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Abstract

In this paper, we propose a probabilistic hybrid logic for the specification of data pri-
vacy requirements. The proposed logic is a combination of quantitative uncertainty logic
and basic hybrid logic with a satisfaction operator. We show that it is expressive enough
for the specification of many well-known data privacy requirements, such as k-anonymity,
l-diversity and its precursor logical safety, t-closeness, and δ-disclosure privacy. The main
contribution of the work is twofold. On one hand, the logic provides a common ground to
express and compare existing privacy criteria. On the other hand, the uniform framework
can meet the specification needs of combining new criteria as well as existing ones.
Key words: Data privacy, information systems, probabilistic logic, hybrid logic, k-
anonymity, logical safety, l-diversity, t-closeness, δ-disclosure privacy.

1 Introduction

To address the privacy concerns about the release of microdata, data is often sanitized before
it is released to the public. For example, generalization and suppression of the values of quasi-
identifiers are widely used sanitization methods. To assess the effect of sanitization methods,
several data privacy criteria have been proposed. One of the earliest criteria was the notion
of k-anonymity [13, 12, 14, 15]. Although k-anonymity is an effective way to prevent identity
disclosure, it was soon realized that it was insufficient to ensure protection of sensitive attributes.
To address the attribute disclosure problem, a logical safety criterion was proposed in [6]. The
criterion was later expanded to the epistemic model in [17] and the well-known l-diversity
criterion in [8, 9]. More recently, a variety of privacy criteria have been proposed[7, 2]. Due to
the diversity of the privacy criteria, it is useful to have a flexible language for the specification
of different privacy policies. The purpose of the paper is to provide such a formal specification
language based on probabilistic hybrid logic.

Probabilistic hybrid logic is a fusion of a hybrid logic with a satisfaction operator[1] and
a logic for reasoning about quantitative uncertainty[5]. The syntax of the proposed logic is
comprised of well-formed formulas of both logics, and its semantics is based on epistemic prob-
ability structures with the additional interpretation of nominals. We show that the proposed
probabilistic hybrid logic is expressive enough for the specification of data privacy requirements,
such as k-anonymity, l-diversity and its precursor logical safety, t-closeness, and δ-disclosure
privacy. Furthermore, the language is quite flexible so that we can specify personalized privacy
requirements.

The remainder of this paper is organized as follows. In Section 2, we introduce the syntax
and semantics of probabilistic hybrid logic. In Section 3, we define data representation and
formulate the information systems as models of probabilistic hybrid logic. In Section 4, we
explain how privacy requirements can be precisely specified with the proposed logic language.
Finally, Section 5 contains some concluding remarks.
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2 Probabilistic Hybrid Logic

2.1 Syntax

Hybrid logics are extensions of standard modal logics with nominals that name individual states
in possible world models[1]. The simplest hybrid language is the extension of the basic modal
language with nominals only. More expressive variants can include the existential modality E,
the satisfaction operator @, and the binder ↓. The simplest hybrid language is denoted by H
and its extensions are named by listing the additional operators. For example, H(@) is the
simplest hybrid language extended with the satisfaction operator @. On the other hand, the
probabilistic logic LQUn proposed in [5] consists of (linear) likelihood formulas of the form

r1la1(ϕ1) + · · ·+ rklak(ϕk) > s,

where r1, . . . , rk, s are real numbers, a1, . . . , ak are (not necessarily distinct) agents, and
ϕ1, . . . , ϕk are well-formed formulas of the probabilistic language. The proposed probabilis-
tic hybrid logic is a straightforward fusion of H(@) and LQUn . The following definition gives the
syntax of the resultant language.

Definition 1. Let PROP = {p1, p2, . . .} (the propositional symbols), AGT = {a1, a2, . . .} (the
agent symbols), and NOM = {i1, i2, . . .} (the nominals) be pairwise disjoint, countably infinite sets
of symbols. The well-formed formulas of the probabilistic hybrid logic PH(@) in the signature
〈PROP, AGT, NOM〉 are given by the following recursive definition:

WFF ::= > | p | i | ¬ϕ | ϕ ∧ ψ | 〈a〉ϕ | @iϕ | r1la1(ϕ1) + · · ·+ rklak(ϕk) > s,

where p ∈ PROP; i ∈ NOM; a, a1, . . . , ak ∈ AGT; ϕ,ϕ1, . . . , ϕk ∈ WFF; and r1, . . . , rk, s are real
numbers.

As usual, we abbreviate ¬(¬ϕ ∧ ¬ψ), ¬(ϕ ∧ ¬ψ), and ¬〈a〉ϕ as ϕ ∨ ψ, ϕ ⊃ ψ, and [a]ϕ
respectively. In addition, (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ) is abbreviated as (ϕ ≡ ψ); and several obvious
abbreviations can be applied to likelihood formulas, e.g., r1la1(ϕ1)+ · · ·+rklak(ϕk) < s denotes
(−r1)la1(ϕ1) + · · ·+ (−rk)lak(ϕk) > −s).

2.2 Semantics

The semantics of PH(@) is based on the epistemic probability frame introduced in [5].

Definition 2. An epistemic probability frame is a tuple F = (W, (Ra)a∈AGT, (PRa)a∈AGT), where
W is a set of possible worlds (states) and for each a ∈ AGT

• Ra ⊆W ×W is a binary relation (the accessibility relation) on W , and

• PRa is probability assignment, i.e., a function that associates a probability space
(Ww,a, µw,a) with each world w.

Definition 3. Let F = (W, (Ra)a∈AGT, (PRa)a∈AGT) be an epistemic probability frame. Then,
an epistemic probability structure (or PH(@) model) based on F is a pair M = (F, π), where
π : PROP∪NOM→ 2W is an interpretation such that for all nominals i ∈ NOM, π(i) is a singleton.
In this case, we also say that F is the underlying frame of M.

By slightly abusing the notation, we can identify a singleton and its element. Thus, when
π(i) = {w}, we use π(i) to denote both {w} and w.
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Definition 4. Let M = (W, (Ra)a∈AGT, (PRa)a∈AGT, π) be a PH(@) model and w ∈ W be a
possible world. Then, the satisfaction relation is defined as follows:

1. M, w |= >

2. M, w |= p iff w ∈ π(p) for p ∈ PROP ∪ NOM

3. M, w |= ¬ϕ iff M, w 6|= ϕ

4. M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

5. M, w |= 〈a〉ϕ iff there is a w′ such that (w,w′) ∈ Ra and M, w′ |= ϕ

6. M, w |= @iϕ iff M, π(i) |= ϕ

7. M, w |= r1la1(ϕ1) + · · · + rklak(ϕk) > s iff r1µw,a1(|ϕ1| ∩Ww,a1) + · · · + rkµw,ak(|ϕk| ∩
Ww,ak) > s, where |ϕ| = {u |M, u |= ϕ} is the truth set of ϕ in the model M.

A wff ϕ is said to be true in a model, denoted by M |= ϕ, if M, w |= ϕ for all w ∈W .

3 PH(@) Models of Information Systems

3.1 Information systems

In database applications, microdata, such as medical records, financial transaction records, and
employee data, are typically stored in information systems. Am information system or data
table is formally defined as follows[10]:

Definition 5. An information system or a data table1 is a tuple T = (U,A, {Vf | f ∈ A}),
where U is a nonempty finite set, called the universe, and A is a nonempty finite set of attributes
such that each f ∈ A is a total function f : U → Vf , where Vf is the domain of values for f .

Let B ⊆ A be a subset of attributes. Then, the indiscernibility relation with respect to B
is defined on U as follows:

indT (B) = {(x, y) | ∀f ∈ Bf(x) = f(y)}. (1)

Usually, we omit the symbol T in the indiscernibility relation when the underlying information
system is clear from the context. We also abbreviate an equivalence class of the indiscernibility
relation [x]ind(B) as [x]B .

The attributes of an information system can be partitioned into three subsets [4, 11]. First,
we have a subset of quasi-identifiers, the values of which are known to the public. For example,
in [14, 15], it is noted that certain attributes like birth-date, gender, and ethnicity are included
in some public databases, such as census data or voter registration lists. These attributes, if
not appropriately generalized, may be used to re-identify an individual’s record in a medical
data table, thereby causing a violation of privacy. The second kind is the subset of confidential
attributes, the values of which we have to protect. It is often the case that an asymmetry exists
between the values of a confidential attribute. For example, if the attribute is a HIV test result,
then the revelation of a ’+’ value may cause a serious invasion of privacy, whereas it does not
matter to know that an individual has a ’−’ status. Note that confidential attributes can also
serve as quasi-identifiers in some cases. However, since the values of confidential attributes

1Also called knowledge representation systems or attribute-value systems in [10].
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are not easily accessible by the public, in this paper, we simply assume that the set of quasi-
identifiers is disjoint with the set of confidential attributes. The remaining attributes are neutral
attributes that are neither quasi-identifying, nor confidential. Hereafter, we assume that the set
of attributes A = Q∪C∪N , where Q, C, N are pairwise disjoint, Q is the set of quasi-identifiers,
C is the set of confidential attributes, and N is the set of neutral attributes. Sometimes, the set
of attributes is defined such that it contains identifiers that can be used to identify a person’s
data record. However, for simplicity, we equate each individual with his/her identifier, so the
universe U can be considered as the set of identifiers. Furthermore, since identifiers are always
removed in a released data table, U simply denotes a set of serial numbers for a de-identified
information system.

Example 1. Table 1 is a simple example of an information system. The quasi-identifiers of the

U Date of Birth ZIP Height Income Health Status
i1 24/09/56 24126 160 100K 0
i2 06/09/56 24129 160 70K 1
i3 23/03/56 10427 160 100K 0
i4 18/03/56 10431 165 50K 2
i5 20/04/55 26015 170 30K 2
i6 18/04/55 26032 170 70K 0
i7 12/10/52 26617 175 30K 1
i8 25/10/52 26628 175 50K 0

Table 1: An information system in a data center

information systems are “Date of Birth” and “ZIP”. The confidential attributes are “Income”
and “Health Status”. The values of “Health Status” indicate“normal”(0), “slightly ill”(1), and
“seriously ill”(2). ”Height” is a neutral attribute.

A common technique for protecting privacy is to release the information system in a sanitized
form. Formally, we define sanitization as an operation on information systems.

Definition 6. Let T = (U,A, {Vf | f ∈ A}) be an information system. Then, a sanitization
operation σ = (ι, (sf )f∈A) is a tuple of mappings such that

• ι : U → U ′ is a 1-1 de-identifying mapping, where |U ′| = |U |, and

• for each f ∈ A, sf : Vf → V ′f is a sanitizing mapping, where V ′f is the domain of sanitized
values for f .

The application of σ on T results in a sanitized information system σT = (U ′, A′, {V ′f | f ∈ A})
such that A′ = {f ′ | f ∈ A}; and for each f ∈ A, f ′ = sf ◦f ◦ι−1, where ◦ denotes the functional
composition. Note that the de-identifying mapping ι is invertible because it is a bijection.

The universe U ′ in a sanitized information system is regarded as the set of pseudonyms of
the individuals. A sanitization operation σ = (ι, (sf )f∈A) is truthful if for each f 6∈ Q, sf = id
is the identity function; and it is proper if ι(indT (Q)) = {(ι(x), ι(y)) | (x, y) ∈ indT (Q)} is a
proper subset of indσT (Q). In this paper, we only consider truthful sanitization operations.
Moreover, in most cases, proper sanitization is necessary for the protection of privacy. A
special sanitization, called trivial sanitization, is commonly used as the baseline of privacy
assessment[2]. Formally, a sanitization operation is trivial if, for all f ∈ Q, |V ′f | = 1. The
suppression of all quasi-identifiers can achieve the effect of trivial sanitization.
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Example 2. In privacy research, generalization is a widely-used sanitization operation. For
example, the date of birth may only be given as the year and month, or only the first two digits
of the ZIP code may be given. A concrete generalization of the information system in Table 1
is presented in Table 2. The first column of the table shows the pseudonyms of the individuals.
Note that the sanitization is truthful and proper.

d1 09/56 24*** 160 100K 0
d2 09/56 24*** 160 70K 1

d3 03/56 10*** 160 100K 0
d4 03/56 10*** 165 50K 2

d5 04/55 26*** 170 30K 2
d6 04/55 26*** 170 70K 0

d7 10/52 26*** 175 30K 1
d8 10/52 26*** 175 50K 0

Table 2: A sanitized information system

When a sanitized information system is released, the sanitizing mappings are usually known
to the public, but the de-identifying mapping must be kept secret. In fact, when a sanitization
is truthful and the adversary knows the values of the quasi-identifiers, the adversary can easily
infer the sanitizing mappings. For example, in the previous sanitized information system, it is
easy to see how “ZIP” and “Date of Birth” are generalized.

3.2 Models of sanitized information systems

To specify an information system and its sanitization, we have to use a fixed language. Let us
consider an information system T = (U,A, {Vf | f ∈ A}), where A = Q∪N ∪C and a truthful
sanitization operation σ = (ι, (sf )f∈A). In addition, let σT = (U ′, A′, {V ′f | f ∈ A}) be defined
as above. We assume that U = {i1, · · · , in} and U ′ = {d1, · · · , dn}. Then, the signature of our
language comprises

• PROP = {(f, v) | f ∈ N ∪ C, v ∈ Vf},

• AGT = {a0, a1}, and

• NOM = U ∪ U ′.

In Pawlak’s decision logic[10], a propositional symbol (f, v) is called a descriptor , which means
that the value of attribute f of an individual is v. Here, we only specify neutral and confidential
attributes with the language. We consider two agents a0 and a1; and we assume that agent a0

only receives the trivially sanitized information system, and a1 receives the system σT . The set
of nominals is partitioned into two subsets such that each ij denotes an individual’s identifier
and each dj represents the individual’s pseudonym. The PH(@) models compatible with the
sanitization of an information system are then defined as follows.

Definition 7. Let T = (U,A, {Vf | f ∈ A}) be an information system, σ = (ι, (sf )f∈A)
be a truthful sanitization, and σT = (U ′, A′, {V ′f | f ∈ A}) be the sanitized system, where
A = Q ∪ N ∪ C, U = {i1, · · · , in} and U ′ = {d1, · · · , dn}. Then, a PH(@) model M =
(W,R0, R1,PR0,PR1, π) with the above-mentioned signature is a model of σT if it satisfies the
following conditions:
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• W = {w1, · · · , wn};

• for R0 and R1:

– R0 = W ×W ,

– R1 = {(wj , wk) | (dj , dk) ∈ indσT (Q), 1 ≤ j, k ≤ n};

• for the probability assignments:

– PR0 associates a probability space (W,µ0) with each world w such that µ0({w}) = 1
n

for each w ∈W ,

– PR1 associates a probability space (π([dj ]Q), µwj ,1) with each world wj such that
µwj ,1({w}) = 1

|π([dj ]Q)| for each w ∈ π([dj ]Q), where [dj ]Q is the equivalence class of

dj with respect to indσT (Q);

• and for the interpretation π:

– π(dj) = wj for dj ∈ U ′,

– π(ij) ∈ π([dj ]Q) for ij ∈ U and π(ij) 6= π(ik) if j 6= k for 1 ≤ j, k ≤ n,

– π((f, v)) = {wj | f ′(dj) = v} for f ∈ N ∪ C and v ∈ Vf .

The models of σT reflect the adversary’s uncertainty about the identities of the individuals.
The possible worlds stand for the individuals. Although, the pseudonym of each individual is
fixed, as specified by the interpretation π, the adversary is uncertain about the identifiers of the
individuals. The information that an adversary can obtain is determined by the values of the
individuals’ quasi-identifiers, so an identifier may refer to any individual in a class of individuals
that are indiscernible with respect to the quasi-identifiers. This is specified by the second
clause of the interpretation π. With trivial sanitization, all individuals are indiscernible, so the
accessibility relation R0 is the universal relation. On the other hand, the sanitization operation
σ results in the indiscernibility relation indσT (Q), so the relation R1 is its isomorphic copy over
the domain of possible worlds. Furthermore, we assume that the indifference principle applies to
individuals, so both probability assignments associate a unform distribution with each possible
world. Since the two probability assignments are characterized completely by the accessibility
relations and R0 is simply the universal relation, we can omit these three components from a
model of σT and write it as a simple hybrid model (W,R1, π). By the definition of π, there
may be more than one PH(@) model for a given σT . Hence, a wff ϕ is valid in σT , denoted
by σT ϕ, if it is true in all models of σT .

4 The Specification of Data Privacy Requirements

In this section, we explain how the language of PH(@) can be used to specify different data
privacy policies such as k-anonymity, l-diversity, and t-closeness. As in the preceding section, let
T = (U,A, {Vf | f ∈ A}) denote an information system, where A = Q∪N ∪C. In addition, let
U = {i1, · · · , in}, σ = (ι, (sf )f∈A) be a truthful sanitization, and σT = (U ′, A′, {V ′f | f ∈ A})
be the sanitized information system, where U ′ = {d1, · · · , dn}.
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4.1 Specification of k-anonymity

According to [13, 12, 14, 15], σT satisfies the k-anonymity criterion if |[d]Q| ≥ k for any d ∈ U ′.
This is easily expressed in PH(@) language by the following formula:

la1(i) ≤ 1

k

for i ∈ NOM. Formally, we have the following theorem.

Theorem 1. A sanitized information system σT satisfies the k-anonymity criterion iff σT
(la1(i) ≤ 1

k ) for i ∈ U .

The formal specification means that an individual can be identified with probability at most
1
k . In particular, it can be derived that @d(la1(i) ≤ 1

k ) is valid in σT for any d ∈ [ι(i)]Q, which
means that, given any record whose quasi-identifiers are indiscernible from i’s quasi-identifiers,
the adversary will be able to recognize i with probability at most 1

k .

4.2 Specification of logical safety

The logical safety criterion was proposed in [6] to prevent homogeneity attacks. Subsequently,
it was articulated into an epistemic model for privacy protection in the database linking context
[17]. Here, we consider a simplified version of the logical safety criterion. Recall that, in modal
logic, the modality-free formulas are called objective formulas. Let Γ denote the set of all
nominal-free objective formulas, i.e., the set of descriptors closed under Boolean combinations.
The logical safety criterion allows a flexible personalized privacy requirements, so each individual
can specify the information that he/she wants to keep confidential. More precisely, Sec : U → 2Γ

is such a specification function. According to the semantics of decision logic[10], a pseudonym
d satisfies a descriptor (f, v) with respect to σT , denoted by d |=σT ϕ, if f ′(d) = v, and the
satisfaction relation is extended to all formulas in Γ as usual. We normally omit the subscript
σT . It is said that the adversary knows the individual i has property ϕ, denoted by i |= Kϕ if, for
d ∈ [ι(i)]Q, d |=σT ϕ. Then, σT satisfies the logical safety criterion if Sec(i)∩{ϕ | i |= Kϕ} = ∅
for i ∈ U .

Theorem 2. A sanitized information system σT satisfies the logical safety criterion iff σT
@i¬[a1]ϕ (or equivalently σT @ila1(ϕ) < 1) for i ∈ U and ϕ ∈ Sec(i).

4.3 Specification of l-diversity

In the same spirit of logical safety, the principle of l-diversity is formulated in [8, 9].

Definition 8. Let f be a fixed confidential attribute. Then, an equivalence class E of indσT (Q)
is l-diverse if f ′(E) = {f ′(dj) | d ∈ E} contains at least l “well-represented” values, and σT is
l-diverse if each of its equivalence classes is l-diverse.

We consider two instances of l-diversity that are proposed in [8, 9] to articulate the notion
of “well-represented” values:

1. Distinct l-diversity. This is the simplest instance of l-diversity. It requires that there are
at least l distinct values in f ′(E), i.e., |f ′(E)| ≥ l, for each equivalence class E.
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2. Recursive (c, l)-diversity. Let |f ′(E)| = m and let kj(1 ≤ j ≤ m) be the number of times
the jth most frequent confidential value appears in the records of E. Then, E satisfies
(c, l)-diversity if k1 < c(kl + kl+1 + · · · + km), and σT satisfies (c, l)-diversity if every
equivalence class of indσT (Q) satisfies it.

For the specification of distinct l-diversity, let us define an (positive) f -clause of length m as
a disjunctive formula

∨m
j=1(f, vj) such that vj 6= vk for any j 6= k. An f -clause of length 1 is

also called an f -atom. Then, we have the following result.

Theorem 3. A sanitized information system σT satisfies the distinct l-diversity iff σT ¬[a1]ϕ
for any f -clause ϕ of length less than l.

A direct corollary of the theorem shows that distinct l-diversity can be seen as a special
case of logical safety.

Corollary 1. A sanitized information system satisfies the distinct l-diversity iff it satisfies the
logical safety criterion with Sec(i) being the set of all f -clauses of length less than l.

Example 3. This example shows that logical safety is more general and flexible than distinct
l-diversity. Let us consider the sanitized information system in Example 2. We assume that the
average income of individuals in the community is between 50K and 70K, so any income above
this range is considered confidential by an individual. On the other hand, for the health status
attribute, an individual may consider serious illness as confidential. Now, the system obviously
satisfies distinct 2-diversity for each confidential attribute. However, it may cause problems for
an individual if it is known that his income is 100K or he is seriously ill. In such cases, the
system would violate the logical safety criterion if Sec(i) includes the wff (fic, 100K) ∨ (fhs, 2)
because it would be known that both i3 and i4 have this disjunctive property if the system is
released to the public.

Our logic can also specify recursive (c, l)-diversity, although the specification is a little
complicated.

Theorem 4. A sanitized information system σT satisfies recursive (c, l)-diversity iff for any
f -clause

∨m
j=1 ϕj,

σT (ψ1 ∧ ψ2 ∧ ψ3) ⊃ cla1(ϕl) + · · ·+ cla1(ϕm) > la1(ϕ1),

where ψ1 = [a1]
∨m
j=1 ϕj, ψ2 =

∧m−1
j=1 la1(ϕj) ≥ la1(ϕj+1), and ψ3 = la1(ϕm) > 0.

4.4 Specification of t-closeness and δ-disclosure privacy

It is recognized that criteria like k-anonymity and l-diversity are purely syntactic in the sense
that they only consider the distribution of attribute values in a sanitized system, without mea-
suring how much information an adversary may learn from the publication of the system[2]. On
the other hand, several semantic criteria, such as the average benefit model[3, 16], t-closeness[7],
and δ-disclosure privacy[2] have been proposed to capture the incremental gain in the adver-
sary’s knowledge. The common feature of these criteria is that they compare the distribution
of attribute values in the sanitized system with that in the trivially sanitized system. The
semantic criteria are formulated as the t-closeness principle in [7].

Definition 9. An equivalence class of indσT (Q) is said to exhibit t-closeness if the distance
between the distribution of a sensitive attribute in that class and the distribution of the attribute
in the whole table is no more than a threshold t, and σT satisfies t-closeness if each of its
equivalence classes exhibits t-closeness.
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To implement the t-closeness criterion, the distance between two probability distributions
must be specified precisely. Let α = (α1, . . . , αm) and β = (β1, . . . , βm) denote two probability
distributions over a sample space with m outcomes. The variational distance is defined as
follows([7]):

Dvar(α, β) =

m∑
j=1

1

2
|αj − βj | =

∑
αj>βj

(αj − βj) = −
∑
αj<βj

(αj − βj),

where the second and third equations hold because
∑m
j=1 αj =

∑m
j=1 βj = 1.

Theorem 5. A sanitized information system σT satisfies the t-closeness criterion based on the
variational distance iff for any f -clause

∨m
j=1 ϕj and 0 ≤ k ≤ m,

σT (ψ1 ∧ ψ2 ∧ ψ3) ⊃
k∑
j=1

(la0(ϕj)− la1(ϕj)) ≤ t,

where ψ1 = [a0]
∨m
j=1 ϕj, ψ2 =

∧k
j=1 la0(ϕj) > la1(ϕj), and ψ3 =

∧m
j=k+1 la0(ϕj) ≤ la1(ϕj).

The difference between syntactic and semantic privacy criteria is easily observed by compar-
ing the above theorem with the preceding ones, since the baseline agent a0 with the trivial sani-
tization information does not appear in the logical specification of k-anonymity and l-diversity;
however, it plays a crucial role in the formulation of the t-closeness criterion.

The δ-disclosure criterion proposed in [2] is another semantic privacy criterion. It is similar
to the average benefit criterion in [3, 16], although the latter is only defined for two-valued
attributes. Given a set of records E and a confidential attribute value v, let p(E, v) denote the
fraction of records in E whose confidential attribute value is v. Then, an equivalence class E
of indσT (Q) is δ-disclosure-private with regard to the confidential attribute f if, for all v ∈ Vf ,

| log
p(E, v)

p(U ′, v)
| < δ,

and σT is δ-disclosure-private if each equivalence class of indσT (Q) is δ-disclosure-private.

Theorem 6. A sanitized information system σT is δ-disclosure-private iff

σT (la1(ϕ) < 2δla0(ϕ)) ∧ (la1(ϕ) > 2−δla0(ϕ))

for all f -atom ϕ.

5 Concluding Remarks

In this paper, we propose a probabilistic hybrid logic for the specification of data privacy
policies. The logic is expressive and flexible enough to represent many existing privacy criteria,
such as k-anonymity, logical safety, l-diversity, t-closeness, and δ-disclosure.

The main contribution of the logic is twofold. On one hand, the uniformity of the framework
explicates the common principle behind a variety of privacy requirements and highlights their
differences. For example, as mentioned in Section 4.4, the difference between syntactic and
semantic privacy criteria is easily observed by using the logical specifications. On the other
hand, the generality of the framework extends the scope of privacy specifications. In particular,
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we can specify heterogeneous requirements between different individuals, so it is possible to
achieve personalized privacy specification. For example, we can use @i¬[a1]ϕ ∧ @j¬[a1]ψ to
express different privacy requirements of individuals i and j.

Moreover, the logic allows arbitrary combinations of existing privacy requirements, so we
can express compound privacy criteria. For example, we can use @i¬[a1]ϕ∧la1(i) ≤ 1

k to express
that both logical safety and k-anonymity are required for the individual i. Since unexpected
attacks may occur occasionally, existing criteria may be inadequate; hence, it may be necessary
to specify new criteria. For example, the logical safety criterion may be combined with δ-
disclosure to require formulas in Sec(i), instead of simply f -atoms, to satisfy the δ-disclosure
privacy criterion. In addition, it is possible to consider the weight of a secret in order to
measures the seriousness of revealing the secret. Thus, Wsec : U × Γ→ [0, 1] is defined as the
weight function for each individual and secret. Then, we can combine the weight with existing
privacy criteria to obtain new privacy protection models. This may facilitate a more effective
tradeoff between privacy protection and data utility. Our logic language provides a uniform
framework to meet the specification needs of such new criteria as well as existing ones.
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