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Abstract 

Patient-specific instrumentation in total knee arthroplasty (TKA), among other 

medical indications, requires a three-dimensional model of the bones involved. Currently, 

these are typically segmented from computer tomography images. Ultrasound offers a 

cheap as well as radiation-less imaging alternative, but suffers from a low signal-to-noise 

ratio as well as several other image artifacts. The interleaved partial active shape models 

search (IPASM) adapts a general physiological model to a set of images of a single 

patient, but suffers from false correspondences being soft tissue interfaces that are 

interpreted as bone surface. In order to counter this problem, a convolutional neural 

network (CNN) is applied to preprocess ultrasound images into bone confidence maps. 

This reduces the average surface distance error in an in-vivo evaluation by 0.7 to 1.3 mm. 

1 Introduction 

Some diagnostic approaches as well as patient-specific biomechanical modelling or patient specific 

instruments and implants respectively require a three-dimensional model of the patient’s knee joint [1–

6]. The gold standard for 3D imaging of bone is computed tomography (CT), which however is 

associated with additional radiation and high costs. Alternative approaches proposed for 3D 

reconstructions of bone are MRI image based [7] or based on bi-planar x-ray imaging with model based 

reconstructions [8, 9]. These approaches are associated with high costs, too, or show limited accuracy 

in specific clinical applications. In contrast, ultrasound images are radiation-less, comparably cheap and 

commonly available for chair-side imaging in orthopedic clinical routine. However, the extraction of 

the bone surfaces is more complex. The knee joint consists of multiple bones, partially occluding each 

other. Thus it is not possible to acquire the surface of all portions of the knee joint with just one 

volumetric ultrasound image. Instead, multiple images need to be registered while some parts of the 

bone surface remain invisible and requires its augmentation with model based a-priori knowledge. In 
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order to reconstruct a 3D model from an ultrasound datasets, the task of segmentation is therefore 

complemented by registration and interpolation.  

Statistical Shape Models (SSM) combined with the active shape model (ASM) search offer the 

ability to register a model to an image, solving the problem of registration and interpolation. These 

techniques are common practice in various fields and provided promising results [10, 11]. An extended 

version of the ASM, the interleaved partial active shape model search (IPASM) allows for registration 

in a multi-view setting [12]. While this approach works reasonably well for in-vitro experiments [13], 

a detailed in-vivo analysis revealed a high number of false correspondences: Soft tissue interfaces 

appear very similar to bone surfaces in ultrasound images and are falsely matched with the model. This 

problem could be solved by an explicit segmentation of the bone surface, prior to the registration and 

model adaptation. 

Recent publications on medical image segmentation focused on the application of convolutional 

neural networks (CNN) in various architectures. Published accuracy of a combined phase symmetry 

and CNN approach for ultrasound segmentation of the distal femur reaches 0.2 mm of average surface 

distance error [14]. Combinations of SSMs with CNNs were successfully applied to similar problems. 

Ambellan et al. proposed an image processing pipeline for the automatic reconstruction of 3D knee 

joint models from magnetic resonance images (MRI), including the bones as well as the cartilage [15].  

Consequently, the aim of this study was to improve the reconstruction accuracy by augmenting the 

IPASM pipeline with an additional CNN preprocessing.  

2  Methods 

The backbone of our application is the IPASM algorithm [12]. First, a statistical shape model (SSM) 

is built from several hundred healthy knees. This model is then adapted to the patient’s anatomy, which 

is captured by several volumetric ultrasound images. The algorithm determines an update of the models 

surface according to the surrounding voxel values and alternates between rigid registration and shape 

adaption to accomplish the surface update.  

For preprocessing of the ultrasound images into bone confidence maps, we use the Pyramid 

Attention Network (PAN), a state-of-the-art semantic segmentation network. See [16] for 

implementation details. The segmentation is multiplied with the original US image to obtain a bone 

confidence map. The architecture was trained on 3323 training images of four distal femora recorded 

and annotated by our group. Due to the high variance of the bone surface in arbitrarily oriented 2D B-

Mode images of the 3D bone shape, we expect the network to generalize well to unseen bone shapes. 

We opted for a segmentation of the bone surface only, in order to prevent false classification of pitch 

black areas due to other occlusions. See Figure 1 for an example. The images have a fixed size of 381 

x 465 pixels and a pixel spacing of 0.1mm.  

For reconstruction of a knee joint, roughly registered volumetric images of the patient are required. 

Our setup includes a mechanically swiping 3D US probe (4DL14-5/38, Ultrasonix, Peabody, USA). 

The image processing as well as the synchronization of tracking and ultrasound hardware is performed 

by a small application, running on a standard PC. After acquisition, the volumes are sliced and the bone 

confidence maps are inferred by our CNN.  

The in-vivo experiment includes 12 volumetric images of one proband’s right knee that were 

manually registered to the ground truth, segmented from an MRI. The ground truth segmentation as 

well as registration was performed with 3D Slicer, an open source tool [17]. The low number of images 

induces very challenging conditions, where large parts of the distal and dorsal bone surface are not 

visible. As the proband’s knee is very similar to the mean shape, we further simulate patients with 

bigger or smaller femora by altering the initial model: Instead of starting from the mean shape, we 
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initialize the first three modes of the SSM with ± two standard deviations, varying the size as well as 

the aspect ratio of the model.  

Three settings are evaluated: First, the initial fit of the statistical shape model to the patient’s bone. 

Second, the fit after application of the IPASM algorithm on the original ultrasound images and third, 

the fit after preprocessing with a CNN and application of the IPASM. 

 

   

 

(a) (b) (c) 

   

(d) (e) (f) 
Figure 1: Top row: An ultrasound volume slice of our validation set (a), its ground truth annotation (b) and 

the predicted bone mask of our network (c). Bottom row: Heatmap visualization of the surface distance error 

(SDE) of the ‘enlarged’ experiment. Frontal (d), distal (e) and lateral (f) view. Notice the two spots with high 

reconstruction error occur in areas not visible in the ultrasound images. 

 

3 Results 

Training of the CNN took 12 hours on an NVidia GTX 1070 GPU. The segmentation error on the 

validation dataset reached its minimum after 86 epochs. Results of the full reconstruction pipeline can 

be found in Table 1. The first row shows the initial average as well as maximal surface distance error. 

The second and third row show the error after application of the IPASM and CNN + IPASM, 

respectively. Comparing the mean shape to the ground truth, the error decreases slightly. For the shrank, 

as well as the enlarged shape, the reconstruction benefits noticeably from the CNN segmentation. In all 

cases, the average SDE remains below 1.3mm. 
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SDE (mm) Original Shape Shrank Shape Enlarge Shape 

 Avg.  Max. Avg. Max. Avg. Max. 

Initial Mean Shape 0.72  3.57  2.38  10.7  2.68  8.75  

IPASM 0.87  4.29  1.58  7.39  1.92  8.24  

CNN + IPASM 0.84 4.04 1.27 4.87 1.09 7.07 

Table 1: Average and maximal surface distance error (SDE) of the reconstructed model. 

4 Discussion 

The CNN preprocessing improved the reconstruction in all cases. As it had no impact for the original 

sized model, we hypothesize that the errors encountered here are not due to segmentation issues. 

Instead, a lower limit for the reconstruction error of occluded surfaces is reached. For a simulated small 

and big knee, the average as well as maximal error could be reduced significantly. Wrong soft-tissue 

correspondences found when using the original ultrasound images can be corrected. As can be seen for 

the ‘enlarged’ experiment in Figure 1, the remaining maximal errors of 4.87 mm and 7.07 mm occur in 

occluded areas of the distal as well as posterior condyles and can be attributed to wrong extrapolation.  

Compared to a 2D-3D reconstruction of the distal femur on the basis of SSMs and bi-planar x-rays 

[18], the root mean square error of our approach is slightly lower, 1.61 mm in the worst case compared 

to 1.68 mm, without exposing the patient to radiation. Other publications on SSM based reconstruction 

from ultrasound images of the femur report a much higher error of 3.5 mm [19]. 

As shown in previous studies [13], the registration is highly relevant for the overall reconstruction. 

Future work will therefore investigate an additional refinement of the registration using the segmented 

images, as well as freehand tracked 2D probes for bigger image volumes.  
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