
An Ontology Based Approach towards End

User Development of IoT

Narayan C. Debnath1, Shreya Banerjee2*, Giau Ung Van3, Phat Tat Quang4 ,

and Dai Nguyen Thanh5
Department of Software Engineering, Eastern International University, Binh Duong, Vietnam

narayan.debnath@eiu.edu.vn1, shreya.banerjee@eiu.edu.vn2

giau.ung@eiu.edu.vn3, phat.tat@eiu.edu.vn4, dai.nguyen@eiu.edu.vn5

Abstract

Trigger-Action-Programming (TAP) is a most widely used End User Development

(EUD) tool for Internet of Things (IoT). However, end users often cannot differentiate

between distinct kinds of triggers and actions. They also make erroneous combinations

of those. Consequently, inconsistencies, and bugs are exhibited in behavior of IoT

objects. To resolve this issue, end users need to be guided to interpret different triggers,

actions and their combinations effectively. In this case, precise representation of

temporal and contextual aspects of triggers and actions can assist. Moreover, vast and

growing numbers of IoT objects as well as increasing numbers customized rules create

scalability issues. To address these drawbacks, this paper has proposed an upper level

ontology named as Trigger Action Ontology (TAO) that provides meta rule semantics

for TAP. The contribution of proposed ontology specification is to present formal

semantics of temporal and contextual aspects of triggers and actions. Further, the

ontology is implemented in Protégé. In addition, the expressiveness of the proposed

ontology is illustrated using a suitable case study.

Key Words: End User Development, Trigger Action Programming, Ontology,

Internet of Things

1 Introduction

The Internet of Things (IoT) offers consumers the opportunity to engage naturally with their

surroundings in pervasive contexts. Although IoT objects do most of the work without any human

intervention, people can interact with them for example to set them up, to give them instructions or

simply to access the data [1]. In this context, End User Development (EUD) paradigm helps

consumers customize technology to their individual needs and preferences [2]. In general, end users

* Corresponding Author

EPiC Series in Computing

Volume 82, 2022, Pages 1–10

Proceedings of 37th International Confer-
ence on Computers and Their Applications

B. Gupta, A. Bandi and M. Hossain (eds.), CATA2022 (EPiC Series in Computing, vol. 82), pp. 1–10

are non-programmers. Therefore, they require a simple and easy to use approach to define the

behavior of IoT objects [3, 4]. Trigger-Action Programming (TAP) is considered as an effective EUD

approach tailoring to this need. It enables users to indicate the behavior of IoT objects through

specifying rules.

TAP is a simplified form of the Event Condition Action (ECA), a rule-based approach originally

employed to react to different kinds of events occurring in active databases and industrial processes

[3]. Rules in TAP have no condition part. These rules represent what should be triggered and what

should be the associated effect [5, 6]. Thus, It takes the simple form of conditional statements, like “if

<something happens>, then <activate some behavior>” [7]. IoT devices and Web services can be

used both in the trigger (the ‘if’ part) and in the action (the ‘then’ part) of the rule [3].

The easy interpretation capability of rule based system helps end users to define different

behaviors of IoT objects without programming experience [8]. However, the identification of triggers

and related actions sometimes can be complicated towards the end users. In this regard, both

commercial (IFTTT [9], Zapier [10]) and research approaches [1, 3, 11] facilitate end-user to specify

the creation of trigger-action rules that determine when and how the automations should be

performed. Yet, these end user development approaches still faces some challenges.

One crucial challenge is identification between event and state kind of triggers. Event kind of

triggers is happened in a specific moment (For Example, “when I leave the room”). On the other

hand, state kind of trigger persists for a long period (“as long as it’s raining”) [12]. Likewise, actions

can be distinct kinds based on different timing aspects. Action can be immediate (For example,

“sending an e-mail”), can persist for some time and then ended (Extended Action for example,

“brewing the coffee”) or can persist until other behavior is defined on the same object (Suspended

action for example, “Turn on the light”) [12]. End users often cannot make proper distinction between

different kinds of triggers and actions. Consequently, inconsistencies, redundancies and bugs are

exhibited in the behaviors of the IoT objects [13]. To represent differences between distinct kinds of

triggers and actions, temporal aspects of those need to be represented precisely.

Another challenge is scalability issues arise from enormous and emergent numbers of IoT devices

as well as related personalization rules [5]. This creates problem to set up TAP in practical settings. A

high-level abstract representation of rules can solve the issue of scalability to some extent. Since, this

kind of representation reduces the core concepts [14] and enables the end users to make less numbers

of rules to achieve their expected behavior from IoT objects.

Further, there is a growing demand form the end users to combine several IoT objects to get more

complex and combined services. This creates the need to connect multiple triggers and multiple

actions. One single trigger or action can be connected with another trigger or action respectively by

different ways such as ‘And’, ‘Or’, ‘Not’. In this context, some triggers can produce contradict

settings. For example, rules such as “do not heat and cool at the same time”; “do not turn on both the

coffeemaker and the microwave since that will blow a fuse” [8] need to be created to handle

contradict settings. Context information related to triggers and actions can prevent end users to create

such kinds of contradiction. Context represent surrounding information related to TAP such as “who

initiates the trigger”, “when the trigger will be initiated”, “where the action will be performed”. These

kinds of information can help to understand end user’s mental model, and help them to indicate

correct behavior of IoT objects. In general, contextual information can be represented through 5W1H

(What, Why, When, Where, Who, How) [7]. In the context of TAP, contextual information for

triggers and actions related to temporal, spatial, who is responsible, what is happened and why

happened can be achieved through 5W (When, Where, Who, What, Why). Further, “How” context is

achieved through combination of distinct kinds of triggers and actions. Therefore, semantics of this

context information (5W1H) is also need to represent rigorously. Consequently, proper knowledge

can be achieved about outcomes of complex combinations of multiple triggers and multiple actions.

This precise semantics further enable effective debugging of the rules created by end users.

An Ontology Based Approach towards EU Development of IoT Debnath et al.

2

Addressing the aforementioned challenges, the proposed work in this paper is aimed to deal with

the following research questions. Q1. How contextual aspects of triggers and actions can be presented

precisely? Q2. How TAP rules can be represented in high-level abstract form?

With the objective to deal with these research questions, this paper has proposed an ontology

based specification named as Trigger Action Ontology (TAO) for TAP. Ontology is defined as an

explicit specification of shared conceptualization. It specifies an abstract view of the world in terms of

concepts and their in between relationships [14]. Ontology provides detailed semantics through

axioms. Axioms can be represented formally using mathematical logic. The literature recognizes the

value of semantic enrichments, through ontologies, for facilitating the event-driven programming of

IoT devices also in other domains [15]. An upper level ontology can specify a high-level abstract

representation [14]. In this paper, an upper level ontology TAO is specified in first order logic to

represent the meta-rule semantics of TAP. This meta-rule semantics also includes the temporal and

contextual aspects related to triggers and action. Based on this high-level meta-rule semantics, end

users are empowered to interpret different kinds of triggers, actions. They are also enabled to make

consistent combinations of multiple triggers and multiple actions. Consequently, end users are able to

synthesize efficient TAP. The contribution of the proposed work is to represent formal semantics that

can differentiate between distinct kinds of triggers as well as actions. In addition, formal semantics for

different combinations of multiple triggers and multiple actions are also specified. This kind of

semantics can further help to debug the rules created by the end users. The proposed formal

specification is implemented in Protégé [14] tool. Moreover, the expressiveness of the proposed TAO

is illustrated using a suitable case study.

2 Related Work

Related approaches existing in literature can be classified in two categories. In [1, 13, 16], authors

have specified an ontology named as “EUPont”. The described ontology is high-level semantic model

that can be able to adapt to different contextual situation. Authors have specified OWL based

description of rules, context and IoT devices. Although, proposed TAO in this paper has similarity

with EUPont in representing rules, context and IoT devices layers, yet proposed work has identified

more concepts in each layer. EUPont has not considered about temporal aspects of both triggers and

actions. Hence, this approach has a limited expressiveness with respect to the end users. Proposed

TAO in this paper outperforms EUPont based on representing formal temporal aspects and contextual

aspects of TAP. In [15], authors have described an approach that manages and systematize user-

defined semantics. However, the authors have not provided semantics related to differences between

event and state kinds of triggers, and timing aspects of actions. They also have not considered about

precise semantic representation for combinations of multiple triggers or multiple actions. In [5],

authors have used Compact Prediction Tree (CPT) and neural network to classify different kinds of

triggers and actions. However, predictive models provided by neural networks can be improved

through ontology specification. The reason is ontology helps in specifying detailed knowledge related

to triggers and actions. Further, the approach has not considered about contextual information of TAP.

In [3], authors have considered the fact related to wrong interpretation of event and states by end

users. However, to deal with this issue, authors have not provided any formal semantics. They have

handled it through user interface through “When” (event) and “While” (state) part and two questions

“what happens?” and “in which configuration of states should hold for the rule to trigger?”. However,

it can be happened that end users have no idea about “state” word in the second question. Although,

authors have conducted usability test, but implicit meaning of event and states is the limitation of their

approach. In [7], authors have considered 5W (Who, What, When, Where, Why) composition

paradigms to support end users in creating TAP rules. They have also considered five questions

An Ontology Based Approach towards EU Development of IoT Debnath et al.

3

related to 5W. They have managed 5W information through user interface. However, authors have not

considered about “How” context, which can give answers how complex behavior of IoT objects can

be defined using TAP. In [11], authors have modeled contextual information through user,

environment, technology and social interaction. However, they have not provided any formal

semantics to prescribe the interpretation of triggers and actions towards end users. Authors in [17]

have used Petri Nets to represent temporal aspects of different kinds of events trigger. Yet, they have

not considered about temporal aspects of actions. Further, in [18], authors have followed a data flow

approach that enables end users to composite multiple triggers and actions. Still, they have not

considered about formal semantics of “And”, “Or”, “Not” connection between multiple triggers.

Most of the existing approaches have not provided precise semantics that can empower end users

to interpret the distinction between events and states. In addition, they also have not provided

temporal aspects of different kinds of actions. Further, very few have specified about contextual

information related to triggers and actions. Yet, those approaches have the drawbacks to provide exact

detailed semantics that can be mapped with end users mental model. Besides these, majority of the

approaches are not providing a high-level abstract form of the rules. Consequently, tools based on

those approaches cannot handle scalability issues effectively. However, the proposed approach in this

paper is capable to manage all of these mentioned issues through proposed TAO.

3 Proposed Trigger Action Ontology (TAO)

This paper has proposed an upper level ontology named as Trigger Action Ontology (TAO) to

represent meta rules for TAP. The proposed upper level ontology is generic in nature. Consequently,

it is high-level abstract description of end user defined rules for different IoT based applications such

as Home Automation System, Smart Farming, HealthCare, Smart Parking etc.

Proposed TAO is consisting of three layers – Rules, Context and IoT Resources. Figure 1 has

demonstrated the conceptual model of proposed TAO. The bottom most layer of proposed TAO (IoT

Resources) provides ontology-based descriptions for IoT devices, services and related attributes.

Based on those descriptions, middle layer (Context) of proposed TAO represents the contextual

information related to triggers and actions. This contextual information is classified as primary

context and auxiliary context. Further, based on the contextual information, the top most layer (Rules)

provides the precise semantics towards different kinds of triggers, actions, multiple triggers and

multiple actions. Formal description of each layers are specified in the following sub sections.

IoT Devices Concept Services Concept Attributes Concept

Primary Context Concept Auxiliary Context Concept

Trigger Concept Action Concept

Provide description of IoT devices, Services

and related Attribute description

Provide Contextual aspect

Rule Layer

Context Layer

IoT Resource Layer

Figure 1: Proposed Trigger Action Ontology (TAO) Model

An Ontology Based Approach towards EU Development of IoT Debnath et al.

4

3.1 IoT Resource layer

IoT Resource layer has represented concepts and relationships associated with different types of

IoT devices and services in an IoT based domain. Since, TAP represents the behavior of IoT devices

and related services; a dedicated layer is needed to represent those concepts. Description of concepts

included in this layer is described as follows:

(a) IoT Devices: Distinct domains based on IoT are consisting of different kinds of devices, such

as sensors, actuators, tag devices etc. IoT Devices concept represents those different kinds of devices.

This concept is further categorized as Sensors, Actuators, Tag Devices and other devices. Following

are the axioms related to IoT Devices concept.

F1: ∀𝑖𝑜𝑡𝑑𝑒(((𝐼𝑜𝑡_𝐷𝑒𝑣𝑖𝑐𝑒𝑠(𝑖𝑜𝑡𝑑𝑒)) ∧ (𝑖𝑜𝑡𝑑𝑒 ∈ 𝐷𝑒𝑣𝑖𝑐𝑒_𝐿𝑖𝑠𝑡)) → 𝑀(𝐺𝑒𝑡𝐷𝑒𝑣𝑖𝑐𝑒(𝐷𝑒𝑣𝑖𝑐𝑒_𝐿𝑖𝑠𝑡)))

F2: ∀𝑖𝑜𝑡𝑑𝑒(𝐼𝑜𝑡_𝐷𝑒𝑣𝑖𝑐𝑒𝑠(𝑖𝑜𝑡𝑑𝑒) →
(𝑆𝑒𝑛𝑠𝑜𝑟(𝑖𝑜𝑡𝑑𝑒)⨁𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟(𝑖𝑜𝑡𝑑𝑒)⨁𝑇𝑎𝑔_𝐷𝑒𝑣𝑖𝑐𝑒(𝑖𝑜𝑡𝑑𝑒)⨁𝑂𝑡ℎ𝑒𝑟_𝐷𝑒𝑣𝑖𝑐𝑒(𝑖𝑜𝑡𝑑𝑒)))

Explanation: In F1, Iot_Devices is a predicate that represents a single instance (iotde) of IoT

devices. Device_List is a set that is consisting of instances of IoT devices such as iotde. M is a

predicate over function GetDevice() taking the set Device_List as argument and returns an instances

of IoT devices such as iotde. F2 specifies that an IoT device instance iotde can be Sensor, Actuator,

Tag_Device or Other_Devices.

(b) Services: IoT devices can provide and consumes several services such as sensor services (for

example, sense temperature value); Actuator services (for example, switch on the light); Tag device

services (for example, open the lock of an RFID tag based door). Following are the axioms.

F3: ∀𝑠𝑒((𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑠𝑒) ∧ (𝑠𝑒 ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒_𝐿𝑖𝑠𝑡)) → 𝑀(𝐺𝑒𝑡𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑆𝑒𝑟𝑣𝑖𝑐𝑒_𝐿𝑖𝑠𝑡)))

F4: ∀𝑠𝑒(𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑠𝑒) →
(𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑠𝑒)⨁𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑠𝑒)⨁𝑇𝑎𝑔_𝐷𝑒𝑣𝑖𝑐𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑠𝑒)))

Explanation: F3 and F4 specify similar kind of semantics for Services as specified in F1 and F2.

(c) Attributes: This concept represents properties of different IoT devices and Services. Examples

of these properties are name of the device, service name, battery capability of the device, service input

data, sensor measured value etc. This concept further classified as IoT Devices Attributes and Service

Attributes. The axioms of Attributes will be similar kind as specified in F1 and F2.

Besides these three concepts, this layer also includes three relationships – Provide, Consume and

Has_Attribute. Following are the descriptions of those relationships.

(d) Provide: This relationship represents the fact that one IoT device can produce a service.

F5: ∀𝑖𝑜𝑡𝑑𝑒∃𝑠𝑒((𝐼𝑜𝑡_𝐷𝑒𝑣𝑖𝑐𝑒𝑠(𝑖𝑜𝑡𝑑𝑒) ∧ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑠𝑒)) → 𝑝𝑟𝑜𝑣𝑖𝑑𝑒(𝑖𝑜𝑡𝑑𝑒, 𝑠𝑒))

Explanation: In F5, Provide() predicate specify the relationship from iotde to se.

Formal axioms for Consume and Has_Attribute can be defined in the same way as in F7.

However, in case of Consume relationship, the direction will be from se to iotde. Further,

Has_Attributes relationship will be from IoT Devices to Attributes or from Services to Attributes.

3.2 Context Layer

Context layer represents the concepts and relationships useful to describe 5W (Where, When,

Who, What and Why) information related to triggers and actions. This 5W term is presenting the

basic information related to trigger and actions as follows. “Who” represents who is responsible for

triggering or performing action. Who can be an IoT device, a service or an end user. “When”

represents, the temporal aspects that when trigger or action can be happened. Further, “Where”

provides the location information related to the trigger and action. “What” represents that what the

trigger and the action specifies. “Why” describes the reason of the trigger and performing the action.

Context layer is consisting of two concepts and their in between relationships. Two concepts are

Primary Context (PC) and Auxiliary Context (AC). PC is further categorized according to 5W

concepts. AC provides additional information relevant for PC. An example of AC can be described in

An Ontology Based Approach towards EU Development of IoT Debnath et al.

5

this way – “An IoT device (representing “who” PC) can have AC such as brand name, performance

criteria etc”. Formal axioms of PC and AC are similar as specified in axioms F1 and F2. Following

are the axioms for 5Ws.

F6: ∀𝑝𝑐∃𝑐((𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑝𝑐) ∧ 𝑊ℎ𝑦(𝑝𝑐) ∧ 𝑐𝑎𝑢𝑠𝑒(𝑐)) → 𝑀(𝑠𝑝𝑒𝑐𝑖𝑓𝑦𝐶𝑎𝑢𝑠𝑒(𝑝𝑐, 𝑐)))

Explanation: In F6, Why() predicate specify that the context is why context; cause() specify that

c is a cause. Further, M() specifies that specifyCause() function returns the reasons why triggering is

happened or why action is performed based on that trigger.

F7: ∀𝑝𝑐∃𝑑𝑒𝑠((𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑝𝑐) ∧ 𝑊ℎ𝑎𝑡(𝑝𝑐) ∧ 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑑𝑒𝑠)) →
𝑀(𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑝𝑐, 𝑑𝑒𝑠)))

Explanation: In F7, What()specifies a one line textual description of the trigger and action.

F8: ∀𝑝𝑐∃𝑛𝑎𝑚𝑒((𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑝𝑐) ∧ 𝑊ℎ𝑜(𝑝𝑐) ∧ 𝑛𝑎𝑚𝑒(𝑛𝑎𝑚𝑒)) →
𝑀(𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑁𝑎𝑚𝑒(𝑝𝑐, 𝑛𝑎𝑚𝑒)))

Explanation: In F8, Who() predicate specifies that name of the IoT device, Service, or the user

who is responsible for happening of the trigger or action.

F9: ∀𝑝𝑐∃𝑡𝑖𝑚𝑒((𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑝𝑐) ∧ 𝑊ℎ𝑒𝑛(𝑝𝑐) ∧ (𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝(𝑡𝑖𝑚𝑒) ∨ (𝐸𝑛𝑑𝑇𝑖𝑚𝑒(𝑡𝑖𝑚𝑒) ∧
𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒(𝑡𝑖𝑚𝑒))) → 𝑀(𝑠𝑝𝑒𝑐𝑖𝑓𝑦𝑇𝑖𝑚𝑒(𝑝𝑐, 𝑡𝑖𝑚𝑒)))

Explanation: In F9, When() specifies that the trigger or the action will be happened either at a

time stamp or during a time period .

F10: ∀𝑝𝑐∃𝑙𝑐((𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑝𝑐) ∧ 𝑊ℎ𝑒𝑟𝑒(𝑝𝑐) ∧ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑙𝑐) →
(𝑀(𝑠𝑝𝑒𝑐𝑖𝑓𝑦𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑝𝑐, 𝑙𝑐))).

Explanation: In F10, Where()specify the location, where the trigger or action will be happened.

IoT devices, and Services in IoT Resource layer can mapped towards Who context. Attribute can

be mapped towards AC. Context layer is working as a link between Rules and IoT Resources layer.

3.3 Rule Layer

Rule layer represents the concepts and relationships specific to the semantics of a TAP rule. In

general, a TAP rule is consisting of two parts – trigger and action. Based on this structure, Rules layer

is consisting of following concepts.

(a) Trigger (T): Trigger concept represents the causes, which are responsible for performing

actions. Triggers can be further categorized as Event and State. It can be formally represented as a

member of the set Trigger List. The axiom related to trigger concept is similar like F1 and F2.

 (b) Event (E): Events represent those triggers, which can occurs at a given time. Further, events

are associated with some conditions. For example,”When I have entered room, brighten the room

light”. Here, the trigger part “When I have entered the room” is representing an event. Since, it occurs

at a given moment. The axiom related to Event concept is as follows:

F11:∀𝐸∃𝑡1∃𝑐((𝐸𝑣𝑒𝑛𝑡(𝐸) ∧ 𝑇𝑖𝑚𝑒(𝑡1) ∧ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑐)) → (𝑜𝑐𝑐𝑢𝑟𝑠(𝐸, 𝑡1) ∧ 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑(𝐸, 𝑐)))

Explanation: In F11, Event() implies a single event E. Time() implies a particular time.

Condition()implies a single condition c. Further, occurs() represents a single event E is happening at a

particular time t1. Besides this, associated() represents that a single event is associated with a

particular condition c. Condition represents the what aspects of a trigger in rule layer.

(c) State (S): State represents those triggers, which tends to persist. For example, “If it is raining,

close the window”. Here, “if it is raining” representing a state. Since, it tends to persist. The axiom

related to State concept is as follows:

F12: ∀𝑆∃𝑡1∃𝑡2((𝑆𝑡𝑎𝑡𝑒(𝑆) ∧ 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒(𝑡1) ∧ 𝐸𝑛𝑑𝑇𝑖𝑚𝑒(𝑡2)) → (𝑝𝑒𝑟𝑠𝑖𝑎𝑡𝑎𝑛𝑐𝑒(𝑆, 𝑡1, 𝑡2)))

Explanation: In F12, State is a predicate implying a single state S. StartTime() is a predicate

implying the initiation time of the particular state. EndTime() is a predicate implying the ending time

of the state. persistance()implies the relationship between a state and its existence duration.

(d) Action: Action represents some functionalities those are initiated due to triggers. Actions can

be further categorized as Immediate, Extended, and Suspended. The axiom of Action is similar as

An Ontology Based Approach towards EU Development of IoT Debnath et al.

6

defined in F1 and F2. Further, F13 has presented the triggering relationship from Trigger to Action.

This axiom provides the general semantics of a TAP rule.

F13:∀𝐴∃𝑇((𝐴𝑐𝑡𝑖𝑜𝑛(𝐴) ∧ 𝑇𝑟𝑖𝑔𝑔𝑒𝑟(𝑇)) → 𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑖𝑛𝑔(𝑇, 𝐴))

 (e) Immediate Action: Immediate actions represents the actions which have happened in a

particular moment. “Sending an e-mail” is the example of immediate action.

F14:∀𝐴∃𝑡1((𝐴𝑐𝑡𝑖𝑜𝑛(𝐴) ∧ 𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝐴) ∧ 𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝(𝑡1)) → ℎ𝑎𝑝𝑝𝑒𝑛𝑠(𝐴, 𝑡1))

(f) Extended Action: An extended action represents the actions, which are persisted for some

duration and then terminated. “Brewing the coffee” is the example of extended action.

F15:∀𝐴∃𝑡1∃t2((𝐴𝑐𝑡𝑖𝑜𝑛(𝐴) ∧ 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛(𝐴) ∧ 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒(𝑡1) ∧ 𝐸𝑛𝑑𝑇𝑖𝑚𝑒(𝑡2)) →
𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑑(𝐴, 𝑡1, 𝑡2))

(g) Sustained Action: a Sustained action represents the actions, which are continued until a new

behavior is initiated on the same IoT object. “Close the door” is the example of Sustained action.

F16:∀𝐴∃𝑡1∃𝑡1∃𝑝𝑜𝑐∃𝑇((𝐴𝑐𝑡𝑖𝑜𝑛(𝐴) ∧ 𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛(𝐴) ∧ 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒(𝑡1) ∧
𝐸𝑛𝑑𝑇𝑖𝑚𝑒(𝑡2) ∧ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(𝑇)) → (𝑠𝑡𝑎𝑟𝑡𝑒𝑑(𝐴, 𝑡1) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑(𝐴, 𝑇, 𝑡2)))

Explanation: In F16, terminated() imply that the activity will be ended when the trigger T occurs.

Further, continued() represents the sustained activity will be continued for the specified time duration.

(h) Multiple Triggers and Multiple Actions: Multiple triggers and multiple actions connect with

each other through relationships connected trigger and connected action. These relationships can be

further And Connected, Or Connected, ExclusiveOr Connected, and Not Connected.

F17:∀𝑇1∃𝑇2((𝑇𝑟𝑖𝑔𝑔𝑒𝑟(𝑇1) ∧ 𝑇𝑟𝑖𝑔𝑔𝑒𝑟(𝑇2) ∧ 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑠(𝑇1, 𝑇2)) →
(𝐴𝑛𝑑(𝑇1, 𝑇2) ∨ 𝑂𝑟(𝑇1, 𝑇2) ∨ 𝐸𝑥𝑐𝑢𝑠𝑖𝑣𝑒𝑂𝑟(𝑇1, 𝑇2) ∨ 𝑁𝑜𝑡𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑇1, 𝑇2)))

Explanation: F17 represent different kinds of connections between multiple triggers. Multiple

actions can be represented using similar kind of axioms.

“When “context in context layer provides the temporal information related to triggers and actions.

Further, other contexts are also related with both triggers and actions in Rule layer through Has Why,

Has Who, Has What, and Has Where relationships. Moreover, “How” context are represented through

combining multiple triggers and multiple actions.

3.4 Implementation of Proposed TAO Using Protégé [14]

The proposed ontology TAO is implemented in an Ontology editor tool Protégé OWL language.

Protégé can help to validate the proposed TAO initially. All the concepts of proposed TAO

represented as classes in Protégé. Further, all relationships of proposed TAO are represented as object

properties in Protégé. Figure 2 demonstrates the ontology-based graph of proposed TAO obtained

from Protégé. The rectangle nodes in the graph represent classes and the edges represent different

Figure 2: Ontology Graph of proposed TAO obtained through OntoGraf plugin of Protégé [14]

An Ontology Based Approach towards EU Development of IoT Debnath et al.

7

object properties. Further, Figure 3 has demonstrated the classification of triggers. Likewise, we also

get ontology-based graph for the classifications of actions.

4 Illustration of proposed TAO using a Case Study

In this section, proposed TAO is illustrated using a fictional case study related to smart home

described in [11]. In the smart home domain, users typically personalize and control the appliances

through a home controller application. Initially, the sensors and devices in the application are in the

form as specified in Table 1. Table 2 has mapped the different concepts of Smart Home application

Part - A Part -B

Sensors Values Devices Location

Temperature 19 ° C TV Living Room

 Balcony Door Open Radio

Users’ Stress Level 30 Coffee Machine

Kitchen Presence in Living Room False Oven

Entrance Door Close Light

Bed Room Light 52 lx Fan
Table 1: Initial value of sensors [Part –A] and Positions of Devices [Part –B] in the case study [11]

Smart Home concepts

specified in the case study [11]

Corresponding IoT

Resource layer concepts

of Proposed TAO

Corresponding Context

Layer concepts of proposed

TAO

Sensor Light

Sensor Devices

Name of devices (“Who”

Concept)

Temperature

User’s Stress level

Entrance Door Tag Devices

Devices TV

Actuator Devices Radio

Kitchen

BedRoom

Living Room

Attributes

Location of devices (“Where”

concept)

Values of sensors and Devices Attributes Provide auxiliary context

Sensing room temperature, Open

the door, Light is on

Services

Name of services (“Who”

Concept)
Table 2: Mapping between Concepts of Smart Home Case Study [11], IoT Resource layer and Context

Layer concepts of proposed TAO.

Figure 3: Classification of triggers in proposed TAO

An Ontology Based Approach towards EU Development of IoT Debnath et al.

8

case study [11] to the IoT Resource layers and further to Context layer of proposed TAO. Entries in

the column 1 of Table 2 will be represented as individuals in Protégé. Further, entries in column 2 of

Table 2 will represent the types of those individuals. Let assume a rule “When the user stress level

exceeds value 50 and the user is sitting close to the living room TV, then turn off the living room TV

and turn on the living room radio”. End users can apply this rule to get the corresponding behavior

from IoT objects and Services specified in Table 1. Distinct multiple triggers and multiple actions are

recognized. Table 3 has specified this mapping between the example rule and proposed TAO. Thus,

Table 2 and Table 3 have exhibited that proposed TAO can provide suitable semantics towards TAP.

5 Conclusion

In this paper, an upper level ontology named as Trigger Action Ontology (TAO) is proposed to

specify the meta rule semantics of TAP. TAO is capable to resolve some crucial challenges related to

TAP. Those challenges are related to precise and formal representation of (i) differences between state

and event trigger; (ii) differences between immediate, extended, and sustained actions; (iii) multiple

triggers and multiple actions and further to manage scalability issues. The contribution of the

proposed work is to provide formal semantics of temporal and contextual aspects of triggers and

actions. The proposed semantics are domain independent and thus it provides a high-level abstract

form. Consequently, proposed TAO manages the scalability issues to some extent. Future work

includes prescribing an automated framework that can facilitate end users to define correct behaviors

of IoT objects. Proof the usability of that framework will be another prime consideration.

Acknowledgements

This research is financially supported by Eastern International University, Binh Duong Province,

Vietnam.

References

[1] F. Corno, L. D. Russis and A. M. Roffarell, "A high-level semantic approach to end-user

development in the Internet of Things," International Journal of Human-Computer Studies, vol.

125, pp. 41-54, 2019.

[2] B. A. Chages, D. F. Redmiles and C. S. Souza, "End-user development for the Internet of Things

Constructs of the Example Rule Corresponding Proposed TAO

Concepts

User’ stress level exceeds value 50 Event Trigger

Living room “Where” aspect

user is siting close to the TV State Trigger

Turn on the Radio Sustained Action

Turn off the TV Sustained Action

User stress level exceeds value 50 and user is

sitting close to the TV

Multiple triggers (and Combination)

Turn on the Radio and turn off the TV Multiple actions (and Combination)
Table 3: Mapping between constructs of Example rule and Proposed TAO concept

An Ontology Based Approach towards EU Development of IoT Debnath et al.

9

OR How can a (smart) light bulb be so complicated?," in In 2017 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC), Raleigh, NC, USA, 2017.

[3] G. Desolda, F. Greco, F. Guarnieri, N. Mariz and M. Zancanaro, "SENSATION: An Authoring

Tool to Support Event–State Paradigm in End-User Development," in Human-Computer

Interaction – INTERACT 2021. INTERACT 2021, Lecture Notes in Computer Science, 2021.

[4] R. Zeng, A. Bandi and A. Fellah, "Designing a Brain Computer Interface Using EMOTIV

Headset and Programming Languages," in In Proceedings of 2018 Second Int. Conf. on

Computing Methodologies and Communication (ICCMC), 2018.

[5] A. Mattioli and F. Paternò, "Recommendations for creating trigger-action rules in a block-based

environment," Behaviour & Information Technology, vol. 40, no. 10, pp. 1024-1034, 2021.

[6] A. Bandi and A. Fellah, "Design issues for converting websites to mobile sites and apps: A case

study," in In Proceedings of 2017 Int. Conf. on Computing Methodologies and Communication

(ICCMC), 2017.

[7] G. Desolda, C. Ardito and M. Matera, "End-User Development for the Internet of Things:

EFESTO and the 5W Composition Paradigm," in Rapid Mashup Development Tools. RMC 2016.

Communications in Computer and Information Science, Lugano, Switzerland, 2017.

[8] S. P. Reiss, "IoT End User Programming Models," in 2019 IEEE/ACM 1st International

Workshop on Software Engineering Research & Practices for the Internet of Things (SERP4IoT),

Montreal, QC, Canada, 2019.

[9] "IFTTT," [Online]. Available: https://ifttt.com/home. [Accessed 8 February 2022].

[10] "Zapier | The easiest way to automate your work," [Online]. Available: https://zapier.com/.

[Accessed 7 February 2022].

[11] G. Ghiani, M. Manca, F. Paternò and C. Santoro, "Personalization of context-dependent

applications through trigger-action rules," ACM Transactions on Computer-Human Interaction

(TOCHI), vol. 24, no. 2, pp. 1-33, 2017.

[12] J. Huang and M. Cakmak, "Supporting mental model accuracy in trigger-action programming,"

in In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, Osaka Japan, 2015.

[13] F. Corno, L. D. Russis and A. M. Roffarello, "A Semantic Web Approach to Simplifying

Trigger-Action Programming in the IoT,," Computer, vol. 50, no. 11, pp. 18-24, 2017.

[14] M. Horridge, "A Practical Guide to Building OWL Ontologies Using Protégé 4 and

COODETools. Edition 1.3," The University of Manchester, 2011.

[15] C. Ardito, G. Desolda, R. Lanzilotti, A. Malizia, M. Matera, P. Buono and A. Piccinno, "User-

defined semantics for the design of IoT systems enabling smart interactive," Personal and

Ubiquitous Computing, vol. 24, no. 6, pp. 781-796, 2020.

[16] F. Corno, L. D. Russis and A. Monge Roffarello, "RecRules: Recommending IF-THEN Rules

for End-User Development," ACM Transactions on Intelligent Systems and Technology, vol. 10,

no. 5, pp. 1-27, 2019.

[17] F. Corno, L. D. Russis and A. Monge Roffarello, "Empowering end users in debugging trigger-

action rules," in Proceedings of the 2019 CHI Conference on Human Factors in Computing

Systems, Glasgow Scotland Uk, 2019.

[18] S. Eun, J. Jung, Y. S. Yun, S. S. So, J. Heo and H. Min, "An end user development platform

based on dataflow approach for IoT devices," Journal of Intelligent & Fuzzy Systems, vol. 35, no.

6, pp. 6125-6131, 2018.

An Ontology Based Approach towards EU Development of IoT Debnath et al.

10

