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Abstract

Deep inference is a proof theoretical formalism that generalises the “shallow inference”
of sequent calculus by permitting the application of inference rules on subformulae like
term rewriting rules. Deep inference makes it possible to build shorter proofs than sequent
calculus proofs. However, deep inference in proof search introduces higher nondeterminism,
an obstacle in front of applications. Deep inference is essential for designing system BV, an
extension of multiplicative linear logic (MLL) with a self-dual non-commutative operator.
MLL has shallow inference systems, whereas BV is impossible with a shallow-only system.
As Tiu showed, any restriction on rule depth makes a system incomplete for BV. This
paper shows that any restriction that rules out shallow rules makes the system incomplete,
too. Our results indicate that for system BV, shallow and deep rules must coexist for
completeness. We provide extensive empirical evidence that deep inference can still be
faster than shallow inference when used strategically with a proof theoretical technique
for reducing nondeterminism. We show that prioritising deeper rule instances, in general,
reduces the cost of proof search by reducing the size of the managed contexts, consequently
providing more immediate access to shorter proofs. Moreover, we identify a class of MLL
formulae with deep inference proof search times that grow linearly in the number of atoms
in contrast to an exponential growth pattern with shallow inference. We introduce a large
and exhaustive benchmark for MLL, with and without mix, and a proof search framework
to apply various search strategies, which should be of independent interest.

1 Introduction

Deep inference [8] is a proof theoretical methodology that allows for applying the inference
rules at any position inside the formulae. Deep inference generalises the shallow inference of the
sequent calculus, which, in contrast, permits the rule instances only at the top-level formulae.
Due to the combinatoric wealth in the possible rule instances, deep inference exposes a rich
proof theoretical analysis that provides new perspectives for various logics [2, 25, 26, 8, 9, 28].
Some of these results are only possible with deep inference [30].

Deep inference proposes solutions to the logical characterisation of problems in computing
[8, 2, 9, 25, 3, 29, 8, 10]. A result of particular importance from the point of view of applications
is that deep inference accommodates proofs for propositional logic that are exponentially shorter
than those with the sequent calculus, as was shown for Statman tautologies in [4]. Sequent
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calculus proofs, on the other hand, can be straightforwardly mapped to deep inference proofs, as
formally shown via polynomial simulation results [4, 6]. Given that in proof search applications,
e.g., logic programming [21], even an improvement of a few steps can make a difference, the
capability to obtain shorter proofs should provide fertile ground for applications. However,
applications based on deep inference face the obstacle of non-determinism in proof search.
Because there are many more rule instances with deep inference compared to shallow inference,
the breadth of the search space increases rapidly in proof search applications, leading to a
combinatoric explosion after only a few steps.

System BV [8] is a logic for which the non-determinism in deep inference proof search
has particular implications. System BV is a conservative extension of multiplicative linear logic
(MLL) with the rules mix and nullary mix (mix0) and a self-dual non-commutative operator. The
non-commutative operator of system BV is well-suited for modelling sequential data. Like MLL
[18, 19, 20], system BV is NP-complete [11]. BV is similar to Pomset logic [23], it is contained
in the latter [22], and extending BV with the exponentials of linear logic [10, 28] results in
a Turing-complete logic [27]. However, as Tiu demonstrated with a counter-example, system
BV is impossible to conceive as a sequent calculus system or any system with bounded depth
inference rules without losing expressivity [30]. Consequently, any proof search application that
benefits from the full expressivity of BV needs to employ deep inference machinery.

In previous work [11, 13, 15], we introduced a technique for controlling the non-determinism
in deep inference proof search, and demonstrated its applicability to classical logic, multi-
plicative exponential linear logic and logic BV. This technique is based on making use of the
interactions between complementary formulae in proof construction and its correctness relies
on the similarity between cut elimination and completeness. We have used this technique also
as a proof theoretical tool to show the NP-completeness of BV [11].

Although this technique indicates a reduction in non-determinism, its performance in proof
search has not been hitherto quantified with extensive empirical evidence. In particular, the
availability of the interaction technique does not address the problem of how the search space
should be explored: the computational bottleneck due to the larger breadth of the search space
also persists when this technique is used naively to explore the complete search space. When
the proved formula presents sufficient depth to apply the inference rules deeply, there are still
many instances that cause the search space to expand more quickly than with shallow inference.
However, the large breadth of the search space also exposes shorter proofs that are otherwise
inaccessible with shallow inference.

To see these notions on an example, let us consider the formula [([a O ā] � b̄) O b]. With
shallow inference, the immediate breadth of the search space has the left and middle choices
below, whereas deep inference adds the third on the right, and others, depending on the logic.

([a O ā] � [b O b̄])
s
[([a O ā] � b̄) O b]

([a O ā O b] � b̄)
s
[([a O ā] � b̄) O b]

[(1 � b̄) O b]
ai↓

[([a O ā] � b̄) O b]

The situation exposed by this simple example becomes more significant as the number of the
subformulae grows. For example, for the formula [(ā � b̄) O a O b] the immediate breadth of
the search space has 6 rule instances, and only 2 of them result in proofs. With 6 atoms, we
get 42 immediate rule instances, and only 3 of them deliver proofs. However, some of the deep
rule instances provide shorter proofs. For example, the third instance above results in a shorter
proof. Then the question is: “How can these shorter proofs be accessed without being exposed
to the larger breadth of the search space?”

A potential answer to this question has been further narrowing the proof search space by
allowing only deeper rule instances. We had previously conjectured the completeness of a
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restriction that rules out shallow instances in deep inference systems [13]. If shallow instances
can be discarded without losing completeness, the remaining deeper instances will provide access
to shorter proofs quickly with a much narrower search space breadth.

Given that all proof attempts for this conjecture failed, we searched for a counter-example.
In the following, we show such a counter-example. To find this example, we have generated
all the provable formulae with up to 14 atoms that are provable in MLL or BV, resulting in
more than 20 million provable and non-provable MLL formulae and many more for BV. 1 We
have discovered that all the formulae up to 10 atoms are provable with restrictions on context
management rules that push the rule instances deeper into the formula. However, two different
12-atom formulae are counter-examples as they are otherwise provable. These are the only two
among 174079 provable formulae with 12 atoms. These examples demonstrate that shallow
inference is essential for the completeness of MLL and BV.

With this observation, we explored the performance of the alternative of pushing the rule
instances deeper via a strategy while keeping them in the search space. We performed an
exhaustive empirical analysis using our benchmark of all the formulae consisting of up to 14
atoms. Our results indicate that a naive approach for exploring the search space does not
deliver any competitive advantage to deep inference in comparison with shallow inference. As
expected, without any restrictions on the search strategy, the larger search space breadth results
in a quicker expansion and creates a bottleneck. However, we show on all the formulae with
up to 14 atoms that a search strategy that prioritises deeper rule instances over shallower
ones provides a reduction in the average cost of proof search significantly. The difference in
performance grows rapidly as the formulae grow larger.

Moreover, we introduce a normal form forMLL and include in our benchmark all the formulae
in this normal form with up to 34 atoms (607.492 formulae in normal form). With this deep
strategy, we show that the formulae in normal form require linear time in the number of atoms,
in contrast to an exponential growth pattern with shallow inference.

In the following, we first provide the background on deep inference and the previous work
on which the present study is based. We then illustrate our counter-example and introduce the
benchmark, providing a link to an online repository with our modules and scripts. We incre-
mentally report the experiments that substantiate our claims and conclude with a discussion
of our results and outlook.

2 Deep Inference and System BV

Deep inference operates on equivalence classes of formulae modulo algebraic equalities for logical
operators such as associativity, commutativity, and equalities for units and negation. The notion
of an equivalence class of formulae, originally called structure, stems from a graph representation
of formulae, which gives meaning to the inference rules [8]. The inference rules of BV are also
transformations on these graph representations.

In the following, we use the term formula as a synonym for structure: a formula is a
representation of all the formulae in its equivalence class. For example, the two formulae [aOb]
and [b O a] are in the same equivalence class, and we can use any of them to denote their
equivalence class. Let us now formally introduce BV formulae.

Definition 1. There are infinitely many positive atoms and negative atoms. Atoms, positive
or negative, are denoted by a, b, . . . Formulae are denoted by S, P,Q,R, T, U, . . . BV formulae

1We provide the scripts for generating these formulae in a GitHub repository. The formulae are also available
for download at https://www.inf.unibz.it/~okahramanogullari/Formulae/.
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are generated by the following grammar.

R ::= a | ◦ | R̄ | [R O R ] | (R � R ) | ⟨R�R ⟩

Here, ◦ is the unit, R̄ is the negation of the formula R, [R O R] is a par formula, (R � R) is
a copar (times) formula and ⟨R�R⟩ is a seq formula. A formula context, S{ }, is a formula
with a hole that is not in the scope of a negation. The formula R is a subformula of S{R}, and
S{ } is its context. We denote the empty context { } by ◦. Context braces are omitted if no
ambiguity is possible, e.g., if S{ } = [{ } O a], and R = ā, S{R} = [ā O a].

BV extends MLL with the rules mix, mix0, and an associative non-commutative operator.
Due to the rules mix and mix0, the units ⊥ and 1 collapse into a single unit [8].

Definition 2. BV formulae are equivalent modulo the relation ≈, which is the smallest con-
gruence relation induced by the equalities for associativity and commutativity of par and copar,
associativity of seq, the equations

[R O ◦] ≈ R, (R � ◦) ≈ R, ⟨R� ◦⟩ ≈ R, ⟨◦�R⟩ ≈ R

for unit and the equations

[R O T ] ≈ (R � T ), (R � T ) ≈ [R O T ], ⟨R� T ⟩ ≈ ⟨R� T ⟩, R ≈ R, ◦ ≈ ◦

for negation. We denote the formulae in the same equivalence class by picking a formula from
the equivalence class. If there is no ambiguity, we drop the superfluous brackets. For simplicity,
we assume that formulae are in negation normal form, which is obtained by pushing the negation
to the atoms in the usual way.

The set of equalities above is specific to system BV, which differs from those for deep
inference systems for other logics [8, 25, 26, 2, 29, 3, 10, 28].

Example 3. The two formulae below are equivalent.

[ [aOb]O [cO (⟨ā� ⟨(b̄� c̄)� [dO d̄]⟩⟩�◦)] ] ≈ [ [ [cO◦]O [bOa] ]O (⟨⟨ā� (b̄� c̄)⟩� [dO d̄]⟩�◦)]

We can denote both of these formulae with [a O b O c O ⟨ā� (b̄ � c̄)� [d O d̄]⟩].

Definition 4. A deep inference rule is a scheme of the kind

S{T}
ρ
S{R}

,

where ρ is the name of the rule, S{T} is its premise, and S{R} is its conclusion. For system
BV, such a rule determines the linear implication T −◦ R, or equivalently [T̄ O R], inside a
generic context S{ }. In an instance of ρ, we say that R is the redex and T is the contractum.
A system S is a set of inference rules.

An inference rule can be seen as a rewriting rule modulo an equational theory. Such a
consideration becomes useful, e.g., in proof search [17], as is the case for the present work.

Definition 5. A formal system, denoted by S, is a set of rules. A derivation in a system S
is a finite chain of instances of rules of S and is denoted by ∆. A derivation can consist of
just one formula. The topmost formula in a derivation is called premise, and the bottommost
formula in a derivation is called conclusion. A proof is a derivation with the premise ◦.

Definition 6. System BV is shown in Figure 1. The rules are called atomic interaction (ai↓),
switch (s), and seq (q↓). System FBV is the system consisting of only the rules ai↓ and s.
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S{◦}
ai↓

S [a O ā]

S([R O U ] � T )
s
S [(R � T ) O U ]

S⟨[P O Q] � [R O T ]⟩
q↓

S [⟨P �R⟩ O ⟨Q� T ⟩]

Figure 1: System BV

3 The Need for Shallow Inference

Tiu showed that the applicability of inference rules in deeper contexts is essential for system
BV [30]. Any restriction on the depth of the inference rules of BV delivers a strictly less
expressive logical system. The counter-example in [30] is based on a formula, the provability
of which necessitates deep inference to access the deepest formula. This formula can be nested
to generate formulae requiring increasingly deeper applicability of the inference rules. In its
simplest form, the following example illustrates the counter-example.

Example 7. The only way to prove the formula [⟨[a O b] � c⟩ O ⟨ā � [b̄ O c̄]⟩] requires an
instance of the rule q↓ that sequentializes at least one of the par formulae [a O b] and [b̄ O c̄].
Two such proofs are depicted below, where the redex in each rule instance is colour-marked.

◦
ai↓

[c O c̄]
ai↓

⟨[b� b̄] � [c O c̄]⟩
ai↓

⟨[a O ā] � [b� b̄] � [c O c̄]⟩
q↓

⟨[a O ā] � [⟨b� c⟩ O ⟨b̄� c̄⟩]⟩
q↓

[⟨a� b� c⟩ O ⟨ā� b̄� c̄⟩]
q↓

[⟨a� b� c⟩ O ⟨ā� [b̄ O c̄]⟩]
q↓

[⟨[a O b] � c⟩ O ⟨ā� [b̄ O c̄]⟩]

◦
ai↓

[c O c̄]
ai↓

⟨[a� ā] � [c O c̄]⟩
ai↓

⟨[a O ā] � [⟨[b O b̄] � c⟩ O c̄]⟩
q↓

⟨[a O ā] � [⟨b� c⟩ O b̄ O c̄]⟩
q↓

[⟨a� b� c⟩ O ⟨ā� [b̄ O c̄]⟩]
q↓

[⟨[a O b] � c⟩ O ⟨ā� [b̄ O c̄]⟩]

The one on the left sequentializes both seq formulae to make the dual atoms interact. The one
on the right sequentializes only one of the two par formulae, which is also sufficient.

As these two proofs and the example in the introduction demonstrate, deeper rule instances
can provide shorter proofs when they are available. This is because deeper instances often reduce
the number of nested logical operators due to the annihilation of subformulae. This reduction,
in return, reduces non-determinism as fewer nested logical operators imply fewer rule instances
in the subsequent search tree branches. Although this mechanism is useful in providing quicker
access to shorter proofs, we show below that it cannot be imposed to reduce non-determinism
without losing completeness. Shallow rule instances are essential for completeness.

Definition 8. A formula context S{ } is shallow if there are no formulae S1 ̸= ◦, S2 ̸= ◦, and
S3 such that S = [S1 O (S2 � S3{ })] or S = [S1 O ⟨S2 � S3{ }⟩] or S = [S1 O ⟨S3{ }� S2⟩].

The definition above is the most general form of shallowness that illustrates our case. How-
ever, more restricted definitions can also be considered.

Example 9. Both ([aOā]�{ }) and [(a� [aOā])O{ }] as well as { } and ([aOā]� [aO{ }])
are shallow contexts, whereas the contexts [a O (ā � { })] and [a O ⟨ā� { }⟩] are not.
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◦
ai↓

[a O ā]
ai↓

[ā O ⟨a� [a O ā]⟩]
q↓

[ā O ā O ⟨a� a⟩]
ai↓

[⟨[a O ā] � [ā O ā]⟩ O ⟨a� a⟩]
q↓

[⟨a� [ā O ā]⟩ O ā O ⟨a� a⟩]
ai↓

[⟨a� [ā O ā]⟩ O ⟨[ā O ⟨a� a⟩] � [ā O a]⟩]
ai↓

[⟨a� [ā O ā]⟩ O ⟨[ā O ⟨a� a⟩] � [ā O ⟨a� [a O ā]⟩]⟩]
q↓

[⟨a� [ā O ā]⟩ O ⟨[ā O ⟨a� a⟩] � [ā O ā O ⟨a� a⟩]⟩]
ai↓

[⟨a� [ā O ā]⟩ O ⟨[ā O ⟨a� a⟩] � [⟨a� a⟩ O ⟨[ā O ā] � [a O ā]⟩]⟩]
q↓

[⟨a� [ā O ā]⟩ O ⟨[ā O ⟨a� a⟩] � [⟨a� a⟩ O ā O ⟨a� [ā O ā]⟩]⟩]
q↓

[⟨[ā O ⟨a� a⟩] � [ā O ⟨a� a⟩]⟩ O ⟨a� [ā O ā]⟩ O ⟨a� [ā� ā]⟩]

Figure 2: A proof of the formula in Example 11.

Definition 10. A rule instance is shallow if it is in a shallow context. A rule is deep-only if
its shallow instances are excluded when a deep (non-shallow) instance is available.

Example 11. The formula below can be proven as depicted in Figure 2.

[⟨[ā O ⟨a� a⟩] � [ā O ⟨a� a⟩]⟩ O ⟨a� [ā O ā]⟩ O ⟨a� [ā O ā]⟩]

There are 28 rule instances of the rule q↓ with this formula in the conclusion. The instances
that are not shallow do not lead to a proof.

Due to the units, the rule q↓ can be applied to this formula in 28 different ways [16], making
the case analysis difficult. We can produce a similar example involving copar formulae instead
of seq formulae. This formula is simpler as it involves fewer rule instances.

Example 12. The formula below can be proven as depicted in Figure 3.

[([ā O (a � a)] � [ā O (a � a)]) O (a � [ā O ā]) O (a � [ā O ā])]

Remark 13. The formula in Example 11 is not provable in BV with deep-only seq rule. The
formula in Example 12 is not provable in BV with deep-only switch rule.

The two example formulae are very similar as the rules s and q↓ are derived from the same
rule in [8]. We discuss the formula in Example 12, which is simpler with fewer cases, and
suffices to show that shallow inference is essential for provability for BV and MLL. This formula
does not include any seq operators. Thus, the rule q↓ instances can be discarded from the
case analysis. There are 15 rule instances of s with this formula in the conclusion. The Maude
module counter example.maude in our repository 2 shows that only the instance in Figure
3 results in a proof [17]. However, there are many other proofs, where this instance is the
bottom-most.

2https://github.com/ozan-k/deep/blob/main/counter_example.maude
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◦
ai↓

[a O ā]
ai↓

[ā O (a � [a O ā])]
s

[ā O ā O (a � a)]
ai↓

[([a O ā] � [ā O ā]) O (a � a)]
s

[(a � [ā O ā]) O ā O (a � a)]
ai↓

[(a � [ā O ā]) O ([ā O (a � a)] � [ā O a])]
ai↓

[(a � [ā O ā]) O ([ā O (a � a)] � [ā O (a � [a O ā])])]
s
[(a � [ā O ā]) O ([ā O (a � a)] � [ā O ā O (a � a)])]

ai↓
[(a � [ā O ā]) O ([ā O (a � a)] � [(a � a) O ([ā O ā] � [a O ā])])]

s
[(a � [ā O ā]) O ([ā O (a � a)] � [(a � a) O ā O (a � [ā O ā])])]

s
[([ā O (a � a)] � [ā O (a � a)]) O (a � [ā O ā]) O (a � [ā O ā])]

Figure 3: A proof of the formula in Example 12.

Let us analyse these cases. 6 of the remaining instances are of the following form, where we
colour-mark R and T .

S([R O ◦] � T )

S [(R O T ) � ◦]

The following instances do not lead to a proof.

([ā O (a � a)] � [ā O (a � a)] � [(a � [ā O ā]) O (a � [ā O ā])])

([([ā O (a � a)] � [ā O (a � a)]) O (a � [ā O ā])] � a � [ā O ā])

[([ā O (a � a)] � [ā O (a � a)]) O (a � [ā O ā] � a � [ā O ā])]

[([ā O (a � a)] � [ā O (a � a)] � a � [ā O ā]) O (a � [ā O ā])]

[([ā O (a � a)] � ā � a � a) O (a � [ā O ā]) O (a � [ā O ā])]

[([ā O (a � a)] � [ā O (a � a)]) O (a � [ā O ā]) O (a � ā � ā)]

There are 8 other instances of s that result in non-provable formulae. Each can have multiple
ways to instantiate R, T , and U . We mark R and U for one such choice for each case.

([ā O (a � a)] � [ā O (a � a) O (a � [ā O ā]) O (a � [ā O ā])])

(a � [ā O ā O ([ā O (a � a)] � [ā O (a � a)]) O (a � [ā O ā])])

([ā O ā] � [a O ([ā � (a � a)] � [ā O (a � a)]) O (a � [ā O ā])])

[(a � [ā O ā]) O ([ā O ā] � [a O ([ā O (a � a)] � [ā O (a � a)])])]

[([ā O (a � a)] � [ā O (a � a)]) O ([ā O ā] � [a O (a � [ā O ā])])]

[(a � [ā O ā]) O (a � [ā O ā O ([ā O (a � a)] � [ā O (a � a)])])]

[([ā O (a � a)] � [ā O (a � a)]) O (a � [ā O ā O (a � [ā O ā])])]

[(a � [ā O ā]) O (a � [ā O ā]) O (a � ([a O ā] � [ā O (a � a)]))]

Definition 14. Two systems S and S ′ are equivalent if they prove the same formulae.
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S{1}
ai↓

S [a O ā]

S([R O U ] � T )
s
S [(R � T ) O U ]

S{R}
u1↓

S [R O ⊥]

S{R}
u2↓

S(R � 1)

Figure 4: System MSu

Proposition 15. No system consisting of deep-only rules can be equivalent to system BV.

The statement follows from Examples 11, and 12 as the only rule instance that delivers a
proof is in a shallow context in both cases. By using the formulae in Examples 7, 11, and 12,
it is easy to obtain others that require both deep and shallow rule instances for provability.

Example 16. The following formula requires both deep and shallow rule instances in a proof.

([([āO (a� a)] � [āO (a� a)])O (a� [āO ā])O (a� [āO ā])] � [⟨[aO b] � c⟩O ⟨ā� [b̄O c̄]⟩])

Remark 17. In our benchmark, there are 174079 provable formulae with 12 atoms. The
formula in Example 12 is one of the two formulae (and their symmetric versions with respect
to atoms) that have no proof with deep-only rules. The other counter-example is the following.

[(ā � ā) O (ā � [a O a]) O ([a O (ā � ā)] � [a O ā O (a � a)])]

Remark 18. The rule ai↓ can be permuted up in the proof [26, 28], which implies that this rule
can be restricted as deep-only.

4 Non-determinism in Proof Search

In BV, a part of the non-determinism in the applicability of the inference rules is due to the
context management rules s and q↓. Below, we review the technique in [11, 13, 15] that reduces
the non-determinism in rule s. To be able to provide a comparison with a shallow system, we
focus on MLL. However, we include in our benchmark also BV formulae.

Definition 19. Given a formula R, atR is the set of the atoms in R.

Example 20. For R = [a O ā O b O (ā � c) O (a � b̄)], we have atR = {a, ā, b, b̄, c}.

Definition 21. For any two formulae R and U , we say that R and U can interact if R and U
contain complementary atoms, that is, atR ∩ atU ̸= ∅.

Definition 22. Let MSu denote the deep inference system for MLL with the rules s, ai↓, and
the rules for the multiplicative units u1↓ and u2↓ in Figure 4. An instance of the switch rule s

1. is an instance of interaction switch (is) if R and U can interact,

2. it is lazy switch (ls) if U is not a par,

3. it is deep switch (ds) if R is not a copar.
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id
⊢ [a O ā]

1
⊢ 1

⊢ R
⊥

⊢ [R O ⊥]

⊢ [U O R] ⊢ [T O V ]
�1 ⊢ [U O V O (R � T )]

⊢ R ⊢ T
�2 ⊢ (R � T )

⊢ [U O R] ⊢ T
�3 ⊢ [U O (R � T )]

⊢ R ⊢ [T O V ]
�4 ⊢ [V O (R � T )]

Figure 5: System MLL

By combining these restrictions, we obtain 7 new rules. For example, by imposing all of them,
we obtain deep lazy interaction switch (dlis). The system obtained by replacing in MSu the rule
s with one of these 7 rules is denoted by adding the prefix of the switch rule. For example, the
system MSu with deep lazy interaction switch, denoted by MSdli, is {ai↓, dlis, u1↓, u2↓}.

System MSu differs from the deep inference system for MLL in [26]: we use an explicit
treatment of the units with the inference rules unit-one (u1↓) and unit-two (u2↓) instead of the
equations for unit in [26]. Because negation appears only on atoms as before, we can discard
the equations for negation and unit in the systems we use for proof search.

Theorem 23. [11, 13, 15] Systems MSdli and MLL are equivalent.

Example 24. For the formula in Example 12, there are 6 applicable instances of the rule dlis,
including the bottom-most rule instance in Figure 3 in contrast to 15 instances of the rule s.

To conclude our discussion on setting the stage, let us introduce the shallow inference system
MLL in Figure 5, defined as in the sequent calculus, however, with the omission of the meta-level
rules, replaced by the associativity and commutativity of the par connective. In this setting,
derivations are trees, as usual.

Let us now apply the notion of interaction to the shallow inference setting.

Definition 25. The rules �i
1, �i

3 and �i
4 are obtained from the rules �1, �3 and �4 in Figure

5 by imposing the condition that R and U can interact in �i
1 and �i

3, and that T and V can
interact in �i

1 and �i
4. The system with these conditions in MLL is denoted by MLLi.

Proposition 26. Systems MLL and MLLi are equivalent.

5 The Benchmark and Proof Search Implementation

We have created a benchmark using the equational term rewriting features of the Maude lan-
guage. Let us first collect the definitions to build the benchmark.

Definition 27. The seed formulae of MLL are given by the grammar:

R ::= [a O ā] | (R � R)

A seed with 2n atoms is called an n-seed, where n is the seed size. A seed generated formula
is obtained by iteratively applying the switch rule top-down.
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All formulae
n 2 3 4 5 6 7

# provable 6 53 665 10042 174079 3329979
# non-provable 9 124 2047 38518 795621 17655292

Table 1: The numbers of the n-seed generated MLL formulae in our benchmark.

Example 28. The formula ([a O ā] � [a O ā] � [a O ā]) is a 3-seed whereas the formulae
[(ā � ā � ā) O a O a O a] and ([a O ā] � [a O a O (ā � ā)]) are 3-seed generated.

Proposition 29. Any seed-generated formula has a proof in MLL.

For the BV formulae, we included in the seed grammar in Definition 27 also the seq formulae.
We implemented the definitions above in Maude as equational term rewriting systems [17] and
interfaced Python scripts to control these modules. To obtain the formulae, we created n-seeds
and generated the formulae using Maude modules that implement the top-down application of
the context management rules, switch and seq. For the provable formulae, we restricted the
formulae to those consisting of multiple instances of the same atom and its negation as this is
the most general and harder case for proof search [7], providing the combinatoric wealth in all
possible pairings of dual atoms, required for NP-hardness [18, 20, 11]. For the non-provable
formulae, we replaced in each seed one of the atoms with a different atom. This way, we
obtained all the n-seed generated formulae for n ∈ {2, . . . , 7}. The numbers of these formulae
are shown in Table 1. The Maude modules and the Python scripts are available for download
at our GitHub repository3. An example of a module that generates formulae is the following.

mod S is

sorts Atom formula . subsort Atom < formula .

op -_ : Atom -> Atom [ prec 50 ] .

op [_,_] : formula formula -> formula [assoc comm] .

op {_,_} : formula formula -> formula [assoc comm] .

ops a : -> Atom . var R T U : formula .

rl [switch] : { [ R , U ] , T } => [ { R , T } , U ] .

endm

6 Comparing Proof Search Performance

We compared the performance of the four systems by using the same implementation. These
systems are MLL (shallow), MLLi (shallow with interaction), MSu (deep), and MSdli (deep
with interaction). In our comparison, we first set a baseline using Maude’s built-in breadth-
first search, which is highly optimised. This way, we verified how the search space expands
for provable and non-provable formulae. Then, to experiment with different search strategies,
we implemented the search stack using the Maude Python library [24]. This way, we could
introduce programmatic control over the search space stack. Despite the considerable overhead
it introduces, we settled for this option to be able to compare different systems and strategies
using the same implementation. Consequently, we measured with different search strategies (i)
the number of search steps, (ii) the search time, (iii) the length of the proof, defined as the

3https://github.com/ozan-k/deep
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Figure 6: Mean search time (top), proof size (bottom-left), and proof length (bottom-right)
with breadth-first search for all the n-seed formulae for n < 5. The error bars indicate the
standard deviation. The search timed out for n ≥ 5 for all the systems.

number of rule instances in the proof, and (iv) the size of the proof, defined as the number
of atoms in the proof. With depth-first search, by applying different functions for sorting the
immediate breadth of the search space at every proof step, we could implement and test different
strategies for accessing the depth of the search space. The data plotted in all of the figures
below are listed in the appendix.

6.1 Search space is smaller with shallow inference

We first compared the search space size with deep and shallow inference by performing breadth-
first search. For these experiments we set 30000 steps as the cut-off for time out. The search
timed-out for 5-seed formulae and larger; the results that are shown in Fig. 6 are for n < 5.

We found that with uncontrolled search, deep inference requires more search steps to find
a proof due to a larger search space with proof times proportional to the search space size.
However, the deep inference proofs are shorter and smaller than the shallow inference proofs.
Despite the larger search space, with the 5-seed formulae, the deep inference system (without
the interaction condition) timed out after proving 552 formulae, whereas the shallow system
timed out after proving 15 formulae. This difference is due to the shorter deep inference proofs
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that are accessed more quickly with breadth-first search. However, the larger search space
creates a bottleneck as the lengths of the proofs increase.

We then compared the performance of the deep and shallow interaction systems. As ex-
pected, with breadth-first search, the deep interaction system performed better than the deep
system. However, the shallow system with interaction was faster than all the others due to the
narrower breadth of the search space. Because the interaction systems found the same proofs
as the non-interaction systems, however faster, the proof lengths and sizes remained unaffected
with the interaction systems. More interestingly, with 5-seed formulae, the deep inference in-
teraction system timed out after proving 2224 formulae, an improvement in comparison to 552
formulae of non-interaction deep inference system and the 15 formulae of the shallow system
also with the interaction. This confirms that the interaction condition provides a reduction in
the search space size for the deep system, which is not the case for the shallow system, with or
without the interaction condition.

6.2 Prioritising deeper rule instances delivers shorter proofs quickly

Breadth-first search explores the complete search space to find a proof of length k before
attempting to find a proof of length k + 1. As the length of the proofs increases, finding
proofs become harder due to explosion in search space size. In depth-first search, on the other
hand, the ordering of the breadth of the search space determines which part of the search space
is explored first, in-depth, instead of another. In such a setting, applying, for example, the
invertible rules sooner reduces the number of search steps of a successful search as, this way,
these instances are prevented from propagating to the search space.

Example 30. Consider the three proofs of the same formula below, where the early instance
of the rule u2↓ in proof construction makes the shorter proof immediately accessible. However,
another important observation is that the early instance of the rule u2↓ is possible only because of
the deep instance of the rule ai↓ below it, which is applied before in bottom-up proof construction.

1
ai↓

[a O ā]
u2↓

[(1 � ā) O a]
ai↓

[([a O ā] � ā) O a]

1
u2↓

(1 � 1)
ai↓

(1 � [a O ā])
s
[(1 � ā) O a]

ai↓
[([a O ā] � ā) O a]

1
u2↓

(1 � 1)
ai↓

([a O ā] � 1)
ai↓

([a O ā] � [a O ā])
s
[([a O ā] � ā) O a]

Proposition 31. For any formula R and context S, S{R} has a proof in MSu if and only if
(i) S [R O ⊥] has a proof; and (ii) S(R � 1) has a proof.

To see the effect of prioritising invertible and deeper rules, we implemented a depth-first
search strategy, where the immediate breadth of the search space is sorted by two functions.

Definition 32 (deeper inference). Given a formula R, σ(R) denotes the number of symbols in
R. Given an instance of the switch rule of the form

S([U O R] � T )
s
S [U O (R � T )]

we define the function f = 1/(σ(U)+σ(R)). Then, given two instances of the switch rule s1, s2,
we define the deeper inference relation ≻ such that s1 ≻ s2 if and only if f(s1) > f(s2). The
relation ≻ is extended to the other rules of system MSu as follows.

u1↓ ≻ u2↓ ≻ ai↓ ≻ s
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Figure 7: Mean search time (top), proof size (bottom-left) and length (bottom-right) with
depth-first search for all the n-seed formulae for n < 6 and 6-seed formulae for deep interaction
system. The search timed out for n ≥ 6 for all the systems except the deep interaction system.
For sorting the immediate breadth of the search space, the deeper inference strategy is used.
The error bars indicate the standard deviation.

We implemented Definition 32 as a strategy to sort the immediate breadth of the deep
systems so that the greatest rule instance with respect to the relation ≻ determines which
part of the search space is explored in depth-first search before others. In the shallow systems,
the rule instances follow a certain order whereby context management rules are applied always
before other rules, hence there are no deeper rules to prioritise. Consequently, the strategy
imposed by the sorting of the breadth of search space does not apply to the shallow systems.
However, for a comparison, we singled out the better performing order on the rule instances of
the shallow systems and used this for the experiments.

The results with depth-first search are depicted in Fig. 7. The shallow and shallow inter-
action systems required comparable number of search steps, whereby the interaction system
performed slightly better. However, both systems were outperformed by the deep systems.
Moreover, the deep interaction system provided proofs also for all the 6-seed formulae in less
than 1000 steps. For all the 7-seed 3.329.979 formulae, the deep interaction system terminated
with proofs. However, for 811 of these formulae, the search required more than 30000 steps.
The deep interaction system outperformed all the other systems in proof times with a large
margin by delivering proofs in milliseconds for all the formulae up to 6-seeds, also with smaller
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Normal formulae
n 2 3 4 5 6 7 8 9

# formulae 3 8 21 52 124 284 629 1352

n 10 11 12 13 14 15 16 17
# formulae 2829 5777 11544 22620 43529 82409 153677 282634

Table 2: The numbers of the n-seed generated normal formulae in our benchmark.

proof sizes and lengths. The performance gap between deep and shallow interaction systems
grew rapidly with the seed size.

To verify that the performance differences above are not only due to depth-first search but
the strategy that prioritises the deeper rule instances, we ran experiments with the reverse order
of the deeper inference strategy with depth-first search. As expected, the search performance
was similar to the ones observed with breadth-first search (see the data in the appendix).

7 A Deeper Class of Formulae

We found that a class of formulae have exponentially faster proof search performance with the
deeper search strategy.

Definition 33. A formula is normal if there is no instance of the switch rule with this formula
in the premise.

Example 34. Consider the formulae in Example 28. [(ā � ā � ā) O a O a O a] is normal,
whereas ([a O ā] � [a O a O (ā � ā)]) is not normal.

We have generated exhaustively all the seed-generated normal formulae up to a seed size
of 17. Table 2 gives the numbers of these formulae. We ran experiments on all these formulae
with all four systems. We found that both search steps and search time, as well as the proof
length, follow a linear trend with the deep interaction system for this class of formulae (Fig.
8). In contrast, with shallow inference, proof times of these formulae increase rapidly following
an exponential pattern. These results indicate that the normal formulae constitute a class that
drastically distinguishes deeper inference in proof search performance.

8 Discussion

The interaction condition on context management provides some control on nondeterminism in
deep inference proof search [11, 13, 15]. However, our results indicate that a naive use of this
technique does not provide a computational advantage for proof search applications. The main
advantage of the interaction technique manifests itself when it is coupled with the strength
of deep inference in providing access to the shorter proofs that are otherwise, with shallow
inference, impossible. Our results, however, indicate that shallow rule instances are needed to
preserve completeness.

In most cases in our experiments, deep inference systems outperform shallow systems when
the interactions between dual atoms are prioritised in deeper contexts. Because shorter proofs
are constructed by annihilating the atoms as early as possible during the proof construction
process, the size and length of the proofs obtained this way are also smaller. Constructing the
proofs by starting from subformulae removes the redundant information that would otherwise
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Figure 8: Mean search time, proof length, and proof size with depth-first search for all the n-
seed normal formulae for n ≤ 17. The search timed out for n ≥ 6 for the deep system without
interaction. For sorting the immediate breadth of the search space, the deeper inference strategy
is used. The error bars indicate the standard deviation.

be carried along with the proof. In addition, checking the interaction condition for the redexes
in deeper contexts is generally cheaper as the size of the subformulae gets smaller in deeper
contexts. The empirical evidence in our results indicates that the deeper inference search
strategy implements a mechanism that brings together these concepts and, in this way, delays
exploring the complete search space, delivering shorter proofs quickly.

Although the deeper inference strategy delays the shallow rule instances, these instances
still need to exist in the search space to conserve completeness. This has implications on per-
formance, especially when non-provable formulae are considered. In applications, non-provable
formulae can be accommodated with a time-out mechanism as in competitive first-order logic
theorem provers. However, the theoretical baseline in deep inference proof search can be pushed
further using a mechanism that couples splitting theorems [8, 10, 13, 15] and focusing [1, 5], the
latter being orthogonal to the approach here that prioritises deeper rule instances. From the
point of view of applications, exploiting the concurrency in proofs is a related topic that should
provide performance improvements [12, 14], for example, in logic programming applications [21]
and interactive and automated provers for different logics. Progress in these lines of research
should also pave the way for applications of deep inference, especially for BV, which needs deep
and shallow context management.
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9 Appendix: Data Used in the Figures

shallow, all formulae, breadth-first, Fig. 6
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 6 6.0 0.577 0.0003 0.0002 10.0 0.0 5.0 0.0
3 53 59.245 22.333 0.0027 0.0013 22.113 0.462 8.0 0.0
4 665 710.759 527.719 0.0314 0.0262 42.378 0.783 11.0 0.0

shallow int., all formulae, breadth-first, Fig. 6
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 6 6.0 0.577 0.0004 0.0002 10.0 0.0 5.0 0.0
3 53 59.245 22.333 0.0027 0.0013 22.113 0.462 8.0 0.0
4 665 710.759 527.719 0.0315 0.0262 42.379 0.784 11.0 0.0

deep, all formulae, breadth-first, Fig. 6
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 6 2.3333 2.13437 0.0011 0.0007 8.0 2.0 2.5 0.5
3 53 52.811 66.8964 0.0154 0.0222 17.7358 3.7475 4.1887 0.7283
4 665 3307.85 7253.19 4.389 41.0617 31.2992 5.6936 5.9835 0.8816

deep int., all formulae, breadth-first, Fig. 6
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size SD Proof
length

length
SD

2 6 1.6666 0.7453 0.0007 0.0002 8.0 2.0 2.5 0.5
3 53 29.113 28.017 0.0098 0.0113 17.7358 3.74745 4.1887 0.7283
4 665 1321.51 2377.51 0.8079 2.6450 31.2992 5.6936 5.9835 0.8816

shallow, all formulae, depth-first, deeper inference, Fig. 7
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 6 4.0 0.0 0.0007 0.0002 10.0 0.0 5.0 0.0
3 53 8.774 2.447 0.0012 0.0004 22.1132 0.4622 8.0 0.0
4 665 156.914 137.225 0.0146 0.0135 45.1098 1.0809 11.0 0.0
5 10042 3105.81 4156.83 0.3746 0.8446 72.0295 2.8973 14.0 0.0

shallow int., all formulae, depth-first, deeper inference, Fig. 7
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 6 4.0 0.0 0.0005 0.0003 10.0 0.0 5.0 0.0
3 53 8.283 2.0223 0.0010 0.0003 22.113 0.4621 8.0 0.0
4 665 120.206 95.6769 0.0122 0.0101 44.902 1.082 11.0 0.0
5 10042 1907.58 2427.16 0.2795 0.5054 71.724 2.999 14.0 0.0
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deep, all formulae, depth-first, deeper inference, Fig. 7
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 6 1.8333 1.067 0.0003 0.0001 8.0 2.0 2.5 0.5
3 53 7.9811 11.64 0.0012 0.0017 18.075 3.8453 4.1886 0.7283
4 665 43.426 136.74 0.0083 0.029 33.028 6.5855 6.0661 0.9679
5 10042 229.39 783.72 0.2102 14.290 52.414 9.3063 8.0438 1.1468

deep int., all formulae, depth-first, deeper inference, Fig. 7
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 6 1.5 0.5 0.0002 6.755 8.0 2.0 2.5 0.5
3 53 3.3019 1.020 0.0005 0.0002 17.7358 3.7474 4.1886 0.7283
4 665 6.0751 5.376 0.0013 0.001 31.5579 5.8216 6.0090 0.8791
5 10042 12.2749 32.019 0.0033 0.0073 49.350 8.0574 7.8912 0.9850
6 174079 31.6363 197.639 0.01166 0.0818 71.119 10.5108 9.8061 1.0680

deep, depth-first, all formulae, deeper inference reverse
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 6 4.1666 2.7938 0.0004 0.0002 11.3333 2.9814 3.3333 0.745
3 53 85.566 118.016 0.0161 0.024 30.2264 6.7924 6.0378 1.132
4 665 1340.65 2192.82 0.3644 0.9551 53.2583 9.9515 8.192 1.217

deep int., all formulae, depth-first, deeper inference reverse
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 6 3.5 1.5 0.0003 7.885 11.3333 2.981 3.333 0.7453
3 53 54.1886 60.0654 0.0056 0.0067 29.622 6.961 5.9622 1.1320
4 665 1603.16 3058.83 0.2817 0.817 56.544 11.70251 8.6256 1.4151

shallow, normal formulae, depth-first, deeper inference, Fig. 8
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 3 4.0 0.0 0.00034 0.0002 10.0 0.0 5.0 0.0
3 8 10.0 2.4495 0.00075 0.0002 22.0 0.0 8.0 0.0
4 21 350.714 161.033 0.0153 0.0124 45.428 0.904 11.0 0.0
5 52 8699.56 4726.35 0.3241 0.561 71.0 2.0 14.0 0.0

shallow int., normal formulae, depth-first, deeper inference, Fig. 8
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 3 4.0 0.0 0.0005 0.00034 10.0 0.0 5.0 0.0
3 8 9.5 2.784 0.0007 0.00019 22.0 0.0 8.0 0.0
4 21 260.91 107.777 0.01123 0.0084 45.333 0.9428 11.0 0.0
5 52 7825.92 4898.05 0.4371 0.55412 71.115 2.1983 14.0 0.0
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deep, normal formulae, depth-first, deeper inference, Fig. 8
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 3 2.666 0.9428 0.0005 0.0001 10.0 0.0 3.0 0.0
3 8 16.25 21.6376 0.0024 0.0030 22.25 0.662 5.0 0.0
4 21 207.952 566.76 0.0313 0.0988 42.7619 5.290 7.476 0.663
5 52 832.730 2304.62 0.2196 0.8384 67.3076 7.685 9.866 0.760

deep int., normal formulae, depth-first, deeper inference, Fig. 8
seed
size

#
form.

Search
steps

steps
SD

time
(sec.)

time
SD

Proof
size

size
SD

Proof
length

length
SD

2 3 2.0 0.0 0.0003 0.0002 10.0 0.0 3.0 0.0
3 8 4.0 0.0 0.0007 0.0001 22.0 0.0 5.0 0.0
4 21 6.0 0.0 0.0011 0.0004 38.0 0.0 7.0 0.0
5 52 8.0 0.0 0.0019 0.0008 58.0 0.0 9.0 0.0
6 124 10.0 0.0 0.0030 0.0015 82.0 0.0 11.0 0.0
7 284 12.0 0.0 0.0041 0.0017 110.0 0.0 13.0 0.0
8 629 14.0 0.0 0.0056 0.0022 142.0 0.0 15.0 0.0
9 1352 16.0 0.0 0.0075 0.0029 178.0 0.0 17.0 0.0
10 2829 18.0 0.0 0.0098 0.0037 218.0 0.0 19.0 0.0
11 5777 20.0 0.0 0.0125 0.0047 262.0 0.0 21.0 0.0
12 11544 22.0 0.0 0.0201 0.0138 310.0 0.0 23.0 0.0
13 22620 24.0 0.0 0.0270 0.0144 362.0 0.0 25.0 0.0
14 43529 26.0 0.0 0.0307 0.0127 418.0 0.0 27.0 0.0
15 82409 28.0 0.0 0.0347 0.0123 478.0 0.0 29.0 0.0
16 153677 30.0 0.0 0.0387 0.0127 542.0 0.0 31.0 0.0
17 282634 32.0 0.0 0.0432 0.0136 610.0 0.0 33.0 0.0
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