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Abstract 
Hydrological ensembles have gained importance for prediction and forecasting in water cycle 

variables. In spite of this, the relevance of the individual models in the ensemble is not usually established, 
in terms of the ensemble structure (i.e. their members) and the performance this structure exhibits through 
different climatic conditions (intrannual variability, for example). This analysis accounts for the 
uncertainty in the structure of the models and their responses (e.g. outputs), in comparison to the observed 
data. In this regard, the research here described attempts to determine the incidence of the ensemble 
members built for each month of the year, in the prediction of daily flows, through the use of the Bayesian 
Model Averaging (BMA) method. Moreover, using BMA calibrated parameters as inputs, an uncertainty 
analysis is carried out for the calibration period, and in monthly average terms, obtaining finer uncertainty 
bounds. This analysis was implemented in the Sumapaz River basin, part of the Magdalena Cauca Macro-
Basin (MCMB) in Colombia. Results showed differences in ensemble structures and performance 
according to its original performance criteria, and better results when using a monthly BMA for the 
uncertainty analysis. 

1 Introduction 
Hydrological models are not perfect, and its associated uncertainty is revealed when their results diverge for a 

single hydrological event. This is due to the model’s structure and its parameters, which correspond to a simplified 
and adjusted representation of the lumped behavior of complex and variable natural processes (Montgomery et al., 
2015)(HEPEX, 2004). 

A model ensemble permits to use heterogeneity on the structure of the models, on its inputs, and consequently 
on its responses. This approach has been implemented in different disciplines (for example, meteorology), adding 
flexibility and performance in the predictive and forecasting capacity of natural events. Nowadays, hydrological 
forecasting centres around the world are changing from single deterministic to multiple probabilistic forecast, using 
a wide representation of the uncertainty sources (Thielen-del Pozo et al., 2010). This means an extensive use of 
hydrological ensembles, which is important for the estimation of a range of possible future states (Brown, 
Demargne, Seo, & Liu, 2010). 
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Despite its best performance compared to single models, ensemble outputs from different sources (models) 
need to be processed, in order to give an ensemble unique response. Usual processing includes a simple mean 
approach, where each model (or output source) has the same weight into the final ensemble response. This approach 
causes the ensemble response to be under dispersive, i.e., to have lack of variability or present biased responses. 
Bayesian Model Averaging (BMA) tries to avoid these problems by statistically post-processing ensemble outputs, 
obtaining a calibrated and sharp prediction (Hamill, 2001; Raftery, Gneiting, Balabdaoui, & Polakowski, 2005). 

Within the framework of the eartH2Observe research project (Jaap Schellekens et al., 2017), a hydrological set 
of ensembles was constructed using physical, lumped and semi-distributed hydrological models, applied in small 
catchments in Colombia. The ensembles were evaluated under different structures (quantity and type of members), 
and its performance was assessed using a deterministic criterion (Kling-Gupta Efficiency - KGE) and a 
probabilistic metric (Continuous Ranked Probabilistic Score - CRPS). In order to determine the individual model 
weights, the best ensembles (TBE) were evaluated with the BMA method [6], for all time-series in the calibration 
period. Afterwards, an additional daily evaluation per month with BMA allowed to determine the weights 
(influence) of the members to predict daily flows in each month. It means we built ensembles using weights by 
TBE and then we considered the evolution of the weights of the TBE across year. 

2  Methods 
2.1 Bayesian Model Averaging 

BMA is a post-processing statistically approach used to infer a prediction based on different models, and to 
assess the inter and within model uncertainty, considering a whole ensemble of K members. Given an ensemble of 
statistical models, where there is no certainty on which one is the best model, the probability of the forecast y on 
the basis of training data yT is given by equation (1), where   is the Probability Density Function (PDF) of 
the forecast y,  is the PDF of the forecast y based on model Mk and  is a-posteriori PDF 
of model Mk being correct given the training data. 

 

(1) 

The a posteriori model probability adds up to 1, and so it could be seen as weights, while the PDF of the 
forecast, based on the model, is always considered, for computational purposes, as normally distributed, but can be 
enlarged to other probability functions.  

The BMA model for a dynamical ensemble forecasting is given in equation (2), where  is the 

average response of the ensemble based on K models,  are the models weights and   are conditioned 

PDF, associated to deterministic forecast , that can be interpreted as the PDF of y given fk. 

 

(2) 

Considering the hypothesis of normality, the PDF of the model forecast,  can be approximated to 

 ~ , where   is the variance of the model prediction.         
Calibration of the BMA model needs an objective function (OF). Original BMA implementation uses 

maximum likelihood as OF, but BMA can be adjusted using others OF, or even with a multiobjective approach 
(Dong, Xiong, & Yu, 2013).  

Original BMA implementation uses the Expectation Maximization (EM) algorithm to adjust the parameter 
values (Dong et al., 2013; Qu, Zhang, Pappenberger, Zhang, & Fang, 2017; Raftery et al., 2005). These parameters 
are the weights for each model, and the corresponding variance for the normal PDF. EM is iterative, and composed 
of two steps; Expectation, when latent values (unobserved quantity)   are calculated given the current values of 

the parameters, and Maximization, when the parameters are calculated given the values of . 
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2.2 Uncertainty assessment 
Using the calibrated PDF through the EM algorithm is possible to assess the uncertainty implementing a Monte 

Carlo approach. The final result is a prediction uncertainty interval, based on BMA probabilistic prediction, for 
any time t. 

This uncertainty analysis (given in (Dong et al., 2013)) choose a model from the ensemble, and generate a 
forecast given the normal function values for that model (normal PDF using the model forecast as the mean value, 
and the fitted variances as the variance of the PDF). This procedure is repeated as many times as necessary, and 
finally, the 5% and 95% quantiles are chosen as the boundaries of the uncertainty interval. This method can be 
used to generate the uncertainty intervals for every model, using the calibrated PDF from EM and the Monte Carlo 
sampling (Dong et al., 2013). 

3 Materials 
3.1 Study Case 

The Sumapaz River basin is a tropical watershed part of the Magdalena-Cauca Macro Basin (MCMB) in 
Colombia. Compared to the MCMB, the Sumapaz is a small catchment with an area of 2,180 km2, mean annual 
precipitation and evapotranspiration of 1146 mm and 1102 mm, respectively. This watershed has high differences 
in elevation (and steep slopes), narrow canyons with deep rivers, and distinguishable mountainous and flat areas. 
Hydrometeorological information corresponds to in situ daily data provided by IDEAM for variables including 
precipitation, temperature and discharge. Information about soil texture originated from IGAC, while land use data 
comes from a land coverage map obtained by applying the Corine Land Cover methodology and elaborated by 
IDEAM, IGAC, and Cormagdalena (HEPEX, 2004). General information about the basin and the hydrological 
models implementation are shown in Figure 1. 

 

 

3.2 Hydrological models in the ensemble 
In order to model the hydrological processes in the Sumapaz basin, physical, lumped and a semi-distributed 

model were implemented at a daily temporal resolution (see Table 1). 
 

Figure 1: General location of the Sumapaz River basin in Colombia. In the legend the first line presents the 
discharge gauge station, second line the spin-up year, third line the calibration period and fourth line the validation 
period used for the implementation of each individual model in Table 1. 
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Models General description Calibration 
method 

Objective function -  Nash-Sutcliffe 
Efficiency 

Type Structure/Parameters Calibration Validation 

R
R

L
(P

od
ge

r, 
20

04
) 

AWBM CL 3T - 8Par 

Pattern search 
multi-start 

0.45 0.53 
Sacramento CL 5T - 17Par 0.54 0.60 

SimHyd CL 3T - 9Par 0.32 0.17 
SAMR CL 3T - 9Par 0.41 0.57 

Tank model CL 5T - 18Par 0.53 
0.66 

TOPMODEL(Beven, 
1997) 

PbSd 2L - 10Par GLUE 0.34 0.25 

IHACRES_1(Croke, 
Andrew, Spate, & 

Cuddy, 2005) 

ECL 

6Par - SES 

Monte Carlo 

0.61 

0.33 

IHACRES_3(Croke et 
al., 2005) 

6Par - 2ESS-ISP 
0.62 

0.35 

IHACRES_4(Croke et 
al., 2005) 

6Par - ES-ISP 
0.61 

0.36 

IHACRES_5(Croke et 
al., 2005) 

6Par - 2ESP 
0.63 

0.34 

MESH(Pietroniro et al., 
2006) PbSd Land Surface (3 L) 

Dynamically 
Dimensioned 

Search 
0.14 0.11 

WFLOW-HBV(J 
Schellekens, 2014) ClSd 3T – 9Par Particle Swarm 

Optimization 0.33 0.32 

Table 1: Characteristics of the hydrological models in the ensemble, calibration techniques, objective function 
used and results during calibration and validation with daily data. CL: Conceptual-Lumped, PbSd: Physically based 
- Semi-distributed. ECL: Empirical- Conceptual – Lumped, ClSd: Conceptual – Semi distributed, Par: Parameters, 
T: Tanks, L: Layers, SES: Single Exponential Store, 2ESS-ISP: Two Exponential Stores and Instantaneous Stores 
in Parallel, ES-ISP: Exponential Store and Instantaneous Stores in Parallel, 2ESP: Two Exponential Stores in 
Parallel 

3.3 Ensemble implementation 
To assure that the assumption about normality of the PDF in every model forecast is valid, all data passed 

through a Johnson system of distribution, which permits to transform a variable to a standard normal distribution 
(see Table 2) (Chou, Polansky, & Mason, 1998). 

 
Johnson family Transformation Conditions 

Bounded (SB) 
 

 
 

 

Bounded from below (SL) 
 

 
 

 

Unbounded (SU) 
 

 
 

 
Table 2: Transformation associated with the Johnson system, based on (Chou et al., 1998) 
The ensemble construction used all the possible combinations from the different members (i.e. the models). 

For example, ensemble 1 was formed by IHACRES_1 and IHACRES_5, ensemble 2 was formed by IHACRES_3, 
4 and 5, TankModel and MESH. From all the combinations, the two best ensembles were selected; one based on 
the KGE (equation 3) and the other on the CRPS (equation 4) criteria (Kling, Fuchs, & Paulin, 2012; Vrugt, Clark, 
Diks, Duan, & Robinson, 2006): 
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                                      (3)   

Where r is the correlation coefficient between simulated and observed runoff,    and   , s meaning 
simulated values, o meaning observed values, µ is the mean value of the time series, and σ is the variance of the 
time series. 

   (4) 

Where  is the cumulative distribution function of x and   is the Heaviside function, giving 1 if   
and 0 otherwise. 

Subsequently, these ensembles were evaluated using the BMA method, to determine the weights of each 
member in the ensemble. Inputs for the BMA correspond to daily discharges during the calibration period (1988-
2003). As stated before, the PDF of the ensemble members is assumed to be normally distributed. Therefore, before 
using BMA, all time series were transformed with the Johnson algorithm. The parameters of the normal distribution 
were fitted with maximum likelihood through EM algorithm, as part of the computations associated with the BMA. 

As for the next step, the best ensembles were evaluated using BMA by month (monthly weights ensembles). It 
means that the model weights were assessed using daily data clustered by month, for every month. On the other 
hand, KGE and CRPS metrics were calculated to determine the predictive performance of the EM algorithm results 
during the calibration and validation periods.  

Uncertainty analysis was undertaken only for the two best ensembles. For each ensemble, two uncertainty 
bands were computed: (i) First one was calculated based on the total weights and variance of the ensemble, and (ii) 
second was calculated based on the monthly weights and monthly variance of the ensemble. 

The results of the uncertainty assessment were evaluated using a performance criteria called: the containing 
ratio, defined as the percentage of observed data included in the prediction bounds (Dong et al., 2013). 

4 Results and discussion  
The ensemble structure, associated with the number of members, seems to be highly dependent on the 

performance metric used (see Figure 2). In the study area the use of the KGE metric leads to a two members 
ensemble [IHACRES_1 and IHACRES_5] (blue triangle in Figure 2), while the use of the CRPS score leads to a 
five members ensemble [IHACRES_3, IHACRES_4, IHACRES_5, TankModel and MESH] (gold triangle in 
Figure 2) as the best ones. Both ensembles featured an improvement in the prediction during the calibration period, 
with respect to the best individual model (TBM – gray dotted line in Figure 2-a. CRPS cannot be calculated for a 
single model).  

In Figure 3, the weights (in percentage) for every member of the best ensembles (TBE) obtained with the BMA 
analysis are plotted, for the two metrics evaluated. Both ensembles share only one of their members, the 
IHACRES_5 model, but its weights present differences depending on the chosen ensemble.  

When considering monthly weights, IHACRES_5 performance depends on the ensemble structure: for the 
KGE ensemble (two models), IHACRES_5 obtain higher weights from November to March, and on May, getting 
lower values on the other months; for the CRPS ensemble (five models), IHACRES_5 obtain the highest weights 
in four months (November, March, May and June). 

The results in Figure 3 raise some questions: Why the two ensembles include a model with weights near to 1 
on July, August and September? If there is one model that outperforms the other members on those months, why 
it is not the model the two ensembles are sharing (IHACRES_5)? This unbalanced weight distribution leads to 
better results on uncertainty? 

These results could point to a poor ensemble performance in those months, which is solved by the BMA 
methodology using the model results with the best performance on those months. On the other hand, it is not clear 
why the two ensembles, do not share the same model from July to September, even when the weights are almost 
the same. This perhaps could be linked to the criteria used in every ensemble (KGE and CRPS) and its conceptual 
differences. 

The results in Figure 3 raise some questions: Why the two ensembles include a model with weights  
Figure 4 shows the multiannual evaluation of the performance of the best ensembles using daily data clustered 

by month. There are some irregularities on the metrics values in both ensembles throughout the year. Even if both 
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ensembles have similar performance on calibration and validation, the performance depends on the month of the 
year under assessment: best performances occur in January-March, May-June, August-September, and December 
(using KGE as metric) which are dry months, but this changes during the validation period. If the CRPS is used, 
the best performances occur from January to March and July to September, for both calibration and validation.  

 

 
 

 
 

 

 

 
The uncertainty analysis results, shown in the form of intervals, is plotted in Figure 5. Uncertainty intervals for 

the total BMA (BMA using all the data, without month classification) seem to perform well for the two ensembles 
(Figure 5), but the boundaries seem to dramatically increase for some peaks through the year 1989, especially for 
the CRPS ensemble. When considering the month of March 1989, the uncertainty intervals for the monthly BMA 
seem to work equally well even with a finer width. This is especially true for the peaks, and in this sense this could 
be an option to better forecast hydrological floods in the basin. Despite those differences between the total and 

  

a) b) 

   

   

a) b) 

Figure 2: Performance of ensembles as a function of the number of members a) Results using KGE, and b) 
Results using CRPS – In both cases for the calibration period 1988-2003.  

Figure 3: Model weights for the two best ensembles, calculated using the performance metrics KGE and CRPS 
(on the left), model weights for each month of TBE according to KGE (center) and CRPS (on the right) criteria. 

Figure 4: Monthly multi-year performance of the two best ensembles during calibration and validation periods 
(TBE-KGE and TBE-CRPS), a) performance using KGE, b) performance using CRPS. 
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monthly BMA uncertainty intervals, the two approaches permit to construct consistent bands, where the 
observation data have great chances to be within. 

 

 

 

 

When considering the other models, i.d. ensemble members, it is visible an unbalanced weight distribution for 

the CRPS model in July, August and September, with the IHACRES_3 model obtaining a weight near or equal to 
1 (all the ensemble weight). The same happens for KGE model on the same months, but with the IHACRES_1 
model, which was not included in the CRPS ensemble. 
A monthly comparison of the containing ratio values between the two monthly ensembles is A monthly comparison 
of the containing ratio values between the two monthly ensembles is depicted in Figure 6. It is remarkable the loss 
of performance of the KGE ensemble on February, March and April, especially for the validation period. 
Meanwhile, the CRPS tends to be more constant in the cRatio values throughout the year, with a containing ratio 
consistently over 80%. When comparing results data from calibration and validation, differences in the KGE 
ensemble are higher than for the CRPS ensemble: KGE can present differences of more than 15 units for a single 
month (February and April), while the CRPS ensemble never shows a difference larger than 10 units. 

5 Conclusions 
Two model ensembles, obtained through two different performance scores (KGE and CRPS) and based on 12 

individual hydrological models, have been successfully developed for the Sumapaz River basin in Colombia, using 
the Bayesian Model Averaging method. Results indicate that the number of members in the ensembles and their 
weights are highly dependent on the score selected, and that for this basin the ensembles are mainly comprised by 
lumped models. Results also show that although the ensembles performances are overall better than for the 
individual models, for some months the ensembles are not capable of adequately simulate flow discharges, even 

Figure 6: Multiannual Mean monthly Containing ratio (cRatio) percentage of monthly KGE ensemble and 
monthly CRPS ensemble, for the calibration period (Cal) and the validation period (Val).  

Figure 5: Uncertainty intervals of the two best ensembles with total weights for year 1989 (left) and 
uncertainty intervals with total values and monthly values (-M in the plot) in March-1989, for the KGE ensemble 
(right, on top) and CRPS ensemble (right, below). 
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when monthly weights are used, pointing up simulation issues for some of the members. This could mean that the 
ensemble itself could be used to assess the performance of its members in a deeper way, identifying moments in 
time when the simulations are not good (even when a global metric shows a good performance). 

 
Some specific conclusions arise from this work: 1) It is evident that it is not possible to talk about a unique best 

ensemble, and that a modeller decision, like the Objective Function choice, will produce different ensemble 
structures. 2) The two ensembles here developed using different metrics (KGE and CRPS) seem to perform equally 
well in a global assessment, but they show differences in the performance throughout the year; CRPS ensemble 
has a reduced uncertainty, meanwhile KGE ensemble produces better forecast values. 3) Uncertainty analysis using 
the BMA outputs helps to better assess the ensemble performance with low computational cost; in addition, the use 
of monthly BMA weights permits to obtain even finer uncertainty bands, without losing performance.  These three 
considerations are important for the use of ensembles on an operational level (for example, water management or 
forecasting). Finally, it is clear that those modeller decision must be taken according to the objectives the ensemble 
wants to fulfil: if a lower uncertainty is the final objective of the modelling, for local water management for 
example, a set-up ensemble based on the CRPS criteria could the best option; on the other hand, if better forecast 
values are needed, for regional water management, KGE based ensemble could be a better option. 
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