
Kalpa Publications in Computing
Volume 16, 2023, Pages 71–82

Proceedings of the 6th Workshop on Formal
Methods for ML-Enabled Autonomous Systems

Verifying Global Neural Network
Specifications using Hyperproperties

David Boetius and Stefan Leue

University of Konstanz, 78457 Konstanz, Germany
{david.boetius,stefan.leue}@uni-konstanz.de

Abstract

Current approaches to neural network verification focus on specifications that target
small regions around known input data points, such as local robustness. Thus, using
these approaches, we can not obtain guarantees for inputs that are not close to known
inputs. Yet, it is highly likely that a neural network will encounter such truly unseen
inputs during its application. We study global specifications that — when satisfied —
provide guarantees for all potential inputs. We introduce a hyperproperty formalism that
allows for expressing global specifications such as monotonicity, Lipschitz continuity, global
robustness, and dependency fairness. Our formalism enables verifying global specifications
using existing neural network verification approaches by leveraging capabilities for verifying
general computational graphs. Thereby, we extend the scope of guarantees that can be
provided using existing methods. Recent success in verifying specific global specifications
shows that attaining strong guarantees for all potential data points is feasible.

1 Introduction

Deep learning is a game changer for research, education, business and beyond [9, 11]. Yet, we
remain unable to provide strong guarantees on the behaviour of neural networks. In particular,
while neural network verification in principle can provide strong guarantees, current approaches
almost exclusively consider local specifications [1, 14, 20, 25, 32, 38] that only apply to small
regions around known input data points. This means that the currently widely-used specifica-
tions only sparsely cover the input space, providing no guarantees for inputs that are not close
to known inputs. In contrast, global specifications cover the entire input space.

We propose a specification formalism for neural networks that encompasses a rich class of
global specifications while enabling verification using existing verifier technology. In particular,
we show how monotonicity, Lipschitz continuity, two notions of global robustness [21, 24], and
dependency fairness [15, 35] can be expressed using our formalism.

As noted in [30], global specifications such as monotonicity and global robustness are hyper-
properties [8]. In difference to regular properties that only consider one network execution at
a time, hyperproperties relate executions for several inputs of the same neural network to each
other. This allows us, for example, to express a naïve notion of global robustness stating that
an arbitrary input and a second input that lies close need to receive the same classification.

N. Narodytska, G. Amir, G. Katz and O. Isac (eds.), FoMLAS2023 (Kalpa Publications in Computing, vol.
16), pp. 71–82



Verifying Global Neural Network Specifications using Hyperproperties D. Boetius S. Leue

A central aspect of our formalism is that we use auxiliary neural networks to define input sets
and output sets. By leveraging capabilities for verifying general computational graphs [37], the
auxiliary networks, together with self-composition [8], allow for verifying hyperproperties using
existing neural network verification approaches. Here, the role of the auxiliary neural networks
is to make complex hyperproperty input and output sets accessible to existing verification
approaches. Concretely, we design an auxiliary neural network to generate the tuples of inputs
that need to be compared to determine whether a hyperproperty is satisfied. Another auxiliary
neural network detects whether the outputs a network produces for these inputs satisfy the
output constraint. For the naïve notion of global robustness, this means that we derive a
neural network that generates arbitrary pairs of inputs that are close to each other and another
neural network that detects whether two outputs represent the same classification. Importantly,
these auxiliary neural networks exactly capture the targeted input and output constraints using
standard neural network components.

Recent success in verifying global robustness [36] and global individual fairness [35] demon-
strates that verifying global specifications is feasible. Our formalism is a general framework for
global specifications targeting existing verifiers [14, 22, 32, 38]. While our formalism does not
alleviate the need for specialised techniques, such as the Interleaving Twin Encoding [36], it
allows for

1. Comparing general-purpose verifiers with specialised verifiers for specific global
specifications and

2. Applying general-purpose verifiers to global specifications for which no specialised
verifier exists.

2 Preliminaries
We consider verifying whether a neural network conforms to a global specification. Neural
networks are computational graphs [16]. Global specifications are formalised using hyperprop-
erties [8, 30].

Definition 1 (Computational Graph). A computational graph is a directed acyclic graph with
computations (V,E, h), where V = {1, . . . , L} with L ∈ N is the set of nodes, E ⊆ V ×V is the
edge relation and h = (h1, . . . , hL) is the computations tuple. Let degin : V → N denote the
in-degree. The computation of node i ∈ V is hi : Rmk1 ×· · ·×Rmkdegin(i) → Rmi , where mi ∈ N
is the output dimension of node i and k1, . . . , kdegin(i) ∈ {i | (k, i) ∈ E} with k1 ≤ · · · ≤ kdegin(i)
are the direct predecessors of i.

Definition 2 (Neural Network). A neural network netθ : Rn → Rm, n,m ∈ N is a composition
of affine transformations and non-affine activation functions represented by a computational
graph (V,E, h) with a source i and a single sink j, such that hi : {∅} → Rn and hj : Rmk1 ×
· · · × Rmkdegin(j) → Rm. The source i is the input of netθ. The remaining sources of the
computational graph together form the parameters θ of netθ. The sink j is the output of netθ.
For classification tasks, argmaxmj=1 netθ(x) is the class netθ assigns to an input x ∈ Rn.

Figure 1 contains the computational graph of a residual unit [19] as an example. This graph
defines the steps necessary for computing the output of a residual unit, given an input. It
also allows for computing gradients and verifying a residual unit. Assume we want to compute
the outputs of a neural network for an input x ∈ Rn. Also, assume we have a parameter
assignment θ. We assign x to the network input node i and the corresponding parameter

72



Verifying Global Neural Network Specifications using Hyperproperties D. Boetius S. Leue

x

γ β

/ [•]+

W b

∗

γ′ β′

/ [•]+

W ′ b′

∗ + y

Figure 1: The computational graph of a residual unit [19]. In this figure, ∗ denotes
convolution, / denotes batch normalisation, [•]+ denotes ReLU, and + denotes addition. We
use pink nodes for inputs, yellow for parameters, and blue for outputs.

values to the remaining sources. Now, computing the outputs corresponds to a forward walk
over the computational graph, propagating the computation results of each node to its direct
successors. Similarly, a backwards walk from sinks to sources allows for computing the gradients
of the sink with respect to each source (backpropagation). Forward and backwards walks also
allow for computing certified lower and upper bounds on the network output that can be used
for verifying the neural network [37].

Verifying a neural network means that we want to automatically prove or disprove whether
the neural network satisfies a specification. A specification is a set of properties.

Definition 3 (Property). A property φ = (Xφ,Yφ) is a tuple of an input set Xφ ⊆ Rn and an
output set Yφ ⊆ Rm, n,m ∈ N. We write netθ ⊨ φ when a neural network netθ : Rn → Rm
satisfies the property φ. Specifically,

netθ ⊨ φ⇔ ∀x ∈ Xφ : netθ(x) ∈ Yφ.

We call an input x ∈ Xφ for which netθ(x) /∈ Yφ a counterexample.

A verifier determines whether a neural network netθ satisfies a property φ. We require
verifiers to 1. report property satisfaction if and only if the property is indeed satisfied (sound-
ness) and 2. to terminate (completeness). In this paper, we only require verifiers to support
bounded hyperrectangles as property input sets and the non-negative real numbers as output
set. Practically, verifiers can also handle more complicated input and output sets.

For formalising global specifications, we make use of hyperproperties. Hyperproperties ex-
tend properties by considering multiple input variables and input-dependent output sets.

Definition 4 (Hyperproperty). A hyperproperty ψ = (Xψ,Yψ) is a tuple of a multi-variable
input set Xψ ⊆ (Rn)v and an input-dependent output set

Yψ ⊆ Rn × · · · × Rn︸ ︷︷ ︸
v times

×Rm × · · · × Rm︸ ︷︷ ︸
v times

,

where n,m, v ∈ N. For a neural network netθ : Rn → Rm, we write netθ ⊨ ψ if

∀x(1), . . . ,x(v) ∈ Xψ :
(
x(1), . . . ,x(v),netθ

(
x(1)

)
, . . . ,netθ

(
x(v)

))
∈ Yψ.

73



Verifying Global Neural Network Specifications using Hyperproperties D. Boetius S. Leue

3 Formalising Global Specifications using Hyperproperties
Global specifications allow for expressing desired behaviour for the entire input domain of a
neural network while local specifications only apply to small regions around known inputs.
This property of local specifications brings with it that we have a fixed reference point for each
property in a local specification. We typically do not have such a fixed reference point for global
specifications, since they apply to the entire input domain.

For example, a local robustness property expresses that a classifier assigns the same class
to all inputs that lie within a small Lp-ball Bp(x) around a fixed input point x. Because we
have this fixed input x as a reference point, we know the class that should be assigned to all
the inputs in Bp(x). Knowing this class allows for judging whether an input x′ ∈ Bp(x) is a
counterexample to the local robustness property by executing the network once for x′.

If we now look at global robustness, we find that it does not suffice to consider a single
execution of a network to check for specification violations. As the inputs now are arbitrary
inputs from the entire input domain, we can not determine whether robustness is violated by
looking only at the output for one input x(1). Instead, we need to find another input x(2) ∈
Bp

(
x(1)

)
such that the classes that a network assigns to x(1) and x(2) do not match. Only in

pair, these inputs form a counterexample. The necessity to compare outputs for multiple inputs
requires us to adopt hyperproperties for formalising global specifications.

If we look more closely at our example of global robustness, we find that requiring the points
in all Lp-balls to have the same output forces the network to produce the same output for all
inputs. This means that we also have to consider more complicated output sets for global
specifications. In this case, we either need to allow small changes in class scores (Example 2)
or devise special rules for points close to the decision boundary (Example 3). Furthermore, if
we express global robustness as Lipschitz continuity [7] (Example 4), our output set needs to
be input-dependent. This means that it does not suffice to only compare network outputs with
network outputs to determine whether a specification is violated. Instead, we also need to take
the inputs that lead to the observed outputs into account.

For the reasons outlined above, we consider hyperproperties with multi-variable input sets
and input-dependent output sets as in Definition 4 for formalising global specifications. To
leverage existing neural network verification approaches for verifying these hyperproperties, we
express the multi-variable input set and the input-dependent output set using auxiliary neural
networks.

Definition 5 (Neural-Network-Defined Hyperproperty). Let n,m, v, w ∈ N. A Neural-Network-
Defined Hyperproperty (NNDH) is a hyperproperty ψ = (Xψ,Yψ), where

Xψ = {netIn(w) | w ∈ W}

Yψ =
{
x(1), . . . ,x(v),y(1), . . . ,y(v)

∣∣∣netSat(x(1), . . . ,x(v),y(1), . . . ,y(v)
)
≥ 0

}
,

where W ⊂ Rw is a bounded hyperrectangle and netIn and netSat are neural networks with

netIn : Rw → (Rn)v netSat : Rn × · · · × Rn︸ ︷︷ ︸
v times

×Rm × · · · × Rm︸ ︷︷ ︸
v times

→ R.

We can think of the neural network netIn as generating the multi-variable input set from a
single-variable hyperrectangular input space. The neural network netSat serves as a satisfaction
function [4] for the output set. A satisfaction function is non-negative if and only if an output —
or, in this case, a tuple of inputs and outputs — lies within the output set of a property or
hyperproperty.

74



Verifying Global Neural Network Specifications using Hyperproperties D. Boetius S. Leue

It is central to Definition 5 that netIn and netSat do not approximate our desired input
and output set, but express them exactly. Usually, we train neural networks to approximate
a potentially unknown relationship between inputs and outputs. The neural networks netIn
and netSat , however, are not trained but carefully constructed to generate our desired input
and output set. As such, these auxiliary neural networks are relatively simple structures in this
paper. Their main purpose is to make hyperproperties accessible for existing neural network
verification approaches.

We now provide several concrete examples of NNDHs including concrete netIn and netSat
networks. We formalise global monotonicity, two notions of global robustness [21, 24], Lipschitz
continuity, and dependency fairness [15, 35] as NNDHs. Afterwards, we show how NNDHs
can be verified using existing neural network verifiers that can handle general computational
graphs.

In the following, let X ⊂ Rn be the bounded hyperrectangular input domain of the neural
network under consideration. This domain is determined by the target application. In the case
of image classification, for example, X would be the (normalised) pixel space.

Example 1 (Global Monotonicity). Monotonicity is a desired behaviour of a neural network in
applications from medicine to aviation [33]. Here, we formalise that the output j ∈ {1, . . . ,m}
may not increase when input i ∈ {1, . . . , n} increases. Non-decreasing monotonicity can be for-
malised analogously. We formalise global monotonicity as a hyperproperty ψM = (XψM ,YψM ),
where the input set XψM ⊆ X × X and output set YψM ⊂ Rn × Rn × Rm × Rm are

XψM =
{
x(1),x(2)

∣∣∣ x(2)
i ≥ x

(1)
i

}
YψM =

{
x(1),x(2),y(1),y(2)

∣∣∣ y(2)
j ≤ y

(1)
j

}
.

To generate these sets using neural networks to obtain an NNDH, we define

WM =
{
x
(1)
1 , . . . ,x(1)

n ,x
(2)
1 , . . . ,x(2)

n

∣∣∣ x(1),x(2) ∈ X
}
,

netInM

(
x
(1)
1 , . . . ,x(1)

n ,x
(2)
1 , . . . ,x(2)

n

)
=

(
x′(1),x′(2)

)
,

where x′(1) =
(
x
(1)
1 , . . . ,min

(
x
(1)
i ,x

(2)
i

)
, . . . ,x(1)

n

)
x′(2) =

(
x
(2)
1 , . . . ,max

(
x
(1)
i ,x

(2)
i

)
, . . . ,x(2)

n

)
,

and
netSatM

(
x(1),x(2),y(1),y(2)

)
= y

(1)
j − y

(2)
j .

The function netSatM is a neural network with a single affine layer. Concerning netInM , we can
compute max either using a maxpooling layer or by leveraging ∀a, b ∈ R : max(a, b) = [a− b]

+
+

b where [•]+ = max(•, 0) is ReLU. Furthermore, since ∀a, b ∈ R : min(a, b) = −max(−a,−b),
we can also compute min in a neural network. Therefore, WM , netInM and netSatM together
form an NNDH having XψM as its input set and YψM as its output set.

Example 2 (Global L∞ Robustness following [21]). Neural networks are susceptible to ad-
versarial attacks where slightly modifying the input allows an attacker to control the output
produced by a neural network [34]. This is a safety concern, for example, for traffic sign
recognition [12] and biometric authentication using face recognition [31]. In this example, we

75



Verifying Global Neural Network Specifications using Hyperproperties D. Boetius S. Leue

express L∞ global robustness according to [21] as an NNDH. This specification limits how much
the output of a neural network may change for inputs that lie within an L∞-ball of a certain
size. Let δ, ε ∈ R>0 be the radius of the L∞-ball and the permitted magnitude of change,
respectively. Let

WR = {x1, . . . ,xn, τ 1, . . . , τn | x ∈ X , τ ∈ [−δ, δ]n}
netInR(x1, . . . ,xn, τ 1, . . . , τn) = (x,projectX (x+ τ ))

netSatR1

(
x(1),x(2),y(1),y(2)

)
= ε−

∥∥∥y(1) − y(2)
∥∥∥
∞

= ε− m
max
j=1

∣∣∣y(1)
j − y

(2)
j

∣∣∣ ,
where projectX computes the projection into the hyperrectangle X . Projecting a point x
into a hyperrectangle corresponds to computing the minimum between each coordinate and the
lower boundary of the hyperrectangle and the maximum between each coordinate and the upper
boundary of the hyperrectangle. As we show in Example 1, we can compute minima and maxima
in a neural network. Similarly, netSatR1

computes a maximum and absolute values, which we
can compute by leveraging ∀a ∈ R : |a| = max(a,−a). Overall, WR, netInR , and netSatR1

define
an NNDH ψR1 = (XψR ,YψR1

), where XψR ⊂ X × X and YψR1
⊂ Rn × Rn × Rm × Rm, with

XψR =
{
x(1),x(2)

∣∣∣ ∥∥∥x(1) − x(2)
∥∥∥
∞

≤ δ
}

YψR1
=

{
x(1),x(2),y(1),y(2)

∣∣∣ ∥∥∥y(1) − y(2)
∥∥∥
∞

≤ ε
}
.

This captures that a network is globally robust as defined in [21].

Example 3 (Global L∞ Robustness following [24]). We also present an alternative definition
of global robustness using an extra class representing non-robustness at an input point [24].
This definition may be more desirable in some applications, as it still permits non-robustness
for noise-only rubbish class inputs [17] that lie off the data manifold. Let δ ∈ R>0 be as in
Example 2. Assume the classifier network we are studying produces an additional output ⊥ =
m + 1 that shall indicate non-robustness. We reuse XψR from Example 2 and define ψR2 =
(XψR ,YψR2

), where YψR2
⊂ Rn × Rn × Rm+1 × Rm+1 and, concretely,

YψR2
=

{
x(1),x(2),y(1),y(1)

∣∣∣ NR(y(1)
)
∨NR

(
y(2)

)
∨ Same

(
y(1),y(2)

)}
,

where

NR(y) =

m∧
j=1

y
(k)
⊥ ≥ y

(k)
j

Same
(
y(1),y(2)

)
=

m∨
j1=1

2∧
k=1

m∧
j2=1

y
(k)
j1

≥ y
(k)
j2
.

Intuitively, NR captures that the extra class ⊥ is assigned to an input, while Same captures
that the same class is assigned to y(1) and y(2)1. To construct a neural network netSatR2

that

1Strictly speaking, Same only requires that there is an intersection between the largest elements of y(1)

and y(2). This comes into play when the assigned class is ambiguous due to an output having several largest
elements.

76



Verifying Global Neural Network Specifications using Hyperproperties D. Boetius S. Leue

serves as a satisfaction function for ψR2, we note that for an arbitrary vector u ∈ Ru, u ∈ N∨
a∈A

∧
b∈B(a)

uk1(a,b) ≥ uk2(a,b) (1)

⇔
(
max
a∈A

min
b∈B(a)

uk1(a,b) − uk2(a,b)

)
≥ 0, (2)

where A and B are finite sets, B : A → 2B, and k1, k2 : A × B → N. As we can transform
any formula in propositional logic into Disjunctive Normal Form, we can bring the formula
defining YψR2

into the form of Equation (1). Therefore, since we can compute min and max
using a neural network (Example 1), we can define a neural network netSatR2

serving as a
satisfaction function for ψR2. Together with W and netInR from Example 2, netSatR2

defines
an NNDH with the same input and output set as ψR2.

Example 4 (Lipschitz Continuity). The Lipschitz continuity of a neural network is linked
not only to robustness [34] but also to fairness [10], generalisation [3], and explainability [13].
While many neural network architectures are always Lipschitz continuous [7, 34, 29], it is the
magnitude of the Lipschitz constant that matters [7]. Let K ∈ R≥0 be the desired global
Lipschitz constant. Define WC =

{
x
(1)
1 , . . . ,x

(1)
n ,x

(2)
1 , . . . ,x

(2)
n

∣∣∣ x(1),x(2) ∈ X
}

and

netInC

(
x
(1)
1 , . . . ,x(1)

n ,x
(2)
1 , . . . ,x(2)

n

)
=

(
x(1),x(2)

)
netSatC

(
x(1),x(2),y(1),y(2)

)
= K

∥∥∥x(1) − x(2)
∥∥∥
∞

−
∥∥∥y(1) − y(2)

∥∥∥
∞
.

First, netInC is an identity function and, thus, a trivial neural network. Then, by comput-
ing ∥ • ∥∞ as in Example 2 in a neural network, we obtain an NNDH ψC = (XψC ,YψC ) with

XψC = X × X

YψC =
{
x(1),x(2),y(1),y(2)

∣∣∣ ∥∥∥y(1) − y(2)
∥∥∥
∞

≤ K
∥∥∥x(1) − x(2)

∥∥∥
∞

}
,

which corresponds to Lipschitz continuity with Lipschitz constant K.

Example 5 (Dependency Fairness). Machine learning applications from automated hiring [6]
to image classification [28] bear the danger of producing unfair machine-learning models. How-
ever, in some applications, ensuring fairness may be legally required [27]. One fairness require-
ment that we may pose is that “similar individuals are treated similarly” [10]. Dependency
fairness [15, 35] is a fairness criterion based on this idea2. Assume the first dimension of the
input space is a categorical sensitive attribute with A ∈ N disjoint values. We consider two
inputs to be similar if they are equal except for the sensitive attribute. Dependency fair-
ness specifies that all similar inputs are assigned to the same class. Let ψF = (XψF ,YψF ),

2We believe dependency fairness is an overly simplistic fairness criterion as it can be trivially satisfied
by withholding sensitive attributes from the neural network, which is known to be insufficient for real-world
fairness [2]. However, we still think that dependency fairness is suitable as an example for experimenting with
verifying global specifications.

77



Verifying Global Neural Network Specifications using Hyperproperties D. Boetius S. Leue

with XψF ⊂ XA, YψF ⊂ (Rn)A × (Rm)
A, where

XψF =

{
x(1), . . . ,x(A)

∣∣∣∣∣ ∀k ∈ {1, . . . , A} :(
x
(k)
1 = k ∧ ∀i ∈ {2, . . . , n} : x

(1)
i = x

(k)
i

) }

YψF =

x(1), . . . ,x(A),y(1), . . . ,y(A)

∣∣∣∣∣∣
m∨
j1=1

A∧
k=1

m∧
j2=1

y
(k)
j1

≥ y
(k)
j2

 .

We can construct a neural network satisfaction function netSatF for this property analogously to
Example 3. The input set XψF consists of tuples of similar inputs which contain each value of the
sensitive attribute in a fixed order. Let A ∈ Rn×n be the diagonal matrix with 0, 1, . . . , 1 on its
diagonal. Let assign : N×R → R be an affine function with assign(k,x) = Ax+ (k, 0, . . . , 0)

T .
Define W = X and netInF (x) = (assign(1,x), . . . , assign(A,x)). Since assign is affine, netInF is
a neural network. Overall, W, netInF , and netSatF define an NNDH with the same input and
output set as ψF .

These examples demonstrate that Definition 5 is an expressive specification formalism, de-
spite restricting input and output sets to be defined by neural networks. It remains to show that
we can indeed verify NNDHs using existing neural network verification approaches. This builds
upon the ability to verify general computational graphs. In [37], the Linear Relaxation-based
Perturbation Analysis (LiRPA) framework is extended to general computational graphs. LiRPA
underlies verifiers such as α,β-CROWN [38] and ERAN [32], and is used in Marabou [22] and
MN-BaB [14], among others. Among these verifiers, α,β-CROWN already supports verifying
general computational graphs.

The central idea in verifying an NNDH ψ is to compose the network to verify netθ with
itself and the networks netInψ and netSatψ that define the input and output set of ψ.

Theorem 1 (NNDH Verification). Let ψ = (Xψ,Yψ) with W ⊆ Rw, netIn : Rw → (Rn)v

and netSat : (Rm)
v → R be an NNDH. Let netθ : Rn → Rm be a neural network. Define net′θ :

Rw → R as

net′θ(w) = netSat

(
x(1), . . . ,x(v),netθ

(
x(1)

)
, . . . ,netθ

(
x(v)

))
where x(1), . . . ,x(v) = netIn(w).

Further, let φ = (W,R≥0). It holds that net′θ ⊨ φ⇔ netθ ⊨ ψ.

Proof. Theorem 1 follows from applying Definitions 3 and 5.

Figure 2 visualises net′θ from Theorem 1. We construct a new computational graph by
generating several inputs using netIn and feeding each input to a separate copy of netθ. Fi-
nally, netSat takes the generated inputs and the output of each copy of netθ and computes
the satisfaction function value. Considering several copies of the same artefact is known as
self-composition [8]. As Theorem 1 shows, verifying an NNDH ψ corresponds to verifying a
property φ of the new computational graph net′θ. Overall, net′θ has a more complicated graph
structure than netθ, but it only contains computations that also appear in netθ, netIn or netSat .
Therefore, ψ can be verified using verifiers that can verify netθ, netIn and netSat and support
general computational graphs.

78



Verifying Global Neural Network Specifications using Hyperproperties D. Boetius S. Leue

w

netIn

...

x(1)

x(v)

...

netθ

netθ

...

y(1)

y(v)

...

netSat

... fSat

Figure 2: Computational Graph for Verifying NNDHs. Verifying an NNDH (Defini-
tion 5) reduces to verifying an input-output property of the computational graph in this figure.
The boxes enclose sub-graphs of the computational graph. The contents of each box are place-
holders. Pink nodes represent inputs, yellow nodes represent parameters, and blue nodes
represent outputs. The input and output nodes in each sub-graph are repetitions of their direct
predecessors or direct successors outside of the subgraph. The inputs of netSat were rearranged
for better legibility.

4 Related Work
Using self-composition for verifying specific global specifications was explored previously [21,
23]. We use self-composition for verifying a range of global specifications. Improved encodings
of self-composition [36] and approaches from differential verification of neural networks [26] are
interesting directions for improving the verification of NNDHs.

In 2017, verifying global robustness was found to be infeasible using the then-available
verifiers [21]. Recent approaches to global robustness [36] and global fairness specifications [35]
have demonstrated that verifying global specifications is feasible today. The reason behind
this could be that practically, neural networks appear not to realise their full combinatorial
potential [18], in a way that allows for efficient branch-and-bound verification [35].

5 Conclusion
We present a versatile formalism for expressing global specifications while maintaining com-
patibility with existing verification approaches. Evaluating this approach empirically remains
future work. A promising verifier for this approach is α,β-CROWN [38], as it already supports
verifying arbitrary computational graphs. An interesting direction is comparing our generally
applicable approach with approaches specialised to individual global specifications, such as,
global robustness [36], dependency fairness [35] and Lipschitz continuity [5].

79



Verifying Global Neural Network Specifications using Hyperproperties D. Boetius S. Leue

References
[1] Stanley Bak, Changliu Liu, and Taylor T. Johnson. The Second International Verification of Neural

Networks Competition (VNN-COMP 2021): Summary and Results. CoRR, abs/2109.00498, 2021.
[2] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairml-

book.org, 2019.
[3] Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds

for neural networks. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, NIPS, pages 6240–6249, 2017.

[4] Fabian Bauer-Marquart, David Boetius, Stefan Leue, and Christian Schilling. SpecRepair:
Counter-Example Guided Safety Repair of Deep Neural Networks. In Owolabi Legunsen and
Grigore Rosu, editors, SPIN, volume 13255 of Lecture Notes in Computer Science, pages 79–96.
Springer, 2022.

[5] Aritra Bhowmick, Meenakshi D’Souza, and G. Srinivasa Raghavan. LipBaB: Computing Exact
Lipschitz Constant of ReLU Networks. In Igor Farkas, Paolo Masulli, Sebastian Otte, and Stefan
Wermter, editors, ICANN (4), volume 12894 of Lecture Notes in Computer Science, pages 151–162.
Springer, 2021.

[6] Miranda Bogen and Aaron Rieke. Help wanted: An Examination of Hiring Algorithms, Equity,
and Bias. Report, Upturn, 2018.

[7] Moustapha Cissé, Piotr Bojanowski, Edouard Grave, Yann N. Dauphin, and Nicolas Usunier. Par-
seval Networks: Improving Robustness to Adversarial Examples. In Doina Precup and Yee Whye
Teh, editors, ICML, volume 70 of Proceedings of Machine Learning Research, pages 854–863.
PMLR, 2017.

[8] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In CSF, pages 51–65. IEEE Com-
puter Society, 2008.

[9] Yogesh K. Dwivedi, Nir Kshetri, Laurie Hughes, Emma Louise Slade, Anand Jeyaraj, Arpan Ku-
mar Kar, Abdullah M. Baabdullah, Alex Koohang, Vishnupriya Raghavan, Manju Ahuja, Hanaa
Albanna, Mousa Ahmad Albashrawi, Adil S. Al-Busaidi, Janarthanan Balakrishnan, Yves Barlette,
Sriparna Basu, Indranil Bose, Laurence Brooks, Dimitrios Buhalis, Lemuria Carter, Soumyadeb
Chowdhury, Tom Crick, Scott W. Cunningham, Gareth H. Davies, Robert M. Davison, Rahul
Dé, Denis Dennehy, Yanqing Duan, Rameshwar Dubey, Rohita Dwivedi, John S. Edwards, Car-
los Flavián, Robin Gauld, Varun Grover, Mei-Chih Hu, Marijn Janssen, Paul Jones, Iris Jun-
glas, Sangeeta Khorana, Sascha Kraus, Kai R. Larsen, Paul Latreille, Sven Laumer, F. Tegwen
Malik, Abbas Mardani, Marcello Mariani, Sunil Mithas, Emmanuel Mogaji, Jeretta Horn Nord,
Siobhan O’Connor, Fevzi Okumus, Margherita Pagani, Neeraj Pandey, Savvas Papagiannidis,
Ilias O. Pappas, Nishith Pathak, Jan Pries-Heje, Ramakrishnan Raman, Nripendra P. Rana,
Sven-Volker Rehm, Samuel Ribeiro-Navarrete, Alexander Richter, Frantz Rowe, Suprateek Sarker,
Bernd Carsten Stahl, Manoj Kumar Tiwari, Wil van der Aalst, Viswanath Venkatesh, Giampaolo
Viglia, Michael Wade, Paul Walton, Jochen Wirtz, and Ryan Wright. “So what if ChatGPT wrote
it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative
conversational ai for research, practice and policy. Int. J. Inf. Manag., 71:102642, 2023.

[10] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel. Fairness
through awareness. In Shafi Goldwasser, editor, ITCS, pages 214–226. ACM, 2012.

[11] Tyna Eloundou, Sam Manning, Pamela Mishkin, and Daniel Rock. GPTs are GPTs: An early
look at the labor market impact potential of large language models. CoRR, abs/2303.10130, 2023.

[12] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul
Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning
visual classification. In CVPR, pages 1625–1634. Computer Vision Foundation / IEEE Computer
Society, 2018.

[13] Thomas Fel, David Vigouroux, Rémi Cadène, and Thomas Serre. How good is your explanation?
algorithmic stability measures to assess the quality of explanations for deep neural networks. In

80



Verifying Global Neural Network Specifications using Hyperproperties D. Boetius S. Leue

WACV, pages 1565–1575. IEEE, 2022.
[14] Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. Complete Verification

via Multi-Neuron Relaxation Guided Branch-and-Bound. In ICLR. OpenReview.net, 2022.
[15] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing: testing software for

discrimination. In Eric Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman, editors,
ESEC/SIGSOFT FSE, pages 498–510. ACM, 2017.

[16] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning. Adaptive computation
and machine learning. MIT Press, 2016.

[17] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
Examples. In Yoshua Bengio and Yann LeCun, editors, ICLR (Poster), 2015.

[18] Boris Hanin and David Rolnick. Deep ReLU Networks Have Surprisingly Few Activation Patterns.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett, editors, NeurIPS, pages 359–368, 2019.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity Mappings in Deep Residual
Networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, ECCV (4), volume
9908 of Lecture Notes in Computer Science, pages 630–645. Springer, 2016.

[20] Patrick Henriksen and Alessio Lomuscio. DEEPSPLIT: An Efficient Splitting Method for Neural
Network Verification via Indirect Effect Analysis. In Zhi-Hua Zhou, editor, IJCAI, pages 2549–
2555. ijcai.org, 2021.

[21] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Towards
Proving the Adversarial Robustness of Deep Neural Networks. In Lukas Bulwahn, Maryam Kamali,
and Sven Linker, editors, FVAV@iFM, volume 257 of EPTCS, pages 19–26, 2017.

[22] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochenderfer,
and Clark W. Barrett. The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In CAV (1), volume 11561 of Lecture Notes in Computer Science, pages 443–452.
Springer, 2019.

[23] Haitham Khedr and Yasser Shoukry. CertiFair: A Framework for Certified Global Fairness of
Neural Networks. CoRR, abs/2205.09927, 2022.

[24] Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-Robust Neural Networks. In Marina Meila
and Tong Zhang, editors, ICML, volume 139 of Proceedings of Machine Learning Research, pages
6212–6222. PMLR, 2021.

[25] Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The
Third International Verification of Neural Networks Competition (VNN-COMP 2022): Summary
and Results. CoRR, abs/2212.10376, 2022.

[26] Brandon Paulsen, Jingbo Wang, and Chao Wang. ReluDiff: differential verification of deep neural
networks. In Gregg Rothermel and Doo-Hwan Bae, editors, ICSE, pages 714–726. ACM, 2020.

[27] Dino Pedreschi, Salvatore Ruggieri, and Franco Turini. Discrimination-aware data mining. In
Ying Li, Bing Liu, and Sunita Sarawagi, editors, KDD, pages 560–568. ACM, 2008.

[28] Vinay Uday Prabhu and Abeba Birhane. Large image datasets: A pyrrhic win for computer vision?
CoRR, abs/2006.16923, 2020.

[29] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability Analysis of Deep Neural
Networks with Provable Guarantees. In IJCAI, pages 2651–2659. ijcai.org, 2018.

[30] Sanjit A. Seshia, Ankush Desai, Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward
Kim, Sumukh Shivakumar, Marcell Vazquez-Chanlatte, and Xiangyu Yue. Formal Specification
for Deep Neural Networks. In Shuvendu K. Lahiri and Chao Wang, editors, ATVA, volume 11138
of Lecture Notes in Computer Science, pages 20–34. Springer, 2018.

[31] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition. In Edgar R. Weippl, Stefan Katzen-

81



Verifying Global Neural Network Specifications using Hyperproperties D. Boetius S. Leue

beisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, CCS, pages 1528–1540.
ACM, 2016.

[32] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. An Abstract Domain for
Certifying Neural Networks. Proc. ACM Program. Lang., 3(POPL):41:1–41:30, 2019.

[33] Aishwarya Sivaraman, Golnoosh Farnadi, Todd D. Millstein, and Guy Van den Broeck.
Counterexample-Guided Learning of Monotonic Neural Networks. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
NeurIPS, 2020.

[34] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and Yann
LeCun, editors, ICLR (Poster), 2014.

[35] Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. Perfectly parallel
fairness certification of neural networks. Proc. ACM Program. Lang., 4(OOPSLA):185:1–185:30,
2020.

[36] Zhilu Wang, Chao Huang, and Qi Zhu. Efficient Global Robustness Certification of Neural Net-
works via Interleaving Twin-Network Encoding. CoRR, abs/2203.14141, 2022.

[37] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic Perturbation Analysis for Scalable Certified
Robustness and Beyond. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, NeurIPS, 2020.

[38] Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J. Zico
Kolter. General Cutting Planes for Bound-Propagation-Based Neural Network Verification. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, NeurIPS, 2022.

82


	Introduction
	Preliminaries
	Formalising Global Specifications using Hyperproperties
	Related Work
	Conclusion

