
Cost Implications for an In-House University

Timetabling System

Wame Raseonyana, George Anderson and Tallman Nkgau
Department of Computer Science

University of Botswana, Gaborone, Botswana
wraseonyana@gmail.com, georgeganderson@gmail.com,

nkgautz@gmail.com

Abstract

This paper reports on a study on the examination timetabling problem faced in

universities, focusing on the problem as it exists at the University of Botswana (UB).

Examination timetabling is well researched and many different algorithms have been

used in an attempt to produce timetable solutions that meet various objectives of

institutions as well as theoretical objectives. Our research tries to produce an optimal

examination timetable, which takes into consideration constraints imposed by users of

timetables in UB as well as best-practice constraints found in the literature. Most African

universities have financial constraints that make cost-effective solutions that take

advantage of readily available research results and frameworks critical to their survival

and strategic goals. In our paper, we analyse the cost implications of in-house

development of an examination scheduling system solution that will produce improved

schedules and reduce costs. We take into account the cost of software tools and

frameworks we have employed as well as the cost of getting data and actual software

engineering of a timetabling solution. Our results suggest that the benefits of this

approach are great, since the cost is low while the quality of resulting timetables is good.

1 Introduction

Timetabling is present in many domains, such as, nurse rostering, public transport system,

manufacturing industry and educational timetabling. Educational timetabling is one of the most widely

studied timetable problems. In an educational setting, the two main types of timetables are course

timetabling and exam timetabling. Some universities produce timetables manually which results in an

infeasible solution that is time consuming to produce and highly error prone (Chmait & Challita, 2013).

The existence of modularity, flexibility in student curricula, increasing student numbers and continued

expansion of university departments has led to complex timetables, which require automated

timetabling software systems (Arogundade, Akinwale, & Aweda, 2010). There is vast literature on

Kalpa Publications in Computing

Volume 12, 2019, Pages 281–289

Proceedings of 4th International Conference on the
Internet, Cyber Security and Information Systems 2019

K. Njenga (ed.), ICICIS 2019 (Kalpa Publications in Computing, vol. 12), pp. 281–289

possible approaches to tackling the timetable problem faced at universities these include: Operational

Research (graph coloring, Integer programming, Linear programming, Constraint based techniques),

Metaheuristics (Genetic Algorithm, Tabu Search, Simulated Annealing, Great Deluge, Hill Climbing)

and finally automated systems. Each one of these approaches comes with advantages and disadvantages

therefore organisations need to take in a number of factors into consideration before opting for a

particular approach. Some crucial factors to consider are: cost of solution, solution implementation,

time requirements and solution technical requirements. In our study, we estimate cost of development

based on lines of code in a prototype, and use online sources to source cost of purchasing timetable

software suitable for universities, which we compare against in-house development. Our study is

significant because universities are faced with funding constraints, and it is important to explore options

other than purchase of expensive timetabling software, which is critical for operations. Our paper is

focused on exploring cost issues, and not on technical details of producing optimal timetables.

The rest of this paper is organized as follows: Section 2 has a literature review; Section 3 discusses

the methodology; Section 4 reports findings; Section 5 has a discussion of findings; and Section 6 has

a conclusion.

2 Literature Review

2.1 Approaches to Software Development

A number of options are available to organisations in search of an approach to adopt for developing

software solution, these are: In-house development from scratch, purchasing Commercial off-the-shelf

(COTS) and adopting and/or customizing Open Source Software (OSS) (Badampudi, Wohlin, &

Petersen, 2016). In-house solutions are developed and maintained in an organization using its own

resources therefore the solution’s Intellectual Property rights are owned by the organization. The main

advantage of such solutions is that they are build using the exact requirements of an organization and

because in house developers have complete access to source code they can make modification to the

solution when the need arises. In-house development is also beneficial because it helps build software

development skills internally. In-house development does have some disadvantages though, developing

a system from scratch can be very costly and time consuming. Furthermore a well skill in-house

software system development team is required in order to ensure successful implementation of the

solution. COTS are commercial solutions purchased from an external company or vendor. COTS can

quickly adopted for use in organisations without any delays. COTS are tried and tested solutions

therefore users can be guaranteed of up to standard functionalities. The problem with COTS is that they

are not tailor made to meet aparticular organization’s requirements, system functionality is determined

by the vendor therefore purchasing such solutions requires solutions to either be customized to fit the

organisation’s needs or there is need for an organisation to change its requirements to fit the solution.

Another disadvantage of COTS is that source code rights are owned by the vendor resulting in

restrictions on use and it comes in binary form only restricting users from modifying it therefore there

is dependency on vendor for support on issues as well as for updates. COTS tend be costly, costs are

incurred during the purchase of the solution as well as from software license fees which allow for the

provision of vendor user support. OSS solutions are obtained for free from the OSS community. The

meaning of free here is relative, it may mean that the solution source code is available free of charge or

it may mean that solution source code is openly available for customization. The open source license

allows users to redistribute software, modify source code and charge for code redistribution for as long

as changes are publicly available (Riehle, 2007). The use of OSS allows for the development of high

quality software solutions that is inexpensive to develop. Developers also have access to the source

code therefore they can add desired functionality to the software solution, this also means that there is

Cost Implications for an In-House University Timetabling System W. Raseonyana et al.

282

reduced level of dependency on software vendors. The use of OSS also help develop software

development skills for employees within an organization.

2.2 Application Of OSS Development In Educational Timetabling

There are several automated systems developed for timetabling some COTS and others OSS.

Example of COTS for timetabling are MIMOSA, CELCAT andSyllabus Plus by Scientia, examples of

OSS for timetabling include UniTime, Optaplanner and Free Educational Timetabling (FET). Several

universities have resorted to the use of OSS in timetabling in an effort to reconcile tight budgets with

the rising cost of technology. The University of Malaysia Perlis adopted the use of FET for course

timetabling since 2012, successful implementation was achieved and efficient timetabling was reported.

Muhamad et al. (Muhamad, Adnan, Yahya, Junoh, & Zakaria, 2018) also reported that the use of OSS

at their university resulted in cost savings and optimal resource usage. Successful implementation of

OSS in timetabling was also reported by (Mansor, Arbain, & Hassan, 2013) were FET produced good

quality solutions timetabling 300 courses for 10000 students. A common OSS in educational institutions

is Moodle course management system, which has been adopted by a number of universities worldwide

(Williams van Rooij, 2007). UniTime was deployed to solve the timetable problem at Purdue

University.

2.3 Examination Timetabling

The examination timetable problem can be divided into two main categories (Kahar & Kendall,

2010): uncapacitated and capacitated examination timetabling. In an uncapacitated exam timetable

problem room capacities are not considered when scheduling whereas incapacitated exam timetabling

room capacities are important and they constitute a hard constraint. The examination timetable problem

is such that given a set of exams, a fixed number of time slots, and a fix number of rooms, allocate each

exam to a time slot in a certain room so that a feasible timetable is produced. A feasible solution is one

that does not violate any hard constraints. Hard constraints are those conditions or rules that must not

be broken or violated during the production of the timetable. Soft constraints are those rules that it is

desirable to satisfy but not essential.

2.4 Software Development Cost Estimation Models

Software cost estimation is the process of determining the effort required to develop a software

system. There are many software cost estimation models and each model has advantages and

disadvantages. Software cost estimation models can divided into two classes: Algorithmic models and

Non Algorithmic models (Keim, Bhardwaj, Saroop, & Tandon, 2014). Algorithmic models use

formulas to estimate cost whereas non-algorithmic models do not use formulas. Examples of

algorithmic models include COCOMO (Constructive Cost Model) and Function Points (Keim,

Bhardwaj, Saroop, & Tandon, 2014). COCOMO can be used for estimating project size, effort, cost,

time and quality. The main unit of measure used of COCOMO is SLOC (Source lines of code).

COCOMO is made up three models with levels of complexity: Basic, Intermediate and Advanced. The

Basic model gives a rough estimate and is usually used in early stages of development. Intermediate

model can be used at mature project development level and is more accurate. Advanced is the most

accurate model. COCOMO can be used to estimate cost different types of projects. The different types

of projects are Organic, Semi-detached and Embedded. Organic projects are small, require less

innovation because they are similar to past projects done. Semi-detached projects are the type that fall

in between Organic and Embedded projects. Embedded projects have complex constraints and require

much effort. Function Points model does not use SLOC as input instead it uses the number of input

transactions and the number of unique report (Kemerer, 1987). Some examples of non-algorithmic

Cost Implications for an In-House University Timetabling System W. Raseonyana et al.

283

models are Top down estimation model, Bottom up estimation model, Estimating by Analogy and

Expert judgement (Keim, Bhardwaj, Saroop, & Tandon, 2014). Top down estimating is done by

estimating the total cost of the project then partitioning the project into low level components and then

estimating the cost of each. Bottom up model does the opposite cost of each low level component is

calculated and the costs are combined to estimates total project cost. Historical data from similar

projects is used to estimate cost when using the Estimating by Analogy approach, this model is not so

accurate because its success depends on data of past projects and it is possible that this data may be

unavailable or incomplete. In the Expert by judgment model the experience and knowledge of experts

is used to calculate the cost of the project. Moulla (Moulla, 2013) presented work that uses COCOMO

to evaluate the cost of adapting TRIADE: an open source e-learning platform at the University of

Cameroon. The cost was calculated by estimating the difference in the number of lines between the

original TRIADE solution and the modified TRIADE solution. The difference in the number of lines

between the two solution was then applied to the COCOMO formula to calculate the cost of the

modified solutions. According to Moulla (Moulla, 2013) results showed that OSS does have the

advantage of reducing the cost of development compared to other approaches. The approach presented

by Moulla (Moulla, 2013) can be applied to our situation we can also estimate cost using lines of code.

3 Methodology: Using Unitime OSS To Solve The

Examination Timetable Problem At UB

Unitime is a Java OSS educational scheduling system for universities. It offers Curriculum-based

and Enrollment-based Course Timetabling. Examination Timetabling and Student Sectioning. UniTime

is used in several universities including Purdue University in the USA where it was originally developed

and is used in scheduling large student enrollments (around 40,000 students). MIT first introduced the

use of UniTime in 2014 with the aim of expanding the functionality and flexibility of their scheduling

process. UniTtime replaced their outdated system enabling support for the definition of different

institutional periods, integration of scheduling with the curricular-review process and complex subject

configurations (Flessner-Filzen, 2015). A number of researchers have used UniTime in an attempt to

improve timetabling at different universities and (Čupić & Franović, 2011) calls it the most state-of-

the-art implementation of an automatic scheduler. (Lukáš, 2019) implements a set of new features on

UniTime to cater for course timetabling requirements necessary at the Faculty of Education and the

Faculty of Arts at Masaryk University in Czech Republic where the system has been in use since 2010.

Following the addition of this feature on UniTime feasible timetables were produced. We tackle the

examination timetable problem at UB using UniTime. The UniTime solver is based on local search

algorithms (Tabu Search, Simulated Annealing, Hill Climbing and Great Deluge). We customize the

Unitime solver by introducing Genetic Algorithm into it and creating hybrids of this algorithm with

local search algorithms. We also customized the software by introducing certain timetabling

requirements which are unique to the examination timetable problem in UB. Timetable solutions

produced by each hybrid algorithm are evaluated and compared with others and the best hybrid for UB

dataset is identified and recommended. Our proposed solution produced better quality compared to the

current system used at the university.

Cost Implications for an In-House University Timetabling System W. Raseonyana et al.

284

4 Software Cost Estimation for Implementing UniTime to

Solve Examination Timetabling Problem at the University of

Botswana

The estimated cost of deploying UniTime to tackle the examination timetable at UB was calculated

using the COCOMO estimation model. This model is a good fit for our project because according to

(Keim, Bhardwaj, Saroop, & Tandon, 2014) it is suitable for early cost estimation. Our project is at an

advanced stage of development, therefore we have an accurate estimate of code size. In this approach

cost estimation is performed using globally available project properties. We considered the following

factors when estimating the cost of software: effort (usually in person months), project duration (in

Calendar time) and cost (in monetary value). The effort estimate can be converted to monetary value

by calculating an average salary per unit time of staff involved and then multiplying this by the

estimated effort required. The most determining factor of cost estimation of software development is

human effort and most cost estimation methods use this factor to give estimates in terms of person-

months. Accurate software cost estimates are important, underestimating costs may result in poor

quality solutions that exceed the budget and set time whereas overestimating cost may result in excess

resources being allocated to a project. The estimated cost is calculated as follows.

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 =
𝑃𝑒𝑟𝑠𝑜𝑛 𝑆𝑎𝑙𝑎𝑟𝑦

12
× 𝑃𝑒𝑟𝑠𝑜𝑛 𝑚𝑜𝑛𝑡ℎ𝑠

We used the Government C2 salary scale highest notch to estimate the Average Person Salary of a

developer assigned the task of using Unitime to develop an exam timetable system for the university.

The highest notch is BWP 147 252.00 per annum.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑒𝑟𝑠𝑜𝑛 𝑆𝑎𝑙𝑎𝑟𝑦 𝑝𝑒𝑟 𝑀𝑜𝑛𝑡ℎ =
147252

12
= 12271.00

Person months expresses effort a person devotes to a specific project. To below formula shows how

person months is calculated using COCOMO using the main unit of measure: thousands lines of code.

Our proposed solution is estimated to have 2000 lines of codes. The breakdown of the estimate appears

in Table 1.

Table 1. Breakdown of estimate of number of lines of code

Class/Module/Algorithm

Implementation

Number of lines of code

Genetic algorithm implementation 600

Hybrid algorithm implementation 100

Exam model implementation 100

Data pre-processing 200

Creation of system input files 150

Creation of reports (output files) 200

Timetabling constraints 300

Other class modifications 350

Total number of lines 2000

Cost Implications for an In-House University Timetabling System W. Raseonyana et al.

285

This number of lines of codes is estimate is fairly accurate, due to the advanced stage of

development. Several scheduling algorithms have already been implemented. The thousands lines of

code has to be converted to Kilo lines of code, therefore $2000=2$ kilo lines of code.

𝑃𝑒𝑟𝑠𝑜𝑛 𝑀𝑜𝑛𝑡ℎ𝑠 = 𝑎 × (𝐾𝐿𝑂𝐶)𝑏 = 3.6 × 21.20 = 8.27

Where 𝐾𝐿𝑂𝐶 is Kilo Lines of Code and 𝑎 and 𝑏 are COCOMO constants. The Project duration is

given by the number of Person months that is going to be spent on the project. This value was derived

taking into consideration the time required to learn and become familiar with Unitime OSS. The cost

of project in the calculated Project Duration is:

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑀𝑜𝑛𝑡ℎ𝑠 = 𝑐 × (𝑃𝑒𝑟𝑠𝑜𝑛 𝑀𝑜𝑛𝑡ℎ)𝑑 = 2.5 × 8.270.32 = 4.9

Where 𝑐 and 𝑑 are COCOMO constants. The cost estimation of our project using the values

calculated above is

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑀𝑜𝑛𝑡ℎ𝑠 × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑒𝑟𝑠𝑜𝑛 𝑆𝑎𝑙𝑎𝑟𝑦 𝑝𝑒𝑟 𝑀𝑜𝑛𝑡ℎ

= 4.9 × 12271.00 = 𝐵𝑊𝑃 60,27.90

5 Discussion: Cost Analysis Of OSS Vs COTS Vs In-House

Development

OSS is a tradeoff between COTS and In-house development. OSS has become a subject of much

interest resulting in the resolution of some core issues in software development such as long

development periods and budget constraints. An investigation of cost analysis of these 3 approaches

reveals that the advert of OSS has resulted in lower software cost compared to those of In-house

development and COTS (Riehle, 2007). OSS development achieves cost cutting by allowing

organisations to save money that would have otherwise been used on license fees for COTS (Williams

van Rooij, 2007). COTS may also be viewed as expensive because they tend to be complex and may

require specialized resources which are expensive to maintain. OSS development is also considered to

be much cheaper than In-house development because with OSS the software is not developed from

scratch therefore it can be completed with less resources in a reasonable amount of time in contrast In-

house development is perceived to require more time for development and this raises the cost of

development. Several organisations have deployed OSS as a cost saving measure. According to

(Williams van Rooij, 2007) OSS development leads to lower cost of ownership. Adoption of OSS as a

cost saving measure at Beaumont Hospital can be seen in (Glynn, Fitzgerald, & Exton, 2005) where

information systems were re-deployed using OSS. Villano (Villano, 2006) further supports this claim

by stating that Campus Technology saved 20% in annual license fees by switching from commercial

software to OSS. Different vendors have different prices for their software solutions, depending on the

features available a vendor can have different packages. Table 2 indicates package prices of different

COTS software solutions. Since we are focused on a problem in Botswana, we have converted US

dollar and Euro amounts into BWP (Botswana Pula) amounts using an exchange rate of 1 USD = BWP

10.72, and 1 Euro = BWP 12.18.

Cost Implications for an In-House University Timetabling System W. Raseonyana et al.

286

The COTS cost for Syllabus Plus was not available at the time of writing this article. We therefore

decided to use the cost of other timetabling COTS as seen in Table 2 and Table 3 to analyse how they

compare to the use of UniTime OSS for exam timetabling in UB. The comparison clearly shows that

UniTime costs less than other solutions over a period of 20 years. Out of the other solutions, Mimosa

is the only on with features for universities, as well as schools; Prime Timetable and ASC Timetables

are targeted at schools. They therefore do not have all the necessary features to support UB

requirements. Prime Timetable appears to be close in cost to UniTime OSS, but the quoted cost is for a

license which supports not more than 100 teachers. UB has a much higher number of lecturers. Another

issue is that the other solutions require separate support contracts, which would drive the cost even

higher. UB has a student population of over 12000 students and over 1300 therefore we need a software

solution that is scalable. The cost of Mimosa is very high compared to the cost of deploying Unitime,

and this is representative of university-grade timetabling software. Mimosa is a state of the art software

and compares well with our proposed system. Our cost is slightly greater than that of Prime Timetable

and the reason for this may be that our system has more features. The cost of using our proposed system

is cheaper because payment is done one time unlike the above COTS software which require year

subscriptions, overtime their costs will surpass that of our system, this is can be seen in Table 2. Figure

1 shows growth of cost for the solutions considered in Table 3, on a log-scale. The UniTime OSS is

clearly cheaper.

Table 2. Prices for COTS used in Timetabling.

Software Solution Package Type Cost (BWP) Package Features

Mimosa Single License 6,085.00 Installation on one

computer only. Free

updates, email and

phone support.

Mimosa Site License 9,736.00 (< 800 students)

97,440.00 (8000 students

x 12.18

Installation on one

computer only. Free

updates, email and

phone support.

Prime Timetable Basic plan 1,597.28/year Up to 40 teachers

Prime Timetable Premium plan 3 3205.28/year Up to 100

teachers

ASC Timetables Primary schools 1,929.60

ASC Timetables Standard 2,394.40 Unlimited scheduling

capabilities

ASC Timetables Premium 5,360.00 Unlimited scheduling

capabilities.

Timetabling user

support.

ASC Timetables Pro 21,386.40 Generates individual

student-specific

schedules.

Cost Implications for an In-House University Timetabling System W. Raseonyana et al.

287

6 Conclusion

The use of OSS has gained traction over the years because of its technical and cost saving measures.

When comparing our proposed approach with state of the art timetable software it clear that using an

in-house approach with OSS is more cost effective. The successful implementation of OSS in other

universities as highlighted by our literature review is an indication that OSS can provide an alternative

for solving the university timetable problem in institutions that are trying to cut costs.

References

Arogundade, O. T., Akinwale, A. T., & Aweda, O. M. (2010). A genetic algorithm approach for a real-

world university examination timetabling problem. International Journal of Computer

Applications, 12, 975-8887.

Table 3. Comparison of cost of COTS versus cost of UniTime OSS deployment in UB.

Software Cost/2 years Cost/5 years Cost/10

years

Cost/20 years

UniTime OSS 60,127.90 60,127.90 60,127.90 60,127.90

Mimosa 194,880.00 487,200.00 974,400.00 1,948,800.00

Prime Timetable 6,410.56 16,026.40 32,052.80 64,105.60

ASC Timetables 42,772.80 106,932.00 213,864.00 427,728.00

Figure 1 Growth of Cost for UniTime vs COTS (2-20 years) on a Log Scale.

Cost Implications for an In-House University Timetabling System W. Raseonyana et al.

288

Badampudi, D., Wohlin, C., & Petersen, K. (2016). Software component decision-making: In-house,

OSS, COTS or outsourcing-A systematic literature review. Journal of Systems and Software,

121, 105-124.

Chmait, N., & Challita, K. (2013). Using simulated annealing and ant-colony optimization algorithms

to solve the scheduling problem. Computer Science and Information Technology, 1, 208-224.

Čupić, M., & Franović, T. (2011). Scheduling problems at a university: a real-world example.

International Journal of Knowledge and Learning, 7, 51-69.

Flessner-Filzen, J. (2015). Improving MITś scheduling system. Retrieved from

http://news.mit.edu/2015/unitime-improving-mit-scheduling-system-0122

Glynn, E., Fitzgerald, B., & Exton, C. (2005). Commercial adoption of open source software: an

empirical study. 2005 International Symposium on Empirical Software Engineering, 2005.,

(pp. 10--pp).

Kahar, M. N., & Kendall, G. (2010). The examination timetabling problem at Universiti Malaysia

Pahang: Comparison of a constructive heuristic with an existing software solution. European

journal of operational research, 207, 557-565.

Keim, Y., Bhardwaj, M., Saroop, S., & Tandon, A. (2014). Software cost estimation models and

techniques: A survey. International Journal of Engineering Research and Technology, 3,

1763-1768.

Kemerer, C. F. (1987). An empirical validation of software cost estimation models. Communications

of the ACM, 30, 416-429.

Lukáš, M. (2019). Course timetabling at Masaryk University in the UniTime system.

Mansor, Z., Arbain, J., & Hassan, M. A. (2013). Implementation of fet application in generating a

university course and examination timetabling. Second International Conference on

Onformation Technology and Business Application. Anais.

Moulla, D. K. (2013). COCOMO model for software based on Open Source: Application to the

adaptation of TRIADE to the university system.

Muhamad, W. Z., Adnan, F. A., Yahya, Z. R., Junoh, A. K., & Zakaria, M. H. (2018). Solving university

course timetabling problems using FET software. AIP Conference Proceedings, 2013, p.

020052.

Riehle, D. (2007). The economic motivation of open source software: Stakeholder perspectives.

Computer, 40, 25-32.

Villano, M. (2006). Open source vision. Campus Technology, 19, 26.

Williams van Rooij, S. (2007). Perceptions of open source versus commercial software: Is higher

education still on the fence? Journal of Research on Technology in Education, 39, 433-453.

Cost Implications for an In-House University Timetabling System W. Raseonyana et al.

289

