈L, I,S〉 into two
parts I1 and I>1. The first part I1 consists of inference schemata that can be carried out by a
first-order theorem prover when the input expressions are shadowed down into first-order logic.
The second part consists of inference schemata that cannot be reduced to first-order reasoning.
Given any problem in a logic, ShadowReasoner alternates between trying out I>1 and calling
a first-order theorem prover to handle I1.

The core algorithm for ShadowReasoner has a theoretical justification based on the follow-
ing theorem (which arises from the fact that first-order logic can be used to simulate Turing
machines [8]):

Theorem 1

Given a collection of Turing-decidable inference schemata I, for every inference Γ `I φ, there is a corre-
sponding first-order inference Γ′ ` φ′.

We illustrate how ShadowReasoner works in the context of a first-order modal logic employed
in [32]. Please note though there are some extant first-order modal-logic theorem provers, built
upon reductions to first-order theorem provers, they have some deficiencies. Such theorem
provers achieve their reduction to first-order logic via two methods. In the first method, modal
operators are represented by first-order predicates. This approach is computationally fast but
can quickly lead to well-known inconsistencies, as demonstrated in [11]. In the second method,
the entire proof theory is implemented in first-order logic, and the reasoning is carried out
within first-order logic. Here, the first-order theorem prover simply functions as a programming
system. The second method, while accurate, can be excruciatingly slow.

ShadowReasoner uses the different approach alluded to above — one in which it alternates
between calling a first-order theorem prover and applying non-first-order inference schemata.
When we call the first-order prover, all non-first-order expressions are converted into propo-
sitional atoms (i.e., shadowing) to prevent substitution into non-first-order contexts, as such
substitutions lead to inconsistencies [11]. This approach achieves speed without sacrificing
consistency. The algorithm is briefly described below.

First we define the syntactic operation of atomizing a formula, denoted by A. Given any
arbitrary formula φ, A[φ] is a unique atomic (propositional) symbol. Next, we define the level
of a formula: level : L → N.

level(φ) =


0;φ is purely propositional formulae; e.g. Rainy

1;φ has first-order predicates or quantifiers e.g. Sleepy(jack)

2;φ has modal formulae e.g. K(a, t,Sleepy(jack))

Given the above definition, we can define the operation of shadowing a formula to a level:

Shadowing

To shadow a formula χ to a level l, replace all sub-formulae χ′ in χ such that level(χ′) > l with A[χ′]
simultaneously. We denote this by S[φ, l].

For a set Γ, the operation of shadowing all members in the set is simply denoted by S[Γ, l].

Assume we have access to a first-order prover PF . For a set of pure first-order formulae Γ and
a first-order φ, PF (Γ, φ) gives us a proof for Γ `I1 φ if such a first-order proof exists; otherwise
PF returns NO.

9
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Input: Input Formulae Γ, Goal Formula φ
Output: A proof of Γ `I φ if such a proof exists, otherwise fail
initialization;
while goal not reached do

answer = PF (S[Γ, 1],S[φ, 1]);
if answer 6= NO then

return answer ;

else
Γ′ ←− expand Γ by using any applicable I>1;
if Γ′ = Γ then

/* The input cannot be expanded further */

return fail
else

set Γ←− Γ′

end

end

end

Algorithm 1: ShadowReasoner Core Algorithm

7.2 Illustrative Simulation

Figures 1 and 2 illustrate the dinner-party parable simulated in the deontic cognitive event
calculus (DCEC) using ShadowReasoner within the hypergraphical argument-construction sys-
tem HyperSlate R©; see [16] for a similar, indeed ancestral, but less intelligent, hypergraphical
system. See Appendix B for a description of syntax and inference schemata of DCEC. Figure 1
simulates in pure first-order logic Robert’s learning that his drink is an aperitif. Figure 2 is
a proof in a cognitive calculus, viz. the one described in [32], of Robert learning the following
propositions: “Robert believes that his host is wealthy”, “The host believes Robert believes that
his host is wealthy”, and “Robert believes that his host believes Robert believes that his host is
wealthy.”18 The figures illustrate first-order and cognitive-calculus reasoners (shown as FOL `
and CC `, resp.) being employed to derive these statements. Automated discovery of the proofs
in 1 took ∼ 0.1(ms), and the proofs in 2 took ∼ 0.9(s).

8 Objections, Rebuttals

We now anticipate and rebut six objections likely to come from skeptics, including specifically
those immersed in forms of learning far removed from any notion of machine-verifiable proof or
argument enabled by inference schemata.

8.1 Objection 1: This isn’t learning from nothing !

The first objection is that ‘learning ex nihilo’ is a misnomer. The rationale for this complaint
is simply the reporting of an observation that should be clear to all: viz. that the learning in
question undeniably makes use of pre-existing stuff; hence we’re not literally dealing with learn-
ing from nothing. In the parable of the dinner party, e.g., Robert has brought his pre-existing
command of elementary arithmetic to the table; ditto for much other pre-known propositional
content. So how then is it fair to speak of learning ex nihilo? It’s fair because obviously learn-
ing ex nihilo trades on the pre-existing concept of creation ex nihilo, and that millennia-old
conception allows that the Almighty (by definition!) was around before the creation in question

18With background information ti < tj if i < j.
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assume

premise 1  holds(t , has(Robert, drink))
from {premise 1}

1

assume

premise 2  happens(pointsTo(server, drink), t )
from {premise 2}

2

assume

premise 3  happens(utters(server, aperitif), t )
from {premise 3}

2

assume

AXIOM 1  ∀ a,obj,phrase (happens(pointsTo(a, obj), t ) ∧ happens(utters(a, phrase), t )) ⇒ (name(obj) = phrase)
from {AXIOM 1}

2 2

assume

AXIOM 2  ∀ obj,phrase (name(obj) = phrase) ⇒ (obj = objectNamed(phrase))
from {AXIOM 2}

FOL ⊢ (Oracle)

goal  holds(t , has(Robert, objectNamed(aperitif)))
from {premise 1,premise 2,premise 3,AXIOM 1,AXIOM 2}

1

Figure 1: Dinner Party Example Part 1. (The proof here is in the HyperSlate R© system (Pat.
Pend.) published by Motalen in it’s Logic: A Modern Approach (LAMA) R© paradigm. See
www.logicamodernapproach.com.)

assume

Premise 2  C(t , P(robert, t , happens(display(wealth, host), t )))
from {Premise 2}

0 0 0

assume

Premise 1  C(t , ∀ a,t happens(display(wealth, a), t) ⇒ holds(wealthy(a), t))
from {Premise 1}

0

CC ⊢

G1  B(robert, t , holds(wealthy(host), t ))
from {Premise 2,Premise 1}

1 0CC ⊢

G2  B(host, t , B(robert, t , holds(wealthy(host), t )))
from {Premise 2,Premise 1}

2 1 0CC ⊢

G3  B(robert, t , B(host, t , B(robert, t , holds(wealthy(host), t ))))
from {Premise 2,Premise 1}

3 2 1 0

Figure 2: Dinner Party Example Part 2. (The proof here, like its predecessor, is in the
HyperSlate R© system (Pat. Pend.) published by Motalen in it’s Logic: A Modern Approach
(LAMA) R© paradigm. See www.logicamodernapproach.com.)

occurred. And of course this is just one part of pre-creation stuff in creation ex nihilo: God
presumably needed to have a mental concept of a planet to create a planet. We generally
suspect that learning ex nihilo begins to kick into “high gear” in the human sphere when chil-
dren are sophisticated enough to exploit their prior knowledge of content that requires, for its
underlying representation, L1 and basic modal logic. From the standpoint of logicist cognitive
science, rather than AI, this means that learning ex nihilo would be aligned with the views of
Piaget and colleagues [e.g. 38], Stenning and colleagues [e.g. 62], Bringsjord and colleagues [e.g.
10, 13], and Rips and colleagues [e.g. 57, 58]. The goal of full formalization and implementation
of learning ex nihilo would likely be regarded by these cognitive scientists as a welcome one.
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8.2 Objection 2: Isn’t this just reasoning?

The second objection we anticipate is that learning ex nihilo isn’t learning at all; it’s just
a form of reasoning. In reply, any process, however much it relies on reasoning, that does
enable an agent running that process to acquire genuine knowledge (and our k=jtb definition
of knowledge, note, is a very demanding one) would seem to be quite sensibly classified as a
learning process. In fact, probably it strikes many as odd to say that one has a form of machine
learning that does not result in the acquisition of any knowledge.

8.3 Objection 3: What about inductive logic programming?

The objection here can be encapsulated thus: “What about inductive logic programming (ILP)?
Surely this established family of techniques both uses formal logic, and results in new knowl-
edge.”

ILP is along the general lines of learning ex nihilo, agreed; but ILP is acutely humble and
highly problematic when measured against LEN, for reasons we give momentarily. Before giving
these reasons, without loss of generality we fix a general framework F [51] to fix abduction and
induction in supposedly representative logicist fashion:

Given: Background knowledge, B, and observations (data), O, both represented as sets
of formulae in first-order predicate calculus, where O is restricted to ground formulae.

Find: An hypothesis H (also a set of logical formulae) such that B∪H 6` ⊥ and B∪H ` O.

From F one can derive both induction and abduction, according to Mooney: For the latter,
H is restricted to atomic formulae or simple formulae of the general form ∃xφ, and B is — as
Mooney says — “significantly larger” than H. For induction, Mooney says that H is to consist
of universally quantified Horn clauses, and B is “relatively small” and may even be the null set.

From an explain-the-extant-literature point of view, F is at least somewhat attractive. For
as Mooney points out, this framework captures what many logic-oriented learning researchers
in AI have taken induction and abduction to be; this includes, specifically, ILP researchers
[e.g. 53, 41]. Unfortunately, despite its explanatory virtue, F , when measured against human
cognition of the sort involved in learning ex nihilo, is embarrassingly inadequate. As we have
said, this can be shown effortlessly via many reasons. We quickly mention just four here.

8.3.1 Reason 1: F Runs Afoul of Non-Deductive Reasoning

Why should the combination of background knowledge and a candidate hypothesis need to
deductively entail some observation, as F says (via its use of `)? Suppose that as Smith sits in
his home office looking through a window he perceives (ω) that a uniformed man with a FedEx
cap is approaching Smith’s house, a small white box in hand. Smith has no doubt learned that
(δ) a delivery is about to be attempted, but does it really need to be the case that, where B is
background knowledge, B ∪ {ω} can be used to prove δ? No, it doesn’t. Maybe it’s Halloween,
Smith forgot that it is, and the person approaching is in costume and playacting. Maybe the
approaching man is a criminal in disguise, merely casing Smith’s domicile. And so on. All
that is needed is a fairly strong argument in support of δ. And that argument can make use
of inferences that are deductively invalid, but valid as reasoning that is analogical, abductive,
inductive, etc.19

19Indeed, these inferences can even be formally valid in the inductive logics that will undergird ALML; see
below.
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8.3.2 Reason 2: F Leaves Aside Other Non-Deductive Reasoning

This reason was revealed in the previous sentence: that sentence refers to not just to abduction
and induction, but also to reasoning that is analogical in nature, and such reasoning isn’t
included in ILP. In fact, learning via analogical reasoning is often left aside in coverage of
logicist learning of any textbook variety.20 But if in the scenario depicted immediately above
Smith had encountered not a FedEx man, but rather a USPS mailman making a delivery to
his house, he may well have believed that the man with the FedEx cap was analogous, and
hence was making a delivery.

8.3.3 Reason 3: F Runs Afoul of Robust Expressivity

A quick but decisive third reason Mooney’s F explodes in the face of real human cognition is
that any expressivity restriction on O and/or H is illogical, and certainly any specific restriction
that O be restricted to ground formulae and/or that H be confined to Horn-clause logic (or
even for that matter full first-order logic) is patently illogical. This can be seen in middle-school
classes that cover arithmetic, where even very young students cook up and affirm hypotheses
that are expressed using infinitary constructions beyond even full first-order logic. For instance:
Student Johnny is reminded of the definition of a prime number, and then shown that 4 is equal
to 3 plus 1, that 6 is equal to 5+1, that 8 = 5+3, etc. Johnny is asked to consider whether the
next two even numbers continue the pattern. He observes that 10 = 7 + 3 and that 12 = 7 + 5,
and is now inclined to hypothesize (H ′) that every even integer greater than 2 is the sum of
two primes. A natural form for H ′, where e1 is 2 and the even numbers from there continue
e2, e3, . . . is simply a list L like:

e1 = p1 + p′1

e2 = p2 + p′2

...

Yet L cannot be expressed in finitary formulae,21 and even if one squeezed L into finitary
first-order logic, that would be done by employing the same trick as is used for instance in
axiomatic set theory, where first-order logic is augmented with schematic formula that denote
an infinite number of instantiations thereof.22 Regardless, even if by some miracle H ′ could
be expressed in some finitary extensional logic at or beneath first-order logic, the classroom in
question wouldn’t exactly operate well without the teacher’s believing Johnny’s believing that
H ′, and certainly nothing like this fact is expressible in extensional logic (let alone Horn-clause
logic).

8.3.4 Reason 4: F Ignores Thinking

The dictum that truth is stranger than fiction, alas, is frequently confirmed by the oddities of
contemporary AI research. The fourth reason F is inadequate is a confirming example. For
while the framework F projects an air of being about thinking, in actuality it leaves thinking
aside. Indeed there’s a rather common fallacy at work in F , and its promotion: the fallacy
of composition. For while F does include some forms of reasoning, these forms (and even, for
that matter, all forms of reasoning put together) don’t comprise thinking; thinking includes

20E.g. learning by analogy isn’t included in AI’s definitive, otherwise encyclopedic textbook: [59].
21It is naturally represented by an infinite conjunction, which the logic Lω1ω allows.
22E.g., witness the Axiom Schema of Separation as a replacement for Frege’s doomed Axiom V, shot down

violently and decisively by the famous Russell’s Paradox; see [63] for wonderfully elegant coverage.
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the reasoning called out in F as merely a proper part. To be more specific, in real and powerful
thinking, an hypothesis H can be wisely discarded when there is evidence against it.

The fourth flaw infecting F can be easily unpacked: Real learning is intertwined with the
full gamut of human-level thinking: specifically with planning, decision-making, and communi-
cation. If there are no observations to learn from, an agent can plan to get more observations.
An agent can decide when to learn and what to learn. Precious little substantive learning takes
place without communication between teacher and learner, including written communication.
And finally, at the highest end of the spectrum of powerful learning, learners formalize learning
itself, and learn more by doing so.

8.4 Objection 4: Isn’t this just deduction?

The next objection can be expressed thus: “While you refer to non-deductive reasoning, you
simply rely on deduction.”

As stated elsewhere, we allow for non-deductive forms of reasoning, as long as that reasoning
can be captured by natural inference schemata as defined in in a cognitive calculus (see Ap-
pendix A). There are many inference schemata for analogical arguments that can be expressed
formally in natural premise-conclusion form. For example, the schemata in Licato and Fowler
(2016) govern confidence propagation between a cognitive agent’s beliefs. The many argu-
ment schemas described by Walton and colleagues [65, 48, 49] also lend themselves to inference
schemata. These distinguish between familiar inference patterns, such as “Practical Reasoning
from Analogy” (roughly: if the right thing to do in some scenario was X, then the right thing
to do in a similar scenario is Y ) and “Argument from Precedent.”

Analogical inferences are central to human-level cognition [26, 34, 24, 35] and are essential
to how humans reason in new and unfamiliar domains. Analogical reasoning has even been used
to explain how children — the greatest ex nihilo learners of all — can so effectively bootstrap
their knowledge of the world along with the concepts they use to describe it [21, 20, 22]. Our
account of learning ex nihilo not only recognizes, but embraces this fact, allowing for analogical
reasoning to be carried out seamlessly with other reasoning types (e.g., as in analogico-deductive
reasoning [44, 46, 36]).

8.5 Objection 5: What about Lewis’ “Effusive Knowledge”?

“You claim to have a solution to the Gettier problem, one seemingly based on introducing
different levels of knowledge of p (why six?), based on the different levels of justification one
may have for p. This idea echoes Lewis’ [42] epistemic contextualism, but does it really solve
the Gettier problem? And I don’t see any justification for why, say, level-5 jtb is to be equated
with full knowledge?”

Actually, Lewis’ “Effusive Knowledge” paper espouses a conception that is the opposite
of what underlies learning ex nihilo. Lewis holds that there is no knowledge in the Gettier
scenarios, because his definition for knowledge (which marks a rejection of k=jtb) isn’t satisfied
in these cases. Learning ex nihilo entails that there is knowledge in these scenarios, but reduced
knowledge. If the degree of belief is k, then knowledge partaking of this belief is of degree
k as well. In Gettier’s original scenarios, knowledge is at the level of 2 (for reasons too far
afield to articulate under current space constraints). It seems never to have occurred to Lewis
that if belief comes in degrees, then knowledge (which surely includes belief23) must itself

23Actually, Lewis asserts that there can be knowledge without belief, because a timid student can know the
answer, but has “no confidence that he has it right, and so does not believe what he knows” (p. 556). In our
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come in degrees. In the context of formal intensional logic (e.g. formal epistemic logic), Lewis’
position/paper is from our formalist point of view weak, because it hinges on the repeatedly
asserted-without-argument claim that in the case of a single-ticket lottery of size m, even when
the number of tickets is arbitrarily large (e.g. m = 1 quadrillion), one cannot know that a given
ticket tk (1 ≤ k ≤ 1Q) will not win. From the standpoint of learning ex nihilo, this is bizarre,
because surely one knows that in the next moment one’s computer will not spontaneously
combust, because such an event is preposterously unlikely. (And looking back in time, surely
one knows that the computer sitting here now was there 10 seconds ago.) Moreover, Lewis
rejects the very concept of justification as part and parcel of knowledge; learning ex nihilo by
contrast is an AI-driven conception based on automated reasoning (automated deduction and
automated analogical, abductive, enumerative inductive etc. reasoning).

As to levels of belief, in the case of a 13-valued inductive logic we use to undergird learning
ex nihilo, 6 = certain, 5 = evident, 4 = overwhelmingly likely = beyond reasonable doubt, 3 =
very likely, 2 = likely, 1 = more likely than not. 0 is counterbalanced, and then we have the
symmetrical negative values. A belief at level 6 corresponds to knowing things that Lewis (and
everyone else) agree that we know: e.g. knowing that 2+2=4. We do not have space to explain
that each of the values from 0 to 6 are readily found in normatively correct, first-rate human
reasoning, in the formal and empirical sciences.

8.6 Objection 6: Frivolity?

Finally, some will doubtless declare that learning ex nihilo is frivolous. What good is it, really,
to sit at a dinner table and learn useless tid-bits? This attitude is most illogical. The reason
is that, unlike what is currently called “learning,” only persons at least at the level of humans
can learn ex nihilo, and this gives such creatures power, for the greatest of what human persons
have learned (and, we wager, will learn) comes via learning ex nihilo. In support of this we
could cite countless confirmatory cases in the past, but rest content to but point out that
armchair learning ex nihilo regarding simultaneity (Einstein) and infinitesimals (Leibniz) was
rather productive.24

9 Conclusion and Next Steps

We have provided an introduction, philosophical in nature, but also to a degree formal and com-
putational, to the new concept of learning ex nihilo, and have included enough information re.
its formal foundation to allow those conversant with logicist AI to better understand this type
of learning. In addition, we have explained that learning ex nihilo can be automated via suffi-
ciently powerful automated-reasoning technology. Of course, this is a brief paper. Accordingly,
next steps include dissemination of further details, obviously. But more importantly, what is
the relationship between learning ex nihilo and types of machine learning that are based on
artificial neural networks, Bayesian reasoning, reinforcement learning, and so on? These other
currently popular types of learning are certainly not logicist, and hence nothing like a logical
system, let alone a cognitive calculus, are present. In fact, it’s far from clear that it’s even

formal framework, the situation is that the student believes, at a low level (1, say) that he knows (at some
level k ≥ 1) the answer, and as a matter of fact he does know the answer at level 1. This scenario is provably
consistent in our relevant cognitive calculi. Not only that, but as far as we can tell, since in point of fact timidity
of this type often prevents successful performance, our formal diagnosis has “real-world” plausibility.

24And for those readers with a literary bent, it should also be pointed out that the great minds of detection,
not only the aforementioned Sherlock Holmes but e.g. Poe’s seminal Le Chevalier C. Auguste Dupin, achieve
success primarily because of their ability to learn ex nihilo.
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possible to construct the needed machinery for learning ex nihilo out of the ingredients that go
into making these non-logicist forms of learning.
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A What is a Cognitive Calculus? And Why is It So
Named?

What is a cognitive calculus C, and why is it denoted with the two words in question? (We use
‘C’ here as an arbitrary variable ranging over (the uncountably infinite space of) all cognitive
calculi). In keeping with the mathematical-logic literature [e.g. 23]25, we first take a logical
system L to be a triple 〈L, I,S〉 where L is a (often) sorted/typed formal language (based
therefore on an alphabet and a formal grammar), I is a set of natural26 inference schemata,
and S is a formal semantics of some sort. For example, the familiar propositional calculus
comprises a family of simple logical systems; the same holds for first-order logic; both families
are of course at the heart of AI.27 In the case of both of these families, a frequently included
particular inference schema is modus ponens, that is

φ→ ψ, φ
ψ

Imp

And in the case of the latter family, often universal introduction is included in a given I; a
specification of this inference schema immediately follows.28

φ(a)
∀xφ(ax )

Iui

Note that both of the two inference schemata just shown are included in the particular cognitive
calculus we use in the present paper for modeling, and as a framework for automated reasoning.
Note as well that both Lpc and L1 are extensional, which means essentially that the meaning
of any formula φ in the relevant languages are given by compositional functions operating solely
on the internal components of φ. If we for example know that φ is false, then we know that
the meaning of φ→ ψ is true, for any ψ in the language, for both of these logical systems.

Moving from the concept of a logical system to that of a cognitive calculus is straightforward,
and can be viewed as taking but three steps, to wit:

S1 Expand the language of a logical system to include

i modal operators that represent one or more mental verbs at the human level
standardly covered in human-level cognitive psychology [e.g. see any standard,
comprehensive textbook on human-level cognitive psychology, such as 4, 30], and
regarded to be so-called “propositional attitudes” that give rise to propositional-
attitude-reporting sentences, where these sentences are represented by operator-
infused formulae in a cognitive calculus.29 Such verbs include: knowing, believing,
deciding, perceiving, communicating,30 desiring, and feeling X where ‘X’ denotes

25Note in particular coverage in this excellent work of Lindström’s Theorems, which pertain to the properties
of certain logical systems (e.g., completeness).

26Hence when the schemata are deductive in nature, we specifically have natural deduction.
27As can be confirmed by looking to the main textbooks of the field. E.g. see [59, 47].
28The standard provisos apply here to the constant a.
29The attitudes are covered nicely in [54]. Here’s an informative quote from this work:

Propositional attitude reporting sentences concern cognitive relations people bear to propositions. A
paradigm example is the sentence ‘Jill believes that Jack broke his crown.’ Arguably, ‘believes,’ ‘hopes,’
and ‘knows’ are propositional attitude verbs and, when followed by a clause that includes a full sentence
expressing a proposition (a that-clause) form propositional attitude reporting sentences. [54, ¶1]

30Due to lack of space, we leave aside our approach to formal NLP on the basis of proof theory alone. For a
truly excellent book on proof-theoretic semantics, including, natural language, we recommend [25].
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some emotional state (e.g. possible X = sad , and so on. Note that such verbs
break the bounds of extensionality, and hence make any logic that captures
them an intensional logic.31 Step S1.i is the reason why we speak of a cognitive
calculus.

ii meta-logical expressions (such as that from a set Φ of formulae a particular
formula φ can be proved: Φ ` φ). Hence cognitive calculi are not merely object-
level elements of logics, but include meta-logical elements as well. E.g. a cognitive
calculus can have a meta-conditional saying that if some provability expression
such as Φ ` φ holds, then φ holds. Step S1.ii is a necessary, preparatory step for
S2.

S2 Delete S; if desired, move selected elements of S into I, which requires casting these
elements as inference schemata that employ meta-logical expressions secured by prior
step S1.ii. S2 reflects the fact that cognitive calculi have purely inferential semantics,
and hence are aligned with the tradition of proof-theoretic semantics [28, 55, 60]. (In
particular, cognitive calculi thus do not employ possible-worlds semantics for modal
operators. In possible-worlds approaches, e.g., knows doesn’t get defined as justified
true belief; but as we explained in the paper proper, knowledge in a cognitive calculus
holds iff the agent in question believes the known proposition on the strength of a
proof or argument.) We might for instance wish to include an inference schema that
regiments the idea that an agent knows that which is provable from what she knows.
Step S2 is the reason why we speak of a cognitive calculus (instead of e.g. a cognitive
logic, or cognitive logical system).

S3 Expand I as needed to include inference schemata that involve the operators from
S1.i. For instance, where K is the modal operator for ‘knows’ and B for ‘believes,’
we might (and in learning ex nihilo, for reasons explained in the paper proper, we
do) wish to have this inference schema in a given C:

Kφ

Bφ
Ikb

A.1 Regarding Related Work

Much could be said about work/systems that are related to cognitive calculi, but sustained
treatment of this issue is out of scope in this brief appendix, which is merely meant to sup-
plement the paper coming before it. We will say only a few things, and hope they are at
least somewhat enlightening; here goes. The first published, implemented cognitive calculus,
a multi-operator modal logic (minus, by definition, and as explained earlier in the present ap-
pendix, any conventional semantics) based on multi-sorted first-order logic, can be found in
[1, 2]; the second of these publications is a refinement of the first. Implementation at that point
was based upon Athena, a recent introduction to which, along with a study of proof meth-
ods in computer science, is provided in the excellent [3]. Related work as cited in this earlier
work remains relevant over a decade later, and in particular, so-called “BDI logics” [e.g. 56]
are related, and we applaud their advent — but as explained in 2008/2009, such logics cover
very few propositional attitudes present in adult and neurobiologically normal cognition (e.g.
no communication operators, and no emotional states), and are not based on purely inferential
semantics. Automated reasoning in the tradition of higher-order logic (HOL) as descended from
Frege, and most prominently from Church, which is masterfully chronicled in [5], is obviously

31This fact is discussed in some detail in [11], and is replete with relevant proofs. As an example, note that
the truth or falsity of ‘Jones believes that φ’ is not determined by the truth or falsity of φ, since humans routinely
believe that falsehoods hold.
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related to cognitive calculi; this is especially true since HOL is now very much on the scene in
21st-century AI [e.g. 7]. In contrast, cognitive calculi, and the automation thereof, are based
on commitments guided by the study of human cognition; and as we see it, that cognition
for matters formal and extensional is for the most part circumscribed by natural deduction in
second-order logic in the complete absence of formal semantics [e.g. consider the raw material
in the practice of mathematics that gives rise to the argument and analysis in 61] and in matters
literary circumscribed by modal operators mixed with third-order logic [e.g. 15]. Traditionally,
in terms of the Frege-to-Church-to. . . history that HOL has, HOL is extensional; in contrast,
cognitive calculi by definition cannot fail to have operators that cover human cognition. The
final thing we mention here is that cognitive calculi are not in any way deductive and bivalent
or trivalent; they can be infused with uncertainty, and have multiple values [e.g. 31].
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B The Deontic Cognitive Event Calculus

DCEC is a quantified multi-modal sorted cognitive calculus. A sorted system can be regarded
analogous to a typed single-inheritance programming language. We show below some of the
important sorts used in DCEC. Among these, the Agent, Action, and ActionType sorts are not
native to the standard, extensional event calculus (apparently) first introduced by Kowalski &
Sergot [40], and first modified and extended in the cognitive direction by Arkoudas & Bringsjord
[2].

Sort Description

Agent Human and non-human actors.
Time The Time type stands for time in the domain.

E.g. simple, such as ti, or complex, such as
birthday(son(jack)).

Event Used for events in the domain.
ActionType Action types are abstract actions. They are in-

stantiated at particular times by actors. Exam-
ple: eating.

Action A subtype of Event for events that occur as ac-
tions by agents.

Fluent Used for representing states of the world in the
event calculus.

Note: actions are events that are carried out by an agent. For any action type α and agent
a, the event corresponding to a carrying out α is given by action(a, α). For instance if α is
“running” and a is “Jack” , action(a, α) denotes “Jack is running”.

B.1 Syntax

The syntax has two components: a first-order core and a modal system that builds upon this
first-order core. The figures below show the syntax and inference schemata of DCEC. The syntax
is quantified modal logic. The first-order core of DCEC is the event calculus [52]. Commonly
used function and relation symbols of the event calculus are included. Other calculi (e.g. the
situation calculus) for modeling commonsense and physical reasoning can be easily switched
out in-place of the event calculus.

The modal operators present in the calculus include the standard operators for knowledge K,
belief B, desire D, intention I, etc. The general format of an intensional operator is K (a, t, φ),
which says that agent a knows at time t the proposition φ. Here φ can in turn be any arbitrary
formula. Also, note the following modal operators: P for perceiving a state, C for common
knowledge, S for agent-to-agent communication and public announcements, B for belief, D for
desire, I for intention, and finally and crucially, a dyadic deontic operator O that states when
an action is obligatory or forbidden for agents. It should be noted that DCEC is one specimen
in a family of easily extensible cognitive calculi.

The calculus also includes a dyadic (arity = 2) deontic operator O. It is well known that
the unary ought in standard deontic logic lead to contradictions. Our dyadic version of the
operator blocks the standard list of such contradictions, and beyond.32

32A overview of this list is given lucidly in [50].
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Syntax

S ::= Agent | ActionType | Action v Event | Moment | Fluent

f ::=



action : Agent× ActionType→ Action

initially : Fluent→ Boolean

holds : Fluent×Moment→ Boolean

happens : Event×Moment→ Boolean

clipped : Moment× Fluent×Moment→ Boolean

initiates : Event× Fluent×Moment→ Boolean

terminates : Event× Fluent×Moment→ Boolean

prior : Moment×Moment→ Boolean

t ::= x : S | c : S | f(t1, . . . , tn)

φ ::=



q : Boolean | ¬φ | φ ∧ ψ | φ ∨ ψ | ∀x : φ(x) |
P(a, t, φ) | K(a, t, φ) |
C(t, φ) | S(a, b, t, φ) | S(a, t, φ) | B(a, t, φ)

D(a, t, φ) | I(a, t, φ)

O(a, t, φ, (¬)happens(action(a
∗
, α), t

′
))

B.2 Inference Schemata

The figure below shows the inference schemata for DCEC. RK and RB are inference schemata
that let us model idealized agents that have their knowledge and belief closed under the DCEC
proof theory. While normal humans are not deductively closed, this lets us model more closely
how deliberate agents such as organizations and more strategic actors reason. (Some dialects
of cognitive calculi restrict the number of iterations on intensional operators.) R1 and R2 state
respectively that it is common knowledge that perception leads to knowledge, and that it is
common knowledge that knowledge leads to belief. R3 lets us expand out common knowledge
as unbounded iterated knowledge. R4 states that knowledge of a proposition implies that the
proposition holds. R5 to R10 provide for a more restricted form of reasoning for propositions
that are common knowledge, unlike propositions that are known or believed. R12 states that if
an agent s communicates a proposition φ to h, then h believes that s believes φ. R14 dictates
how obligations get translated into intentions.
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Inference Schemata

K(a, t1,Γ), Γ ` φ, t1 ≤ t2
K(a, t2, φ)

[RK]
B(a, t1,Γ), Γ ` φ, t1 ≤ t2

B(a, t2, φ)
[RB]

C(t,P(a, t, φ)⇒ K(a, t, φ))
[R1]

C(t,K(a, t, φ)⇒ B(a, t, φ))
[R2]

C(t, φ) t ≤ t1 . . . t ≤ tn
K(a1, t1, . . .K(an, tn, φ) . . .)

[R3]
K(a, t, φ)

φ
[R4]

C(t,K(a, t1, φ1 ⇒ φ2))⇒ K(a, t2, φ1)⇒ K(a, t3, φ2)
[R5]

C(t,B(a, t1, φ1 ⇒ φ2))⇒ B(a, t2, φ1)⇒ B(a, t3, φ2)
[R6]

C(t,C(t1, φ1 ⇒ φ2))⇒ C(t2, φ1)⇒ C(t3, φ2)
[R7]

C(t, ∀x. φ⇒ φ[x 7→ t])
[R8]

C(t, φ1 ⇔ φ2 ⇒ ¬φ2 ⇒ ¬φ1)
[R9]

C(t, [φ1 ∧ . . . ∧ φn ⇒ φ]⇒ [φ1 ⇒ . . .⇒ φn ⇒ ψ])
[R10]

S(s, h, t, φ)

B(h, t,B(s, t, φ))
[R12]

I(a, t, happens(action(a∗, α), t′))

P(a, t, happens(action(a∗, α), t))
[R13]

B(a, t, φ) B(a, t,O(a, t, φ, χ)) O(a, t, φ, χ)

K(a, t, I(a, t, χ))
[R14]
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