Tuning Parallel SAT Solvers

Thorsten Ehlers* and Dirk Nowotka

Department of Computer Science
University of Kiel
{the,dn}@informatik.uni-kiel.de

Abstract

In this paper we present new implementation details and benchmarking results for our parallel portfolio solver TopoSAT2. In particular, we discuss ideas and implementation details for the exchange of learned clauses in a massively-parallel SAT solver which is designed to run more that 1,000 solver threads in parallel. Furthermore, we go back to the roots of portfolio SAT solving, and discuss the impact of diversifying the solver by using different restart-, branching- and clause database management heuristics. We show that these techniques can be used to tune the solver towards different problems. However, in a case study on formulas derived from Bounded Model Checking problems we see the best performance when using a rather simple clause exchange strategy. We show details of these tests and discuss possible explanations for this phenomenon.

As computing times on massively-parallel clusters are expensive, we consider it especially interesting to share these kind of experimental results.

1 Introduction

The satisfiability problem of propositional logic (SAT) has attracted large interest in recent decades. It is used in a wide field of applications, such as planning and scheduling [3, 22, 19], the verification of hardware and software [17], computation of tree decompositions [13, 11]. For example, it can be effectively used to design optimal sorting networks [24] or solve the pythagorean triple problem [35]. Furthermore, it is the underlying technique for MaxSAT [39], SMT [41] and some CP solvers [43].

The increasing availability of parallel hardware has raised interest in the parallelization of SAT solvers [31, 26]. However, there are principle considerations on the problem of SAT solving which have provoked some skepticism about parallel SAT solvers. Wintersteiger posed challenges for parallel SAT solving [32]. Katsirelos et al. analyzed the structure of the proofs that SAT solvers generate for unsatisfiable formulas, and gave some evidence that these proofs have an inherently sequential structure which prevents parallel SAT solvers from scaling up [36].

Nevertheless, nowadays even most laptops come with multi-core CPUs, and it is likely that hardware will become more and more parallel. Thus, it makes sense to push SAT solvers to

*This work is partially funded by the German Federal Ministry of Education and Research, combined project 01IH15006A.
benefit as much as possible from this hardware. Parallel SAT solving is challenging, but some of these challenges can be tackled by a well-designed parallel SAT solver. Furthermore, the existence of proofs which cannot be created in parallel efficiently does not imply that all proofs cannot be parallelized efficiently. Here, we take the perspective of Gustafson’s Law [30] rather than Amdahl’s Law [2]. We show that using more parallel hardware does not only come with some speedup, it also allows for solving larger and harder problems, e.g. for analyzing larger systems. We claim that this is a realistic perspective: Whenever better solvers are available, they will not only be used to solve the same problems faster. Users tend to use these solvers to tackle harder and larger problems. If these problems are sufficiently hard, we give evidence that in many cases significant speedups can be observed on parallel SAT solvers; in this particular case up to 1536 solver threads. et al. This paper is structured as follows. After an overview over SAT and related work, we describe the design decisions made in our parallel solver, and relate it to the design of both sequential and parallel SAT solvers. Then, we present a case study on formulas from bounded model checking which demonstrates the scaling of our parallel solver in the spirit of Gustafson’s law. Finally, we show that the scaling translates to a wider range of problems and conclude.

2 Background

Given a propositional formula φ, the satisfiability problem asks whether there is an assignment of the variables of φ to true and false which satisfies the formula, or not. Formulas are usually given in conjunctive normal form. That is, a formula φ is given as a conjunction of disjunctions of literals $\bigwedge_{i=0}^{n} C_i$, where C_i, called clause, is given as $C_i = \bigvee_{j=1}^{C_i} \ell_{i,j}$ and $\ell_{i,j}$, called literal, is either a boolean variable x or its negation \bar{x}. A clause is satisfied by an assignment β if at least one of its literals is assigned to true, and the formula is satisfied if all its clauses are satisfied. For every propositional formula there exists an equisatisfiable formula in conjunctive normal form, and the formula can efficiently be transformed to conjunctive normal form [47].

A clause C is implied by a formula φ if every satisfying assignment for φ also satisfies C. Given two clauses $C_1 = (x \lor A)$ and $C_2 = (\bar{x} \lor B)$ where A and B are disjunctions, the clause $(A \lor B)$ can be derived as resolvent of C_1 and C_2 by the resolution rule. This resolvent is implied by the original formula, and may thus be added to it without changing the formula’s satisfiability. A formula is unsatisfiable, if, and only if, the empty clause can be derived by repeated application of the resolution rule [45].

In this paper we focus on complete solvers rather than other, incomplete solvers as they are often used e.g. for solving random formulas. These SAT solvers run a significantly improved version of the DPLL algorithm [20]. Once the solver reaches a situation in which it has to backtrack, it analyzes the reason for this failed search, and stores it in a new, learned clause [40]. This algorithm is often referred to as Conflict-Driven Clause Learning (CDCL) and prevents the solver from repeatedly searching similar parts of the search space. The derivation of learned clause can be explained as a sequence of resolution steps. Thus, the proof of unsatisfiability that CDCL solvers create is a resolution proof. Furthermore, it has been shown that clause learning is as powerful as general resolution [12].

In modern SAT solvers, the backtracking search and clause learning mechanisms are combined with clause minimization [46], preprocessing [21], restart heuristics [7], dynamic activity based variable orderings like VSIDS [40], clause database management techniques [6] and other heuristics. The latter is relevant as it has empirically been shown that many learned clauses are used only once. Thus, keeping all learned clauses in the clause database slows down the solver without benefit for the subsequent search.
An important notion in this context is the Literal Block Distance (LBD) of learned clauses. As a sophisticated extension of the DPLL algorithm, SAT solvers basically run a backtracking search. Assume the solver branches some variable \(x_1 \) to false, and there is a clause \((x_1 \lor x_2) \). Then, \(x_2 \) must necessarily be set to true, as otherwise this clause would be falsified. After each branching, the solver runs a propagation routine which identifies such situations, and propagates variable assignments with respect to previous branches. Variable assigned after the \(i-th \) branching step are said to lie on decision level \(i \). The LBD measure counts the number of different decision levels occurring in a learned clause. It has empirically been found that clauses with low LBD value tend to be especially useful for the solver.

There are basically two approaches to parallelize SAT solvers. Firstly, given a formula \(\phi \) containing a variable \(x \), the search space can be divided into \(\phi \land x \) and \(\phi \land \overline{x} \). Then, two solvers can be run on the two subformulas. In case more parallel hardware is available, this splitting process is repeated recursively. If one of the subformulas is satisfiable, so is \(\phi \), and otherwise \(\phi \) is unsatisfiable. The conjunctions which determine the subformulas are often called guiding paths. When combined with sophisticated look-ahead techniques for finding good branching literals, this approach is also called Cube&Conquer [33]. Here, the challenge is to split the search space such that the subformulas become easy to solve, and the search tree is somewhat balanced.

Secondly, the performance of sequential SAT solvers tends to be volatile with respect to parameters like the initial variable ordering. In parallel portfolio SAT solvers, several instances of sequential SAT solvers are run in parallel, each of them with different parameters. The solver which terminates first wins, and its result is reported. Thus, these solvers take advantage of the volatility of the performance of sequential solvers. The first portfolio solver was ManySAT [31].

In addition to the diversified search obtained from running the solvers with different parameters, the solver instances collaborate by exchanging learned clauses. This is sound as every learned clause was derived by resolution, and thus is logically implied by the original formula. This clause exchange is crucial in improving the performance of parallel SAT solvers, especially on unsatisfiable formulas [26, 10].

In this paper, we follow the portfolio approach, which is the technique used by most parallel SAT solvers nowadays.

3 Solver Design

When designing a solver which is meant to scale beyond 1000 solver threads running in parallel, several issues arise. Firstly, whenever one of the solver threads learns a new clause, a decision has to be made whether or not this clause is shared with other solver threads.

Secondly, an efficient mechanism is needed to dispatch shared clauses among the solver threads. This concerns both communication on shared memory systems, where locking is a potential bottleneck, as well as inter-process communication, e.g. by MPI. Thirdly, whenever a solver thread receives a clause, a strategy is needed to decide if and how long this clause should be stored. The strategies for sending and receiving clauses interact: If, in a massively-parallel setting, many clauses are sent, then a more aggressive mechanism to select or delete received clauses is needed. These questions are posed as challenge in [32].

Fourthly, some techniques which are sufficiently fast for a sequential SAT solver may be too slow for a parallel SAT solver. For example, if a preprocessor is used then the overall solving time \(T = T_s + T_{pre} \) is the sum of the time required by the preprocessor \(T_{pre} \) and the time for the actual search \(T_s \). Thus, if \(T_{pre} \) is large, this may prevent the solver from scaling up.
Our solver is based on Glucose 3.0. In Glucose, the preprocessor works well on many formulas, but is very slow especially if there are many large clauses, or if some clauses are put on the subsumption queue repeatedly. Instead of using a (non-deterministic) parallel BVE algorithm [29], we improved upon the preprocessor from Glucose by implementing linear-time versions of the subsumption check and the resolution of two clauses, similar to the algorithm used in Cadical [16]. Furthermore, we equipped the clause headers with a boolean flag which indicates whether a clause already is on the subsumption queue or not.

Although Glucose 3.0 is not the fastest available sequential solver, its clear structure makes it easy to modify it for testing parallel implementations. Furthermore, it uses less heuristics than other solvers, which makes its performance more stable with respect to modifications.

3.1 Communication

In order to achieve an efficient communication, we use a hierarchical architecture. Our solver runs several MPI processes, each of which runs one thread for communication, and several solver threads. The communication between processes is performed asynchronously. Processes send their learned clauses either if some time has passed since the last sending operation, or if their clause buffer is sufficiently full. Compared to the communication strategy of HordeSAT [10] where communication is performed synchronously and the amount of transmitted data is restricted to 1500 integers per process and communication cycle, our strategy allows us to send a larger number of clauses in situations where many good clauses are learned. By collecting several clauses before sending them we prevent the network from being congested by a large number of small messages. Furthermore, sending messages asynchronously avoids peaks in the network usage.

Inside each process, we use a bug-fixed version of the lockless clause sharing mechanism from ManySAT [31]. The fix was necessary because the original implementation could cause the solver to report “satisfiable” on unsatisfiable formulas.

Compared to the distributed version of Syrup [5] which uses locks in its shared memory communication, this lockless implementation avoids a potential bottleneck.

Whenever a solver thread learns a good clause, it may copy it to the input buffer of the communication thread. The communication thread regularly checks these buffers, and copies their content to its MPI buffer. Similarly, clauses received via MPI are dispatched through buffers in the shared memory.

There are formulas on which the solvers threads learn a huge number of unit clauses, i.e. clauses of size 1, in the very beginning of the solving process. In order to reduce the traffic in such cases, each communication threads stores the unit clauses it has seen already. When receiving unit clauses either from other processes via MPI or from solver threads via the shared memory communication, it checks these clauses against the clauses it has seen already, and only forwards unit clauses which have not yet been seen. In other solvers like TopoSAT [26] and HordeSAT [10], the communication threads hash clauses received either from solver threads within the same process or via MPI. They use Bloom filters for preventing clauses from being shared multiple times. We found that these filters only remove a small portion of the sent clauses in most cases and most configurations we used. Furthermore, they only identify identical clauses and fail e.g. in identifying subsumed clauses. As we were interested in the structure of the clauses which are exchanged, we did not use any filter in these experiments. Instead, we regularly checked the stored clauses for duplicates, and identified some particular solver configurations which lead to a large number of duplicate clauses.

In Subsection 4.1 we will discuss a stronger approach, in which learnt and received clauses
are regularly checked for subsumption.

3.2 Sending Clauses

We implemented different strategies for deciding whether or not to share a clause. The first strategy simply considers the LBD value of the learned clauses, and shares clauses if this value is sufficiently low. In our experiments, we used a threshold of 4.

Audemard et al. [8] suggested to defer the sharing of a clause until it has been used by the solver for a second time. This strategy is based on the observation that many learned clauses are not helpful in the subsequent solving process. In our second sharing technique, we lifted this approach to the next higher level in our solver’s hierarchy. Whenever a solver thread learns a clause, it can be sent to other solver threads within the same process. These solver threads monitor the usage of received clauses, and notify the communication thread whenever a received clause has been used for the first time in conflict analysis. Once a certain threshold of usages has been reached, the communication thread can decide that this clause is likely to be actually helpful for other solvers, and send it to other processes via MPI. This is implemented by storing both the clause and an unique identifier in the communication thread.

The third approach is inspired by the concurrent clause strengthening solver by Wieringa et al. [48]. Their solver runs a solver thread and a so-called reducer thread in parallel. Whenever the solver thread learns a clause, this is sent to the reducer thread, which in return tries to find a subsuming clause. Similar to the clause vivification process from [44], this is done by assuming the negation of the clause, and using the analyzeFinal-method from MiniSAT [23] to try to compute a subsuming clause. From the proof perspective, this process can be seen as the repeated application of the resolution rule. If successful, i.e. if a clause was found which is actually shorter than the original one, this one is sent back to the solver thread. Instead of using a dedicated reducer thread, we let solver threads store learned clauses in a dedicated buffer instead of sending them immediately. On the next restart, search is interrupted and the solver thread tries to minimize each of the stored clauses before sending them. A similar idea is presented in [38] in order to strengthen clauses in the learnt clause database of a sequential solver. The rationale behind this approach is that after learning the clause, the solver has backtracked and continued its search in a similar part of the search space. Thus, it is likely that is has learned more clauses which help in the minimization process. Furthermore, the time used for strengthening clauses must be limited. Thus, using this approach on the receiving side would not scale, as the amount of clauses which are exchanged within the solver grows with the parallel resources used.

3.3 Handling Received Clauses

Sequential SAT solvers clean their learned clause database regularly, both because a large clause database may slow down the solving process, and because only some of the learned clauses tend to be useful in the subsequent search, or contribute to a resolution proof in case of unsatisfiable formulas. The decision which clauses to delete and which to keep is difficult [42]. Glucose uses the LBD value of learned clauses as primary measure [6]. It regularly removes roughly half of the learned clauses from its clause database, where clauses with high LBD value are removed first. In a parallel setting, this may be dangerous as the solver receives significantly more clauses with low LBD from other solvers than it produces itself. Furthermore, the heuristics used in Glucose are optimized for a sequential setting. In a parallel setting, removing half of the clauses from the clause database may lead to a situation where many valuable clauses are removed just after receiving them.
Audemard et al. suggest to “freeze” learned clauses if they have not been used for while, instead of deleting them immediately [4]. In a parallel setting, they lift this approach to received clauses [8]. Oh uses a different approach in his award-winning solver COMiniSatPS [42]. Here, clauses with a sufficiently low LBD value are kept forever, whereas clauses with larger LBD are kept in a separate database. These clauses are removed if they have not been used by the solver for some time. As this approach is quite successful in a sequential setting, we adapted it for our parallel solver. Assume a parallel solver with 1000 solver threads, where every threads shares only 2% of its learned clauses. Then, each solver thread receives 20 times more clauses from other solvers than it produces itself. This is both curse and blessing for the receiving solver: It is faced with a huge amount of clauses from which it may pick those that are likely to help in the subsequent solving process. On the other hand, it cannot store all of them as this would significantly harm the propagation speed, and in the worst case the solver may run out of memory.

Thus, we decided to modify Oh’s approach for this setting. Whenever a clause is received, its LBD value is initially set to the size of the clause, as this is a trivial upper bound. If the solver thread uses this clause, the LBD value may be updated, i.e. decreased. If this decrease is strong enough, the clause is transfered to a permanent storage. Received clauses which are not used within an interval of 30,000 conflicts are deleted.

3.4 Improved Diversification

The core idea behind the first portfolio solvers was to speed up the solving process by diversifying different parameters of the individual solvers. After a while in which clause exchange was the dominant topic, this diversification receives more attention again.

For example, the competition version of Painless [27] diversifies search by choosing different initial phases for the variables, and using LRB on some, and VSIDS on the other solver threads. ABCD SAT [18] chooses some literals which occur often, and diversifies the individual search spaces of the solver threads by pinning them to the subformula \(\phi \land \ell_i \). Furthermore, it diversifies its clause database management and sometimes uses the size of clauses rather than their LBD as parameter, as suggested in [25].

In TopoSAT2, we decided to use three basic techniques as source for some diversification. Some solvers use VSIDS as branching technique, whereas others use LRB. We use the adaptive restart technique from Glucose [7], Luby restarts as in MiniSAT, and inner-outer restarts [14] on some of the cores. Furthermore, some threads use the default clause database management scheme of Glucose, whereas others use several clause databases for permanent, received and other clauses as discussed in the previous section. We ran some experiments with sequential versions of Glucose to figure out combinations which work well. For example, combining LRB with the adaptive restarts of Glucose did not work very well, thus we only use LRB in combination with Luby and inner-outer restarts in our portfolio. We consider this diversification especially helpful when the solver is run on unknown formulas. However, in the case study in Subsection 4.1 we did not use it, as VSIDS and Glucose restarts worked well together on these formulas.

4 Experimental Results

In this section we present results obtained from running our solver on a cluster. Each computing node is equipped with two Intel Xeon E5-2695v2 CPUs, allowing for 24 threads when not using hyperthreading. Due to technical restrictions we were not allowed to run jobs on less than
4 nodes. Therefore, the configurations for which we present results here used multiples of $24 \cdot 4 = 96$ threads. On each node, we ran 3 processes with 8 solver threads each. The interconnect in this cluster has a latency of $2\mu s$, and each node can receive a traffic of at most 10GiB/s^1.

Next, we discuss a case study on formulas from bounded model checking. Afterwards, some results on benchmarks from the SAT Competition 2016 are presented.

4.1 Case Study: Bounded Model Checking

Bounded Model Checking (BMC) is a technique applied to finding bugs in both software and hardware [17]. Given a transition system M with a countable set S of states and a finite number of successors for each state, let the predicate $I(s_0)$ denote the finite set of initial states and the predicate $T(s_i, s_{i+1})$ denote the transition relation, where $s_j \in S$ for all $j \geq 0$. Let $P(s)$ be a predicate which propositionally defines a set of error states. One can check if such an error can be reached within k steps by “unrolling” the transition relation k times, and checking the satisfiability of the formula

$$\varphi_k = I(s_0) \land \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1}) \land P(s_k)$$

Clearly, this formula translates to a propositional formula for any transition system M and predicate P as specified above. If φ_k is satisfiable, then its satisfying assignment describes a path of length k from an initial state to an erroneous state, allowing e.g. developers to identify the reason for this behavior, and fix it. Bounded Model Checking is an incomplete verification procedure since a negative result either means that the system is safe or that k was chosen too small. Thus, it is important to check sufficiently large values of k.

This gives rise to the following questions: Given parallel hardware, can we check the unsatisfiability of φ_k faster for some fixed value of k? And, according to Gustafson’s Law and even more importantly, can we check this for larger values of k within a reasonable amount of time?

In this case study, we chose formulas which describe safety properties of the french railway system [37]. Here, the unroll depths range from 7 to 15. The unroll depth required for a meaningful analysis is highly problem-dependent, in this case, such small numbers were already sufficient. Each of these formulas is unsatisfiable. Thus, they allow for a good evaluation of the scaling of our solver when creating large resolution proofs. We begin by presenting some results of a rather simple solver setup. Then, we show that these results can be improved quite easily, and discuss some statistics which may explain why the solver scales up rather nicely in this case.

As a first setup, we used the simple LBD-based clause sharing scheme. The solvers shared clauses of LBD at most 4, and stored clauses permanently if their LBD was updated to a value of at most 3. The results from running our solver on these formulas are depicted in Table 1. The first columns shows the unroll depth, followed by the running times for 96 up to 1536 threads. The last columns give the speedups when comparing 96 to 1536 threads and 768 to 1536 threads, respectively. This table contains both positive and negative results. On the negative side, the scaling on the smallest instance is limited. Here, the solving times are reduced by only a factor of 2.05 when using 1536 instead of 96 threads. Thus, this formula may be too easy for the parallel solver in the sense that scaling is prevented by some inherent sequential structure of the proof of unsatisfiability.

\footnote{More details are available at https://www.hlrn.de/home/view/System3/CrayHardware}
Table 1: Scaling on Bounded Model Checking Benchmarks. Here, a timeout of 4 hours was used. The running times are given in seconds.

<table>
<thead>
<tr>
<th>Depth</th>
<th># Threads</th>
<th>Speedups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96</td>
<td>192</td>
</tr>
<tr>
<td>7</td>
<td>250</td>
<td>198</td>
</tr>
<tr>
<td>8</td>
<td>414</td>
<td>319</td>
</tr>
<tr>
<td>9</td>
<td>882</td>
<td>496</td>
</tr>
<tr>
<td>10</td>
<td>1680</td>
<td>923</td>
</tr>
<tr>
<td>11</td>
<td>10574</td>
<td>5641</td>
</tr>
<tr>
<td>12</td>
<td>T/O</td>
<td>9890</td>
</tr>
<tr>
<td>13</td>
<td>T/O</td>
<td>T/O</td>
</tr>
<tr>
<td>15</td>
<td>T/O</td>
<td>T/O</td>
</tr>
</tbody>
</table>

Table 2: Scaling on Bounded Model Checking Benchmarks. Here, a timeout of 4 hours was used. The running times are given in seconds. Here: Preprocessing is used!

<table>
<thead>
<tr>
<th>Depth</th>
<th># Threads</th>
<th>Speedups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96</td>
<td>192</td>
</tr>
<tr>
<td>7</td>
<td>241</td>
<td>185</td>
</tr>
<tr>
<td>8</td>
<td>427</td>
<td>320</td>
</tr>
<tr>
<td>9</td>
<td>828</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td>1641</td>
<td>940</td>
</tr>
<tr>
<td>11</td>
<td>3747</td>
<td>2048</td>
</tr>
<tr>
<td>12</td>
<td>6824</td>
<td>3854</td>
</tr>
<tr>
<td>13</td>
<td>10355</td>
<td>5898</td>
</tr>
<tr>
<td>15</td>
<td>T/O</td>
<td>12673</td>
</tr>
</tbody>
</table>

However, the harder the formulas become, the more parallelism pays off. The speedup obtained from using 1536 instead of 96 threads increases from 2.05 to 7.78, until the smaller solver instances cannot solve the benchmarks anymore. Similarly, the performance gain when moving from 768 to 1536 threads increases, and reaches a maximum value of 1.76 on the hardest formula.

In the bigger picture, we see a triangle of timeouts on the left, lower part of Table 1. This triangle shows that whenever we double the amount of hardware we use, this immediately implies that a deeper analysis can be performed within the time limit of 4 hours. Using parallel hardware does not only allow for running the analysis for some fixed unroll depth \(k \) faster, it especially allows for checking harder formulas, thus finding bugs which are hidden deeper in the system, or, if no such bugs are found, increase the trust in the correctness of the system under analysis.

Still, the running times are quite large, and solver settings with only a few threads time out on the hard instances. In this case, there is a rather simple trick to improve the running times. These instances are quite large (ranging from 1,162,410 variables and 3,976,257 for 7 unroll steps to 2,262,818 variables and 7,742,049 clauses for 15 unroll steps), and Glucose by default disables its preprocessor on formulas with more than 4,800,000 clauses. Increasing this threshold significantly reduces the solver performance on all formulas with an unroll depth of at least 11, c.f. Table 2.
For example, the formula for unroll depth 15 can be solved in 6535 seconds on 384 threads now, compared to 6749 seconds on 1536 threads before. Although this is not a technical contribution, we consider this interesting as it shows that instead of only focussing on the parallelisation aspect, one should still keep an eye on such issues. Still, the speedups are significant, especially on the hard formulas. For example, increasing the number of threads by a factor of 8 from 192 to 1536 threads yields a speedup of 6.03 on the hardest formula. We consider these results quite interesting. Unfortunately, it prove hard to improve upon then. Thus, the question arose why this configuration works this well. A possible hint is depicted in Figure 1. This figure shows statistics on the clause databases of TopoSAT2 when running on the formula “sncf_model_ixl_bmc_depth_15.cnf”. Whenever the clause database was reduced, we recorded the size of the different clause storages. Permanent denotes the size of the database for clauses with LBD at most 3. Additionally, the running times are given.

In the first row results are given for the simple, LBD-based clause exchange policy. Interestingly, the size of the permanent storage rises to values slightly below $2.5 \cdot 10^6$ clauses before UNSAT is found. In some cases, this number drops at the end of the solving process as many unit clauses are found here. To verify this conjecture, we ran the same test, this time was a lazy clause exchange policy. Here, clauses with LBD at most 4 were exchanged within one solver process, and forwarded to other processes only when a clauses was used for at least 4 times. As before, the sizes of
the respective clause databases are shown in the lower row of Figure 1. The number of deleted clauses is significantly lower. However, the final size of the clause database increases with the number threads we used. Compared to the first row with results for the simple clause exchange policy, the running times are significantly larger.

We conjectured that the problem here might be that the time between learning and transferring good clauses might be too large, and thus redundant clauses would be learned. If identical clauses would be learned and transmitted, this might be captured by using e.g. Bloom Filters as suggested e.g. in [10].

Instead of hashing clauses during import, we checked for duplicates whenever the clause DB was reduced. In this way, we can also capture whether duplicate clauses remain in the clause database for a long time, or if they are removed frequently, e.g. because the are satisfied by top-level assignments. Furthermore, this can be done pretty efficiently, and hardly influences the solving process. Table 2 exemplifies results for the hardest of the formulas in this case study. Here, collisions denotes the number of collisions of hash values, thus it is an upper bound on the actual number of duplicates. For three different export-strategies, it shows both the development of the size of the clause database and the number of duplicates in it. In the simple export strategy where clauses are exported immediately, the solvers learn some duplicate clauses in the beginning of the solving process. However, this number is quite low, and stays stable over the time. Contrary, the second chart shows the number of duplicate clauses when using lazy clause export. Here, the number of duplicates is significant, and grows over the time. The third chart presents the configuration which strengthens clauses before export. With this setup, there are slightly more collisions that in the first setting, but the number is still quite low. The findings from this experiment are two-fold. Firstly, Bloom filters do make sense especially if the transfer of learned clauses is slow, either because of lazy exchange policies or because of a slow interconnect, e.g. in a distributed environment. Still, duplicate clauses mean that redundant work was performed. Thus, filtering with a Bloom filter only prevents storing duplicates, but not this redundant work. It appears therefore important to exchange learnt clauses fast.

As we were interested in the structure of the clause set, we also ran a backward-subsumption test on the database of permanently stored clauses. This is stronger as it does not only find identical clauses, but also allows for counting and removing subsumed clauses, and strengthen clauses by self-subsuming resolution. Even with the improved subsumption test this is compute-intensive, for example, for 500,000 clauses it took our implementation roughly 1.5 seconds. The results were mixed, in this example only some clauses were subsumed, and the number of clauses
Table 3: Overall traffic via MPI in MB

<table>
<thead>
<tr>
<th>Depth</th>
<th>Simple Exc.</th>
<th>Lazy Exc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>11658</td>
<td>966</td>
</tr>
<tr>
<td>8</td>
<td>14261</td>
<td>1737</td>
</tr>
<tr>
<td>9</td>
<td>18841</td>
<td>2552</td>
</tr>
<tr>
<td>10</td>
<td>22620</td>
<td>4286</td>
</tr>
<tr>
<td>11</td>
<td>25245</td>
<td>6408</td>
</tr>
<tr>
<td>12</td>
<td>34553</td>
<td>8522</td>
</tr>
<tr>
<td>13</td>
<td>37287</td>
<td>11124</td>
</tr>
<tr>
<td>15</td>
<td>56531</td>
<td>17189</td>
</tr>
</tbody>
</table>

Table 4: Simple Clause Exchange

<table>
<thead>
<tr>
<th>#Threads</th>
<th>SAT</th>
<th>UNS</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>78</td>
<td>111</td>
<td>189</td>
</tr>
<tr>
<td>192</td>
<td>82</td>
<td>117</td>
<td>199</td>
</tr>
<tr>
<td>384</td>
<td>83</td>
<td>125</td>
<td>208</td>
</tr>
<tr>
<td>768</td>
<td>86</td>
<td>127</td>
<td>213</td>
</tr>
<tr>
<td>1536</td>
<td>89</td>
<td>137</td>
<td>226</td>
</tr>
</tbody>
</table>

which could be strengthened by self-subsuming resolution was small compared to the overall number of clauses. It would be interesting to see if this works out better on other formulas.

However, the lazy configuration has one major advantage. Table 3 shows the amount of data sent via MPI for different unroll depths and configurations, each using 768 threads. Especially for easier formulas, the network traffic is significantly lower with the lazy clause exchange. This amount of traffic is no problem for clusters with high-performance interconnect, but may be an issue when using e.g. cloud computing.

4.2 SAT Competition 2016 Benchmarks

In order to check the applicability of our solver on a wider range of formulas, we chose benchmarks which were used in the application track of the SAT competition 2016\(^2\). This benchmark set covers a wide range of different applications. In the competition, the best sequential solver could solve 154 of these benchmarks within a time limit of 5000 seconds (70 SAT, 84 UNSAT). The solvers were quite close, the solver which was ranked 5th solved only 4 instances left.

A virtual best solver (VBS) is a hypothetical solver which, when run on one for the formulas, would choose the best-performing solver out of the 27 competitors for this particular benchmark. Such a VBS built from the solvers which participated in the sequential track would have solved 198 formulas (90 SAT, 108 UNSAT). Similarly, a virtual best solver created from the 14 participant of the parallel track would have solved 225 instances (93 SAT, 132 UNSAT) within 5000 seconds.

Although both the timeout and the hardware differ, these numbers may allow for some classification of our results.

In the following, we discuss the results from three different clause exchange configurations and one configuration which diversifies the search as detailed in Subsection 3.4.

4.2.1 Plain Clause Exchange

Our first results for this benchmark set are shown in Table 4. In this setting, the most simple clause exchange policy was used. Learned clauses with LBD at most 4 were exported immediately. Received clauses were copied to the permanent clause storage if their LBD was updated to a value of at most 3. If they had not been used within an interval of 30000 conflicts, they were deleted.

With these settings, the smallest configuration using 96 solver threads could solve 189 formulas. This number increases whenever using more computational resources. Interestingly,
the largest increase in the number of solved benchmarks is observed when moving from 768 to 1536 solver threads, where 13 more instances can be solved (3 SAT, 10 UNSAT). The configuration on 192 solver threads outperforms the VBS created from sequential solvers, and the configuration on 1536 cores outperforms the VBS made from parallel solvers.

We consider this a quite interesting result, as our solver is an extension of Glucose 3.0, which as sequential solver is not competitive on this benchmark set. This emphasizes the benefit of clause exchange, especially on unsatisfiable formulas. Here, even the configuration on 96 cores beats the sequential VBS, and the largest configuration beats the parallel VBS by 5 instances.

4.2.2 Lazy Clause Exchange

Simply exchanging a huge number of learned clauses comes with the risk that either the same, or similar clauses are exchanged. As mentioned above, the first case was tackled in [10, 26] by hashing received clauses and filtering duplicates. Empirically, this does not filter many clauses, and does not help e.g. in the case of subsumed clauses. Thus, we tested our lazy clause exchange policy. Here, a clause was exported by a process only if 4 solvers reported that the clause had been used in analyzing a conflict at least once. The rationale behind this approach is that a clause which is subsumed by another one is unlikely to be used, and thus its export is implicitly prevented. Furthermore, it is a reasonable assumption that clauses which do not pass this test are unlikely to have significant positive impact on the search of other solvers.

This policy is more restrictive than the one used in [8] as the decision whether or not to export a clause is not made locally in one solver thread. Instead, it depends on the votes of several solver threads.

The results of this experiment are given in Table 5. Interestingly, they do not differ too much from the results in Table 4. In the overall picture, this configuration is slightly stronger on satisfiable benchmarks, and slightly weaker on unsatisfiable formulas. This is somewhat expected as a restriction of clause exchange implies smaller clause databases for every single solver thread, thus allowing for faster search for a satisfying assignment. Similarly, a restricted clause exchange may slow down the parallel creation of a resolution proof of unsatisfiability.

4.2.3 Clause Exchange with Strengthening

Next, we turn to a configuration which is intended to improve the solver performance especially on unsatisfiable formulas. Here, the same parameters as in the simple exchange policy are used.

Whenever a solver learns a clause of LBD at most 4, this clause is stored in a separate buffer instead of sending it immediately. When the solver thread restarts, it checks each of these stored clauses, and tries to find subsuming clauses similar to the clause vivification procedure described in [44]. This selective approach limits the computational resources spent on the strengthening
Tuning Parallel SAT Solvers

4.2.4 Diversified Search

The final result we present uses the diversified search strategy discussed in Subsection 3.4. As we considered this strategy to be stronger on satisfiable instances, we sought to balance the configuration to be also strong on unsatisfiable benchmarks. As suggested in [42], we slightly increased the LBD threshold for clauses to become permanent to 4. Some results for this setting are given in Table 7. Unfortunately we ran out of credits for our cluster at the time we ran these experiments, thus we can unfortunately only give results for up to 384 threads. Still, we consider them interesting. Compared to the setting with simple clause exchange presented in Table 4, the number of satisfiable instances solved is slightly increased, while the solver is significantly stronger on unsatisfiable instances. On 96 threads, this configuration solves 4 more satisfiable, and 13 more unsatisfiable formulas.

4.3 Discussion of Results

The solver configurations presented above perform quite well, both in terms of scaling and compared to other solvers. It is noteworthy that the solvers which participated in the SAT competition use different strategies. For example, Treengling [15] splits the search space into disjoint parts and searches these parts in parallel, Plingeling interleaves its search with simplification techniques [15], whereas the parallel Glucose derivatives by Audemard and Simon [9] try to identify benchmarks known from previous competitions, and adapt solver parameters to improve the performance on these instances. Thus, a virtual best solver created from these solvers is likely to choose a solver which performs well on some formulas, but may perform poorly on others. In comparison, all but the last configuration of our solver uses, except for the initial variable ordering, the same settings for every single solver thread.
4.4 Comparison to Other Solvers

Unfortunately, there are only few papers which report the scaling behavior of solvers above 100 CPU cores. Here, we compare our implementation to two other solvers. The sources of HordeSAT [10] are publicly available. Thus, we could test its scaling behavior on the same hardware and benchmark set. It is noteworthy that the version of HordeSAT for which results are reported in the respective publication is based on Lingeling, we thus kept it as is rather than modifying it.

The results are given in Table 8. HordeSAT also scales well, and is slightly faster than our solver when run on satisfiable formulas. On the contrary, it is significantly weaker on unsatisfiable benchmarks. On 96 CPU cores, it solves 105 unsatisfiable formulas, compared to 114 which are solved by the configuration shown in Table 6 which strengthens learned clauses. When using more parallel hardware, this gap widens. On 1536 CPU cores, our solver can solve 13 instances more than HordeSAT. Even the “lazy” configuration with limited clause exchange can solve 7 more instances here. This is a clear hint that the clause exchange does pay off in creating resolution proofs.

The authors of [5] report results for the same benchmark set and configurations on 128 and 256 cores, but with a time limit of only 900 seconds. The report 177 solved instances on 128 cores (73 SAT, 104 UNSAT), 184 solved instances (75 SAT, 109 UNSAT) on 256 cores. This performance is comparable to our implementation, although our underlying solver is significantly older.

5 Conclusion & Future Work

We present a highly parallel SAT solver which scales well on a wide range of formulas despite the limits of resolution proofs as investigated in [36]. We discuss several implementation details of this portfolio solver which seem to be crucial for a parallel solver in general. In particular, since our solver performs well against others despite its use of quite basic solver threads.

We hope that both the implementation details as well as the results are interesting, especially as access to massively-parallel is still limited. Thus, we consider it important to exchange as many experimental results as possible.

Compared to sequential solvers, parallel solvers can be tuned by even more parameters. For example, importing received clauses very eagerly as in ManySAT may cause the solver to backtrack quite often in cases where many clauses are received. On the contrary, only importing them during restarts may lead to long intervals without clause import, and thus increase the amount of redundant work performed by the solver. Thus, we intend to investigate good import strategies.

On hard formulas, the size of the database for learned clauses may become quite large. It would be interesting to see if there is a good, parallel approach to compress this set of clauses in a stronger way than just applying subsumption checks and self-subsuming resolution on it.

Lastly, hard combinatorial problems seem to be more suited to parallel solvers which split the search space by guiding paths. It would be interesting to detect such formulas, and adapt the solver strategy during the solving process.

References

[34] Marijn Heule and Sean Weaver, editors. Theory and Applications of Satisfiability Testing - SAT

Chanseok Oh. Between SAT and UNSAT: the fundamental difference in CDCL SAT. In Heule and Weaver [34], pages 307–323.

