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Abstract

We present a sound and complete model theory for theories of β-reduction with or
without η-expansion. We then show in what conditions we obtain models of β-equality
and βη-equality.

1 Introduction

We extend the method of [GG10] by which we are able to interpret λ-terms compositionally on
‘possible world’ structures. The simplicity of the structures is striking, moreover, they provide
us with a surprising richness of interpretations of function abstraction and application. Our
primary goal is to show how the models can differentiate between extensional and intensional
λ-equality, and provide semantic characterisation (i.e. completeness) theorems for both. We
shall then hint at how richer λ-languages can be interpreted.

The key idea in this paper is a class of models, presented in Section 2.2, although an impor-
tant syntactic consideration is required first in Section 2.1. These ideas bear some similarity to
the reduction models of [Sel03] in that they get us as far as λ-reduction only. Then, in Section 4
we make use of the results of the earlier sections to provide a characterisation theorem for
λ-equality (both with and without η-equality, i.e. extensional and intensional). We can then
use this characterisation to comment on the issue of order-incompleteness.

2 The models, computation, logic

2.1 The language and logic

Definition 2.1. Fix a countably infinite set of variables.

Define a language Lλ of λ-terms by:

t ::= x | λx.t | t·t

λx binds in λx.t. For example, x is bound (not free) in λx.x·y.

We write t[x/s] for the usual capture-avoiding substitution. For example,
(λz.y)[y/x] = λz.x, and (λx.y)[y/x] = λz.x where z is an arbitrary fresh variable.

We write t[x:−s] for the (unusual) non-capture avoiding substitution. For example,
(λx.x)[x:−y] = λx.y, (λx.y)[y:−x] = λx.x and x[y:−t] = x.
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Let x occur free only once in t.

(β) t[x:−(λx.s)·r] −→Γ t[x:−s[x/r]] (ass) t[x:−s] −→Γ t[x:−r] (〈s, r〉 ∈ Γ)

(α) t[x:−λy.s] −→Γ t[x:−λz.s[y/z]]

Figure 1: λ-reduction for Lλ

We now turn to λ-reduction. We shall define a basic relation on terms that follows the
familiar reduction rule of β-contraction. To help with the completeness theorem of Section 3
we will need to consider a conservative extension of the familiar λ-calculus (Definition 2.4).
To facilitate the proof that this extension really is conservative (Theorem 2.7), we present the
λ-calculus in the non-axiomatic style of [HS08, Def. 1.24]. It is important for us to consider
not merely the relation of λ-reduction, but a relation of λ-reduction with assumptions. We do
this so we can consider the theory of λ-equality as an extension of the theory of λ-reduction.
Our models shall initially model only be sound for β-reduction and η-expansion. We can then
begin our characterisation of βη-equality by considering the subclass of these models that also
validate β-expansion and η-reduction. We therefore need to define some basic, and familiar,
rules of λ-reduction but allow for a set of assumed additional reductions (we do not seek to
study the syntactic properties of a general calculus of λ-reduction with assumptions in this
paper).

Definition 2.2. Let Γ be a set of pairs of terms of Lλ. We define a reduction relation
−→Γ on terms of Lλ using Figure 1. A derivation is a sequence of terms t1, . . . , tn such that
ti −→Γ ti+1 for each 1 ≤ i < n.

Remark 2.3. If Γ = ∅ then −→Γ is the familiar relation of untyped β-reduction.

Definition 2.4. Define L∗λ by: t ::= x | λx.t | t·t | t ∗ t

Definition 2.5. Let Γ be a set of pairs of terms of Lλ (not L∗λ). Define a reduction relation
=⇒Γ on terms of L∗λ using Figure 2. Again, a derivation is a sequence of terms t1, . . . , tn such
that ti =⇒Γ ti+1 for each 1 ≤ i < n.

Remark 2.6. Notice that we do not allow terms unique to L∗λ to be assumptions in derivations.
There are two reasons for this. Firstly, the paper is initially concerned with characterising
reduction and equality only in the more familiar language Lλ, and L∗λ is merely a means to that
end. Allowing assumed reductions for L∗λ adds needless complexity to Theorem 2.7. Secondly, a
further aim is to show that β-equality (i.e. β-expansion and contraction) is complete for models
with a nontrivial ordering relation on them. The fact that β-equality holds for Lλ but not for
L∗λ helps to emphasise this.

Theorem 2.7. If t1 and t2 are terms of Lλ then t1 =⇒Γ t2 implies t1 −→Γ t2. In other
words =⇒Γ is conservative over −→Γ.

Proof. See the technical appendix A.1

2.2 Frames and interpreting λ-terms

Definition 2.8. If W is a set, write P(W ) for the set of subsets of W .
An intensional frame F is a 4-tuple (W, •, ◦, H) where:
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Let x occur free only once in t.

(β) t[x:−(λx.s)·r] =⇒Γ t[x:−s[x/r]] (ass) t[x:−s] =⇒Γ t[x:−r] 〈s, r〉 ∈ Γ

(α) t[x:−λy.s] =⇒Γ t[x:−λz.s[y/z]]

(β∗) t[x:−(λx.s) ∗ r] =⇒Γ t[x:−s[x/r]] (sub) t[x:−s·r] =⇒Γ t[x:−s ∗ r]

(η∗) t[x:−s] =⇒Γ t[x:−λy.(s ∗ y)] (y not free in s)

Figure 2: λ-reduction for L∗
λ

−W a set of worlds,

− • and ◦ are functions from W ×W to P(W ) such that • ⊆ ◦.
−H ⊆ P(W ).

Remark 2.9. Subsets of W will serve as denotations of λ-terms (Definition 2.12) and H ⊆
P(W ) (‘H’ for ‘Henkin’) plays a similar role to the structure of Henkin models for higher-order
logic [BBK04, Hen50, Sha00]. This makes our completeness results possible and is a famous
issue for second- and higher-order logics. Powersets are too large; for completeness results to be
possible we must cut them down — at least when we quantify. This is why in Definition 2.12,
the binders restrict quantification from P(W ) down to H.

The reader familiar with modal logic can think of • and ◦ as ternary ‘accessibility relations’
R• and R◦ such that R•w1w2w3 if and only if w3 ∈ w1 •w2 (and similarly for R◦). We can also
think of • and ◦ as non-deterministic ‘application’ operations, but note that intensional frames
are not applicative structures — an applicative structure would map W ×W to W , whereas in
the case of intensional frames, W ×W maps to P(W ).

Definition 2.10. Let F = (W, •, ◦, H) be an intensional frame and S1, S2 ⊆ W and w ∈ W .
Then the functions • and ◦ induce functions from W ×P(W ) and P(W )×P(W ) to P(W ) by:
w •S =

⋃
{w •w′ | w′ ∈ S} and S1 •S2 =

⋃
{w1 •w2 | w1 ∈ S1, w2 ∈ S2} (and similarly for ◦).

Definition 2.11. Suppose F = (W, •, ◦, H) is a frame. A valuation (to F ) is a map from
variables to sets of worlds (elements of P(W )) that are in H. v will range over valuations.

If x is a variable, h ∈ H, and v is a valuation, then write v[x 7→ h] for the valuation mapping
x to h and mapping y to v(y) for any other y.

Definition 2.12. Define the denotation of t inductively by:

[[x]]v = v(x) [[t·s]]v = [[t]]v • [[s]]v [[t ∗ s]]v = [[t]]v ◦ [[s]]v

[[λx.t]]v = {w | w ◦ h ⊆ [[t]]v[x7→h] for all h ∈ H}

Remark 2.13. By elementary set theory: [[λx.t]]v =
⋂
h∈H{w | w ◦ h ⊆ [[t]]v[x7→h]}

We are particularly interested in frames where the denotation of every λ-term is a member
of H. This is because Definition 2.12 interprets λ as a kind of quantifier over all members of H.
β-reduction then becomes a form of universal instantiation and so requires that every possible
instantiation (i.e. every term denotation) is a member of H.

Definition 2.14. A frame is faithful when for every v and every t, [[t]]v ∈ H.

Lemma 2.15. 1. If x is not free in t, then for any h ∈ H, [[t]]v = [[t]]v[x7→h].
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2. [[t[x/s]]]v = [[t]]v[x7→[[s]]v ]

Proof. Both parts follow by easy inductions on t.

Theorem 2.16. If we interpret −→Γ as subset inclusion then all the rules of Figure 2 are
sound for faithful intensional frames.

Proof. By routine calculations from the definitions. See the technical appendix A.2

2.3 Soundness

Definition 2.17. −A model M is a pair 〈F, v〉 where F is a faithful intensional frame and v
is a valuation on F .

− Say a model is Γ-sensitive if [[t]]v ⊆ [[s]]v for every 〈t, s〉 ∈ Γ.

− Say a frame F is Γ-sensitive if 〈F, v〉 is Γ-sensitive for every v.

Remark 2.18. We could have defined a model as a pair 〈F, v〉 where F = 〈W, •, ◦, H〉 is a
(possible not faithful) frame and v is a valuation on F such that [[t]]v ∈ H for every t. But
since the completeness theorem 3.9 holds for the stronger notion of a model we shall use that.

Lemma 2.19. • and ◦ are monotone. That is, h1 ⊆ h2 implies h•h1 ⊆ h•h2 and h1•h ⊆ h2•h
for any h, and similarly for ◦.

Lemma 2.20. If [[s]]v⊆[[r]]v for all v on some faithful F , then [[t[x:−s]]]v⊆[[x:−r]]v

Theorem 2.21. t =⇒Γ s implies [[t]]v ⊆ [[s]]v in all Γ-sensitive models M .

Proof. Theorem 2.16 entails that each rule of Figure 2 holds in all models, and by definition, if
〈t, s〉 ∈ Γ then [[t]]v ⊆ [[s]]v in all Γ-sensitive models. The result then follows by Lemma 2.20.

3 Completeness for λ-reduction

We must show that if t 6−→Γ s then there is a Γ-sensitive model M where [[t]]v 6⊆ [[s]]v. We first
show that t 6=⇒Γ s implies such an M exists if t, s ∈ Lλ, and then we appeal to Theorem 2.7.

First we add infinitely many new constant symbols c1, c2 . . . to the language L∗λ. Since
the language is countable we can enumerate its terms t1, t2 . . . , which may contain the new
constants, and the new constants alone c1, c2 . . . . We describe a one-one function f from terms
to constants.

f(ti) = cj where j is the least number such that j > i and cj does not occur in ti
nor is the value under f of any tk for k < i.

Thus f is a one-one function that assigns a distinct ‘fresh’ constant to each term of the lan-
guage. Thus f(t) is a constant that ‘names’ t. These play the role of witness constants in the
construction of the canonical frame in Theorem 3.7. The f(t) also help us carry out inductions
on the size of λ-terms, as t[x/f(s)] is smaller than λx.t even if t[x/s] might not be.

Definition 3.1. Let ζf = {〈t, f(t)〉 | t is a term }∪{〈f(t), t〉 | t is a term }. Write t =⇒ζf
Γ s

when ζf ⊆ Γ and t =⇒Γ s.

Lemma 3.2. If t =⇒ζf
Γ s and neither s or t contain any of the new constants c1, c2 . . . , then

t =⇒Γ s.
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Proof. f is defined in terms of an enumeration such that r always precedes f(r). Thus if
we repeatedly substitute each instance of f(r) with r in a derivation, eventually all will be

eliminated. But then instances of (ass) depending on ζf become trivial reductions r =⇒ζf
Γ r

which can be removed without affecting the rest of the derivation. Certainly the first and final
terms t and s are unaffected as they never contained any f(r) in the first place.

Definition 3.3. If t is a term let wt = {s | t =⇒ζf
Γ s}. Thus wt is the closure of t under

=⇒ζf
Γ .

Definition 3.4. Define the canonical λ-frame Fλ= 〈Wλ, •λ, ◦λ, Hλ〉:

Wλ= {wt | t ∈ L∗λ} Hλ=
{
{ws ∈Wλ | t ∈ ws} | t, s ∈ L∗λ

}
wt •λws = {w ∈Wλ | t·s ∈ w} wt ◦λws = {w ∈Wλ | t ∗ s ∈ w}

Definition 3.5. Given Fλ= 〈Wλ, •λ, ◦λ, Hλ〉 and a term t of L∗λ. Let ‖t‖ = {w ∈Wλ | t ∈ w}.
Note that Hλ=

{
‖t‖ | t ∈ L∗λ

}
Remark 3.6. Given (sub) it is easy to see that •λ ⊆ ◦λ. To see how •λ and ◦λ come apart
consider wλy.(x·y), wz and wx·z. Then wx·z ∈ wλy.(x·y) ◦ wz, but since x·z 6=⇒Γ λy.(x·y)·z,
wx·z /∈ wλy.(x·y) • wz.

Theorem 3.7. Let Fλ be the canonical intensional λ-frame (Definition 3.4) and let v(r) = ‖r‖
for any variable or constant r. Then for any term t, [[t]]v = ‖t‖.

Proof. By induction on t we show that w ∈ ‖t‖ (i.e. t ∈ w) if and only if w ∈ [[t]]v. Details
are in the technical appendix A.3

Lemma 3.8. If there is a valuation v on a frame F such that {[[t]]v | t is a term} = H, then
F is faithful. Hence the canonical frame Fλ is faithful.

Proof. See the technical appendix A.4.

Theorem 3.9. t =⇒Γ s if and only if [[t]]v ⊆ [[s]]v for all Γ-sensitive models.

Proof. The left-right direction is Theorem 2.21.
If t 6−→Γ s then, by Theorem 2.7, t 6=⇒Γ s and so s /∈ wt in Fλ. Therefore ‖t‖ 6⊆ ‖s‖

and so by Theorem 3.7 there is a valuation v such that [[t]]v 6⊆ [[s]]v on the canonical frame Fλ.
Furthermore, by Lemma 3.8, Fλ is faithful, and since ‖r1‖ ⊆ ‖r2‖ for 〈r1, r2〉 ∈ Γ it follows
that Mλ= 〈Fλ, v〉 is Γ-sensitive.

Definition 3.10. An extensional frame is an intensional frame where • = ◦, we may define
them simply as a triple 〈W, •, H〉

Corollary 3.11. Let Γ = {〈t[x:−r], t[x:−λy.(r·y)]〉 | r ∈ Lλ and y is not free in r}. Then
t =⇒Γ s if and only if [[t]]v ⊆ [[s]]v for any faithful extensional frame and any v.

Proof. For the left-right direction it is a simple matter to apply the reasoning of Theorem 2.21.
For the right-left direction it is enough to note that:

t[x:−s ∗ r] =⇒Γ
(ass)

t[:−λy(s·y) ∗ r] =⇒Γ
(β∗)

t[x:−s·r]

so in the construction of the canonical frame Fλ of Theorem 3.7, •λ= ◦λ.
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Remark 3.12. An extensional frame satisfies η-expansion. An intensional frame is like an
extensional frame except with an additional ‘inner’ application function. We interpret λ in
terms of the outer function and application in terms of the inner function to block η-expansion.
η-expansion will prove very useful in constructing models of λ-equality in Section 4. But others
have also noted good properties and justification in models for η-expansion [JG95].

4 Equality

Definition 4.1. Let βββ = {〈t[x:−s[y/r]], t[x:−λy.s·r]〉 | t, s, r ∈ Lλ}.

Corollary 4.2. When restricted to Lλ, =⇒βββ is the familiar relation of (intensional) λ-equality,
and by Theorem 3.9 is complete for βββ-sensitive models.

Corollary 4.2 is itself not so significant as it only tells us half the story about what these
models look like, and does not tell us if there are any non-trivial ones. Of course, given
independent nontriviality proofs for λ-equality,1 we can use Theorem 3.9 to conclude that there
are nontrivial βββ-sensitive models. This section is concerned with producing a purely semantic
characterisation of βββ-sensitivity.

The strategy we shall employ is as follows. First we extend Lλ and L∗λ with two constant
symbols S,K and C. We will use these symbols to stand in for constructions involving λ-
expressions. So for example K·z will stand in for (λxλy.x)·z, and the former expression contains
no instances of λ. This will allow us to work with certain complex λ-expressions as if they are
free of the symbol λ and is particularly useful for a stronger form of induction which we shall
use. Then, for each t we describe a new term [x]t, built only out of application and the three
new constants (effectively the familiar combinator abstraction of [HS08, p.26], but extended to
a language that includes the λ-operator). Then, with the help of the completeness theorem 3.9,
we describe conditions in which a model (or frame) entails that [[t[x/s]]]v = [[[x]t·s]]v. It then
turns out that [[[x]t]]v ⊆ [[λx.t]]v and we thereby obtain models of β-expansion

Definition 4.3. Let L∗λC (LλC ) be L∗λ (Lλ) with new constant symbols S,K,C.

Definition 4.4. When defining or proving a property of a term t, we write ‘by induction
on (l, d)’ to describe an induction on the pair (l, d), lexicographically ordered, where d is the
number of occurrences of · in t and l is the number of occurrences of λ in t.

Definition 4.5. For any t ∈ LλC , define [x]t by induction on (l, d).

1. (a) [x]x is (S·K)·K
(b) [x]r is K·r if r is a variable or constant distinct from x.

2. [x](s·r) is (S·[x]s)·[x]r

3. [x]λz.s is C·[z][x]s

In this definition we allow the case that z = x in the clause for [x]λz.s.

Lemma 4.6. If t ∈ LλC then [x]t ∈ LλC and (1) is well defined, (2) contains no instances of
λ, and (3) contains no free occurrences of x.

1Nontriviality follows syntactically from the Church-Rosser property [HS08, Ch. A2], the cut-elimination
theorem of [Gab11]; and it follows semantically from Scott’s famous model Dω [HS08, Ch. 16], among others.
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Proof. By induction on (l, d).

Lemma 4.7. Let variable v not occur in t, then [x](t[y/v]) = ([x]t)[y/v]

Proof. By induction on (l, d). See the technical appendix A.5.

Definition 4.8. Extend the notion of a valuation from Definition 2.11 so that

[[S]]v = [[λxyz.((x·z)·(y·z))]]v [[K]]v = [[λxy.x]]v [[C]]v = [[λxyz.((x·z)·y)]]v

Theorem 4.9. If t ∈ LλC , then for any M = 〈F, v〉, [[[x]t ∗ s]]v ⊆ [[t[x/s]]]v

Proof. By induction on (l, d). See the technical appendix A.6.

Definition 4.10. A model is combinator complete when for any h1, h2, h3 ∈ H

(h1 • h3) • (h2 • h3) = (([[S]]v • h1) • h2) • h3 h1 = ([[K]]v • h1) • h2⋂
h∈H

{w | w ◦ h ⊆ (h1 • h) • h2} = ([[C]]v • h1) • h2

A frame F is combinator complete when it is faithful and each 〈F, v〉 is combinator complete.

Remark 4.11. Notice that no h ∈ H can be empty if F is a non-trivial combinator complete
frame. For if ∅ ∈ H then for any h ∈ H, h = ([[K]]v • h) • ∅ = ∅, so then H = {∅} and
[[t]]v = [[s]]v = ∅ for any t, s and v.

We could have equivalently defined combinator complete frame by requiring that, for any
v and any x, y, z, [[x]]v = [[(K·x)·y]]v, [[(x·z)·(y·z)]]v = [[((S·x)·y)·z]]v and [[λz.((x·z)·y)]]v =
[[(C·x)·y]]v. But 4.10 is preferable as it is independent of the syntax.

Theorem 4.12. For any combinator complete 〈F, v〉, [[t[x/s]]]v ⊆ [[[x]t·s]]v.

Proof. Again, we proceed by induction on (l, d). See the technical appendix A.7.

Corollary 4.13. For any combinator complete model M , [[t[x/s]]]v = [[λ.xt·s]]v.

Proof. Since • ⊆ ◦ we have that [[λx.t·s]]v ⊆ [[λx.t ∗ s]]v, and so Theorem 4.9 entails that
[[λx.t·s]]v ⊆ [[t[x/s]]]v.

And conversely:

[[t[x/s]]]v ⊆ [[[x]t·s]]v Thrm 4.12
⊆ [[λx.([x]t ∗ x)·s]]v Thrm 3.9, Lemma 2.20, Lemma 4.6
⊆ [[λx.t·s]]v Thrm 4.9

We now have a means of characterising β-equality semantically.

Corollary 4.14. If t, s ∈ Lλ then, t =⇒βββ s iff [[t]]v ⊆ [[s]]v for all combinator complete models.

Proof. By 4.13 if 〈t, s〉 ∈ βββ then [[t]]v ⊆ [[s]]v in all combinator complete models. Furthermore
if t 6=⇒βββ s then [[t]]v 6⊆ [[s]]v in the canonical model for βββ. It is not hard to verify that the
canonical model (moreover, the canonical frame) is combinator complete.

Corollary 4.15. A frame is combinator complete iff it is βββ-sensitive
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Definition 4.16. A model is fully extensional when h =
⋂
h′∈H{w | w ◦ h′ ⊆ h • h′} for all

h ∈ H.

Remark 4.17. Looking at Definition 2.12 h = [[t]]v implies
⋂
h′∈H{w | w ◦ h′ ⊆ h • h′} =

[[λy.(t·y)]]v for y /∈ t. So if a model is fully extensional then, for any t and any v, [[t]]v =
[[λx(t·x)]]v for x not free in t. This implies, by reasoning similar to Corollary 3.11, that • = ◦.

Definition 4.18. Let ηηηe = {〈t[y:−s], t[y:−λx.(s·x)]〉 | r, s ∈ Lλ and x not free in s}; and let
ηηηc = {〈t[y:−λx.(s·x)], t[y:−s]〉 | r, s ∈ Lλ and x not free in s}; and finally let βηβηβη = βββ ∪ ηηηe ∪ ηηηc
Theorem 4.19. If t, s ∈ Lλ then, t =⇒βηβηβη s iff [[t]]v ⊆ [[s]]v for all fully extensional combinator
complete models.

Proof. It is straightforward to verify (see Remark 4.17) that t =⇒βηβηβη s implies that [[t]]v ⊆ [[s]]v

in all fully extensional, combinator complete models. Conversely, if t 6=⇒βηβηβη s then [[t]]v 6⊆ [[s]]v

in the canonical model for βηβηβη, it is not hard to verify that it is combinator complete and fully
extensional.

5 Further Work

There are numerous other semantics for untyped λ-calculus, and it is a matter of great interest
to compare them to the one given here. A detailed comparison is not possible in this paper, but
a few key differences can be noted. The semantics of this paper is complete. Unlike e.g. Scott
models [HS08, Ch.16], we interpret the λ-operator directly. That is, we do not merely present
an extensional combinatory algebra that only interprets application and the combinators S and
K. The models and frames of this semantics are ordered, but do not necessarily have a bottom
element (the canonical model provides a denotation for each term, and there is no ‘bottom’
term). Finally, we can distinguish intensional from extensional λ-equality semantically.

The characterisation of equality offered by Section 4 is still lacking in providing guidance
for explicitly constructing a nontrivial model of lambda equality. We know that λ-calculus is
not trivial, so we can use Theorem 3.9 to conclude that such a model exists. But it would be
valuable to construct and compare models of intensional and extensional λ-equality.

Finally, the semantics of this paper potentially provides a new framework for obtaining
semantics for ‘non-standard’ λ-calculi. By altering the structure of frames and the semantic
definition 2.12 we can validate and invalidate different reduction and equality rules. Of partic-
ular interest are frames where H is as close to P(W ) as possible, and the behaviour of λ-terms
interpreted in these frames is determined by structural properties of • and ◦. This relates to
the issue mentioned above of explicitly constructing a nontrivial model within this framework.
It is preferable to construct one where H is a simple as possible, perhaps isomorphic to P(W ),
(see 4.11 for a reason not to make H = P(W )). Carrying such a construction through is a
natural next step.

A Technical Appendix

A.1 Theorem 2.7

Suppose that t1 =⇒Γ t2, where t1, t2 ∈ Lλ. We argue that any such derivation can be converted
into a derivation that t1 −→Γ t2.

We first argue that any application of (η∗) or (sub) can be pushed in front of (i.e. towards
the end of the derivation) an application of any other rule or eliminated entirely.
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• If s′ is derived from s by an application of any rule, then

t[x:−s] −→Γ t[x:−λy.(s ∗ y)] −→Γ t[x:−λy.(s′ ∗ y)]

may be replaced by:

t[x:−s] −→Γ t[x:−s′] −→Γ t[x:−λy.(s′ ∗ y)]

• The case where t′[x:−s] is derived from t[x:−s] is similar. Except the following three
special cases:

1.

t[x:−s·r] −→Γ
(η∗)

t[x:−λy.(s ∗ y)·r] −→Γ
(β)

t[x:−s ∗ r]

may be replaced by

t[x:−s·r] −→Γ
(sub)

t[x:−s ∗ r]

2.

t[x:−s ∗ r] −→Γ
(η∗)

t[x:−λy.(s ∗ y) ∗ r] −→Γ
(β∗)

t[x:−s ∗ r]

may be replaced by

t[x:−s ∗ r]

3.

t[x:−s] −→Γ
(η∗)

t[x:−λy.(s ∗ y)] −→Γ
(α)

t[x:−λz.(s ∗ z)]

may be replaced by:

t[x:−s] −→Γ
(η∗)

t[x:−λz.(s ∗ z)]

• By a similar reasoning it follows that (sub) can be pushed in front of any other rule, with
the exception of the special case of the derivation segment

t[x:−λy.s·r] −→Γ
(sub)

t[x:−λy.s ∗ r] −→Γ
(β∗)

t[x:−s[y/r]]

which may be replaced by:

t[x:−λy.s·r] −→Γ
(β)

t[x:−s[y/r]]

It follows that any derivation may be replaced by a derivation where the last application is an
instance of (η) or (sub), if either appears in the derivation at all. Since (η) and (sub) introduce an
instance of ∗, if t2 ∈ Lλ then no instances of (η) or (sub) occur in the derivation. Furthermore,
since t1 ∈ Lλ it follows that the derivation contains no instances of (β∗) or occurrences of ∗.
This implies that t1 −→Γ t2.

173



A simple and complete model theory for intensional and extensional untyped λ-equality Michael Gabbay

A.2 Proof of Theorem 2.16

We show only (β) and (η∗) here, the others are equally straightforward.

[[λx.t·s]]v

= [[λx.t]]v • [[s]]v Definition 2.12
=
⋂
h∈H{w | w ◦ h ⊆ [[t]]v[x7→h]} • [[s]]v Definition 2.12

⊆ {w | w ◦ [[s]]v ⊆ [[t]]v[x7→[[s]]v ]} • [[t]]v [[s]]v ∈ H
⊆ {w | w • [[s]]v ⊆ [[t]]v[x7→[[s]]v ]} • [[t]]v • ⊆ ◦
⊆ [[t]]v[x7→[[s]]v] Definition 2.10
= [[φ[x/s]]]v Lemma 2.15

[[t]]v ⊆
⋂
h∈H{w | w ◦ h ⊆ [[t]]v ◦ h} Definition 2.10

=
⋂
h∈H{w | w ◦ h ⊆ [[t ∗ x]]v[x7→h]} x not free in [[t]]v

= [[λx.(t ∗ x)]]v Definition 2.12

A.3 Proof of Theorem 3.7

First, note that s =⇒ζf
Γ r implies t[x:−s] =⇒ζf

Γ t[x:−r].
Now, we argue by induction on t we show that w ∈ ‖t‖ (i.e. t ∈ w) if and only if

w ∈ [[t]]v.

− t is a variable x. Then ‖x‖ = v(x) = [[x]]v by the definition of v. Similarly, if t is a constant
c.

− t is t1·t2.
Suppose t1·t2 ∈ w, and consider the worlds wt1 and wt2 in Wλ. If s1 ∈ wt1 and s2 ∈ wt2

then by Definition 3.3, t1 =⇒ζf
Γ s1 and t2 =⇒ζf

Γ s2. Thus t1·t2 =⇒ζf
Γ s1·s2 and s1·s2 ∈ w.

Then by the definition of •λ we have that w ∈ wt1 •λwt2 . Furthermore, wt1 ∈ ‖t1‖ and so
by the induction hypothesis, wt1 ∈ [[t1]]v. Similarly wt2 ∈ [[t2]]v. Hence w ∈ [[t1·t2]]v by
Definition 2.12.

Conversely, suppose that w ∈ [[t1·t2]]v. Then there are ws1 , ws2 such that ws1 ∈ [[t1]]v and
ws2 ∈ [[t2]]v and w ∈ ws1 •λws2 . By the induction hypothesis ws1 ∈ ‖t1‖ and ws2 ∈ ‖t2‖. Then

s1 =⇒ζf
Γ t1 and s2 =⇒ζf

Γ t2. Furthermore, by the construction of •λ, s1·s2 ∈ w and hence
t1·t2 ∈ w.

− t is t1 ∗ t2. Similar to the case for ·.
− t is λx.s.
Suppose λx.s ∈ w1. Suppose that w3 ∈ w1 ◦λw2, and that w2 ∈ h for some h ∈ Hλ, then

h = ‖r‖ for some term r. By (ass) and ζf we have that r =⇒ζf
Γ c and c =⇒ζf

Γ r for some c. So
h = ‖c‖ and c ∈ w2. By the construction of ◦λ, λx.s ∗ r ∈ w3 and so s[x/c] ∈ w3 by (β∗), i.e.
w3 ∈ ‖s[x/c]‖. By the induction hypothesis ‖s[x/c]‖ = [[s[x/c]]]v. Furthermore by Lemma 2.15
[[s[x/c]]]v = [[s]]v[x7→[[c]]v]. But by the definition of v, [[c]]v = ‖c‖, and so w3 ∈ [[s]]v[x7→‖c‖]. But
h = ‖c‖ so w3 ∈ [[s]]v[x7→h]. Thus w1 ∈ {w | ∀h ∈ Hλ.w ◦λh ⊆ [[s]]v[x7→h]} = [[(λx.s)]]v. Hence,
‖λx.s‖ ⊆ [[(λx.s)]]v

Conversely, suppose that λx.s /∈ wr for some r. Let y be a variable not free in r or s and

consider the worlds wy and wr∗y. If s[x/y] ∈ wr∗y then r ∗ y =⇒ζf
Γ s[x/y], so λy.(r ∗ y) =⇒ζf

Γ

λy(s[x/y]). But by our choice of y, (η) entails that r =⇒ζf
Γ λy.(r ∗ y). So r =⇒ζf

Γ λy.s[x/y],
which contradicts our initial supposition that λx.s /∈ wr, therefore s[x/y] /∈ wr∗y. In other words
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wr∗y /∈ ‖s[x/y]‖. Therefore, by the induction hypothesis, wr·y /∈ [[s[x/y]]]v. Since [[y]]v = ‖y‖,
it follows by Lemma 2.15 that wr·y /∈ [[s]]v[x7→‖y‖]. But clearly wr∗y ∈ wr ◦λwy, so it follows
that wr /∈ {w | ∀h ∈ Hλ.w ◦λ h ⊆ [[s]]v[x7→h]}. By the semantics of (λy.s), this means that
wr /∈ [[(λy.s)]]v. Hence, since every w ∈Wλ is wr for some r, [[(λx.s)]]v ⊆ ‖λx.s‖.

A.4 Proof of Lemma 3.8

We must show that for any valuation v′ and any term t that [[t]]v
′ ∈ H. By the definition of a

valuation [[x]]v
′ ∈ H for any variable x. So if [[t]]v

′
/∈ H then

[[t]]v[x1 7→[[x1]]v
′
...xn 7→[[xn]]v

′
] /∈ H

where x1 . . . xn are the free variables of t. Now, by assumption, v is such that every h ∈ H is
[[s]]v for some s. It follows then that we can choose s1 . . . sn such that [[si]]

v = v[xi 7→ [[xi]]
v′ ],

and so:
[[t]]v[x1 7→[[s1]]v...xn 7→[[sn]]v ] /∈ H

This entails, by Theorem 2.15 that [[t[xi/si]]]
v /∈ H. But this contradicts the assumption that

{[[t]]v | t is a term} = H.

A.5 Proof of Lemma 4.7

By induction on (l, d).

− If t is x then x[y/v] = x and so

[x]x = (S·K·)K Def. 4.5
= ([x]x)[y/v] y /∈ (S·K·)K

− If t is y then y[y/v] = v and [x]y = K·y. So:

[x]v = K·v Def. 4.5
= (K·y)[y/v] y /∈ K
= ([x]y)[y/v]

−The case where t is some variable other than x or y is similar.

− If t is s·r then the result follows easily by the induction hypothesis.

− If t is λz.s, including the case where z is x, then

[x](t[y/v]) = C·[z][x](s[y/v]) Def. 4.5
= C·([z][x]s)[y/v] ind. hyp, Lemma 4.6
= (C·[z][x]s)[y/v] y /∈ C
= ([x]t)[y/v]

A.6 Proof of Theorem 4.9

By induction on (l, d). We appeal to known facts about β-reduction and the Completeness
Theorem 3.9.

− t = x. Then [x]t ∗ s is ((S·K·)K)·s, and it is easy to show that for any M

[[((S·K·)K)·s]]v ⊆ [[s]]v

(see e.g. [HS08, p.26] and use 2.21). And given the validity of (β∗) we can also show that
[[((S·K·)K) ∗ s]]v ⊆ [[s]]v in any M .
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−The argument is similar for the case where t = y 6= x.

− t = t1·t2. Then:

[[((S·[x]t1)·[x]t2) ∗ s]]v ⊆ [[([x]t1·s)·([x]t2·s)]]v Def. 4.8
⊆ [[t1[x/s]·t2[x/s]]]v Ind. Hyp.
= [[(t1·t2)[x/s]]]v

− If t is λy.r, then choose a variable z that does not occur in r or s. Now, s and [x]s contain
fewer instances of λ than t (Lemma 4.6), so given Theorem 3.9 we may apply the induction
hypothesis as follows:

[[(C·[y][x]r) ∗ s]]v ⊆ [[λz.
(
((C·[y][x]r) ∗ s) ∗ z

)
]]v Thrm 2.21

⊆ [[λz.
(
([y][x]r·z) ∗ s

)
]]v Def. 4.8, Thrm 3.9

⊆ [[λz.([x]r[y/z] ∗ s)]]v Ind. Hyp.
⊆ [[λz.(t[y/z, x/s])]]v Ind. Hyp.
= [[λy.(t[x/s])]]v

A.7 Proof of Theorem 4.12

We can now proceed by induction on (l, d).

− t = x. Then x[x/s] = s and it is not hard to see that the definition of combinator com-
pleteness (4.10) implies that [[s]]v = [[((S·K)·K)·s]]v.

−The argument is similar for the case where t = y 6= x.

− t = t1·t2. Then:

[[(t1·t2)[x/s]]]v = [[t1[x/s]]]v • [[t2[x/s]]]v

⊆ [[([x]t1·s)]]v • [[([x]t2·s)]]v Ind. Hyp.
= ([[[x]t1]]v • [[s]]v) • ([[[x]t2]]v • [[s]]v)
= (([[S]]v • [[[x]t1]]v) • [[[x]t2]]v) • [[s]]v Def 4.10
= [[((S·[x]t1)·[x]t2)·[[s]]v]]v Def. 2.12
= [[([x]t1·t2)·s]]v Def. 4.5

and the result follows as above.

− Suppose t is λy.r. Let z be chosen so that it does not occur in t or s. Then using Lemma 2.20:

[[λy.(r[x/s])]]v = [[λz.(r[y/z, x/s])]]v

⊆ [[λz.
(
[x](r[y/z])·s

)
]]v Ind. Hyp.

= [[λz.
(
([x]r)[y/z]·s

)
]]v Lemma 4.7

⊆ [[λz.
(
([y][x]r·z)·s

)
]]v Ind. Hyp.

⊆ [[(C·[y][x]r)·s]]v Def. 4.10
= [[([x]λy.r)·s]]v Def. 4.5
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