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1 Introduction

This is the first part of a series of two abstract, the second one being by Daniel McNeill.

If X is any topological space, its collection of opens sets O (X) is a complete distributive
lattice, with joins given by unions, and meets given by

∧

U∈S U := int
(
⋂

U∈S U
)

, for any
S ⊆ O (X). Moreover, O (X) is a frame, i.e. it satisfies the frame law

U ∧ (
∨

V ∈S

V ) =
∨

V ∈S

(U ∧ V ), for any S ⊆ O (X), U ∈ O (X). (1)

Thus, O (X) is also a Heyting algebra whose implication is defined as

U → V :=
∨

{Z | U ∧ Z ⊆ V } , for any U, V ∈ O (X). (2)

(See e.g. [6] for background.) When X is equipped with a distinguished basis D for its topology,
closed under finite meets and joins, one can investigate situations where D is also closed under
the implication (2), i.e., where D is a Heyting subalgebra of O (X).

Recall that X is a spectral space if it is compact and T0, its collection D of compact open
subsets forms a basis which is closed under finite intersections and unions, and X is sober : any
closed set that cannot be written as the union of two proper closed subsets, has a dense point.
(In this case, the latter point is unique, because X is T0.) By Stone duality, spectral spaces are
precisely the spaces arising as sets of prime ideals of some distributive lattice, topologised with
the Stone or hull-kernel topology. Specifically, given such a spectral space X , its collection of
compact open sets D is (naturally isomorphic to) the distributive lattice dual to X under Stone
duality. We are going to exhibit a significant class of such spaces for which D is a Heyting
subalgebra of O (X). We work with lattice-ordered Abelian groups and vector spaces. Using
Mundici’s Γ-functor [8] the results can be rephrased in terms of MV-algebras, the algebraic
semantics of  Lukasiewicz infinite-valued propositional logic [5].

Recall that a lattice-ordered Abelian group [4], or ℓ-group for short, is an Abelian group
which is also a lattice, and is such that the group operation distributes over both meets and
joins. Similary, a vector lattice (also known as a Riesz space), is a lattice-ordered real vector
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space such that addition distributes over meets and joins, and multiplication by non-negative
real scalars also distributes over meets and joins. A Q-vector lattice is defined analogously
replacing real vector spaces with rational vector spaces. The classes of ℓ-groups, vector lattices,
and Q-vector lattices are varieties of algebras. Hence free objects in each class exist, and
finitely presented objects are standardly defined as quotients of finitely generated free objects
modulo a finitely generated congruence. Further, since each structure in question has an obvious
distributive-lattice reduct, each of the three varieties is congruence-distributive. It is known
that the complete distributive algebraic lattice ConG of the congruences1 of an ℓ-group (or
vector lattice, or Q-vector lattice) G is in fact relatively pseudo-complemented, i.e. is a Heyting
algebra. We write K (G) for the subset of ConG consisting of the finitely generated congruences
of G. It can be shown that when G is finitely presented, then K (G) is a sublattice of ConG;
see Section 2 for more details on this.

Theorem 1.1. Let G be a finitely presented ℓ-group (or vector lattice, or Q-vector lattice), and
let ConG be the Heyting algebra consisting of the congruences on G. Then the congruence

θ → η :=
∨

{ζ | θ ∧ ζ ⊆ η} (3)

is finitely generated whenever θ, η ∈ K (G). Equivalently, K (G) is a Heyting subalgebra of

ConG.

2 The Spectral Space of G

Let G be an ℓ-group (or a vector lattice, or a Q-vector lattice). A congruence θ on G is proper

if θ 6= G × G, prime if the quotient G/θ is totally ordered, and maximal if θ is proper and
whenever η ⊇ θ is a congruence on G, then either η = θ or η = G×G.

Let SpecG be the set of all prime congruences of G. We define two maps V : 2G → 2SpecG

and I : 2SpecG → 2G by setting, for each S ⊆ G and for each E ⊆ SpecG,

V (S) := {p ∈ SpecG | (s, 0) ∈ p for all s ∈ S} and I (E) := {g ∈ G | (g, 0) ∈ p for all p ∈ E} .

The pair (I,V) forms a (contravariant) Galois connection: for all S ⊆ G and E ⊆ SpecG,
S ⊆ I (E) if and only if E ⊆ V (S). This ensures that the maps I ◦V : 2G → 2G and
V ◦ I : 2SpecG → 2SpecG are closure operators. In particular, I ◦V : 2G → 2G is algebraic, i.e. it
satisfies I ◦V (S) =

⋃

I ◦V (F ), as F ranges over the finite subsets of S. Moreover, it can be
shown that V ◦ I : 2SpecG → 2SpecG is topological, i.e. it commutes with finite unions. Thus, the
operator V ◦ I gives rise to a topology (the spectral or hull-kernel topology) on SpecG, whose
closed sets are exactly the subsets E ⊆ SpecG such that V ◦ I (E) = E. We will shortly see
that SpecG is a spectral space; it is easy to show directly that it is T0, whence it carries a
specialization order. Specifically, the specialization order � on SpecG defined by

p � q if, and only if, p ∈ V ◦ I (q)

coincides with the set-theoretic inclusion ⊆. It is well known [4, 2.4.1 and 10.1.11] that
(SpecG,�) is a root system: each upper set ↑p := {q ∈ SpecG | p � q} is linearly ordered.
This property is usually called the complete normality of SpecG. It is also known [4, 10.2.2]

1We recall that congruences of ℓ-groups (or vector lattices, or Q-vector lattices) are in one-one inclusion-
preserving correspondence with kernels of homomorphisms, known as ℓ-ideals. These can be characterised as
the order-convex subalgebras in each of the varieties under consideration.
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that SpecG is a compact space if, and only if, G may be equipped with a (strong order) unit,
i.e. there exists u ∈ G such that for all g ∈ G we have nu > g for some integer n > 1. In this
case G is called a unital ℓ-group (or vector lattice, or Q-vector lattice). For the remainder of
this section we always assume that G is unital.

It turns out that SpecG may be regarded as the spectrum of prime ideals of a distributive
lattice. Finitely generated congruences on G are the same thing as principal (i.e. singly gener-
ated) congruences on G. Indeed, writing 〈T 〉 for the congruence on G generated by T ⊆ G×G,
we have 〈(g, 0)〉 = 〈(|g|, 0)〉, where |g| := g ∨ −g is the absolute value of g ∈ G; and, moreover,
〈(g, 0)〉∩ 〈(h, 0)〉 = 〈(|g| ∧ |h|, 0)〉 and 〈(g, 0)〉∨ 〈(h, 0)〉 = 〈(|g| ∨ |h|, 0)〉 for all g, h ∈ G. Observe
that the top element of ConG, namely, the improper congruence G ×G, is principal, because
〈(u, 0)〉 = G × G for any unit u ∈ G. It follows that K (G) is a (distributive) sublattice of
ConG. Writing SpecDL K (G) for the spectrum of prime ideals of K (G) with the Stone topol-
ogy, it can now be shown that Spec

DL
K (G) is homeomorphic to SpecG; the homeomorphism

takes a prime ideal P ⊆ K (G) to the congruence
⋂

P on G.
By the foregoing, together with Stone duality, we have that SpecG equipped with the

spectral topology is a spectral space. The correspondence

〈(g, 0)〉 ∈ K (G) 7−→ SpecG \ V (g) (4)

yields a lattice homomorphism between K (G) and the lattice of compact open subsets of SpecG.

3 Finitely Presented Structures, and Polyhedra

For background on polyhedral geometry see [9]. A subset C of finite-dimensional Euclidean
space Rn is convex if it contains, together with p, q ∈ C, the entire line segment {λp+(1−λ)q |
λ ∈ R, 0 6 λ 6 1}. Given a subset S ⊆ R

n of finite-dimensional Euclidean space, its convex hull

of S, written convS, is the intersection of all convex subsets of Rn that contain it. A polytope

in R
n is the convex hull of a finite subset of Rn. Polytopes are thus compact and convex. A

polyhedron in R
n is any subset that can be written as the union of finitely many polytopes.

Polyhedra are thus compact, but not necessarily convex. A polytope is rational if it can be
written as the convex hull of a finite subset of Qn ⊆ R

n. A polyhedron is rational if it can be
written as the union of finitely many rational polytopes.

For P ⊆ Rn a polyhedron, a continuous map f : P → R is piecewise linear (P.L. for short)
if there exist finitely many affine linear functions l1, . . . , lu : R

n → R such that, for each p ∈ P ,
we have f(p) = lip(p) for some ip ∈ {1, . . . , u}. If the li’s in this definition can be chosen to
have rational coefficients (i.e. each li is the extension to R

n of an affine linear map Q
n → Q)

then f is a rational P.L. map. And if the they can be chosen to have integer coefficients (i.e.
each li is the extension to Rn of a Z-module map Zn → Z) then f is a Z-map.

Definition 3.1. For any polyhedron P ⊆ Rn, we write ∇ (P ) to denote the collection of all
P.L. maps P → R. Assume further that P is rational. Then we write ∇Q (P ) the collections of
all rational P.L. maps P → R, and ∇Z (P ) for the collection of all Z-maps P → R.

Write 1P : P → R for the function constantly equal to 1 on P . It is an exercise to prove
that:

• ∇Z (P ) is an ℓ-group having 1P as a unit.

• ∇Q (P ) is a Q-vector lattice having 1P as a unit.

• ∇ (P ) is a vector lattice having 1P as a unit.
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Lemma 3.2. Let G, R, and V be a finitely presented ℓ-group, Q-vector lattice, and vector

lattice, respectively. Let u be a unit of G, R, or V , respectively. Then there exist rational

polyhedra P and Q, and a polyhedron T , such that:

• (G, u) ∼=u (∇Z (P ), 1P ).

• (R, u) ∼=u (∇Q (Q), 1Q).

• (V, u) ∼=u (∇ (T ), 1T ).

Moreover, P , Q, and T , regarded as topological spaces, are naturally homeomorphic to MaxG,

MaxR, and MaxV , respectively.

Remark 3.3. The representation theorem given in the preceding lemma is part of Baker-

Beynon duality and its variants. See [1, 2, 3]. For MV-algebras see [7].

4 The Heyting Algebra of Principal Congruences of

Finitely Presented Structures

To prove Theorem 1.1 we relate the spectral space of finitely presented structures with the
geometric representation recalled in Section 3. Given a polyhedron P , let SubP denote the
collection of all polyhedra contained in P . Observe that SubP is a distributive lattice under
intersections and unions, with top element P and bottom element ∅. If P is rational, we let
SubQ P denote the sublattice of SubP consisting of the rational polyhedra contained in P .
Given a lattice L we write Lop to denote the order-dual of L obtained by reversing the order
of L.

Lemma 4.1. (i) Let (G, u) be a finitely presented ℓ-group with unit u, and let P be a rational

polyhedron such that there is a unital isomorphism ϕ : (G, u) → (∇Z (P ), 1P ) as in Lemma 3.2.

〈(g, 0)〉 ∈ K (G) 7−→ ϕ(g)−1(0) ∈ SubQ P (5)

yields a lattice isomorphism between K (G) and (SubQ P )op. Similarly, if (R, u) is a finitely

presented Q-vector lattice, there is a lattice isomorphism between K (R) and (SubQ Q)op, where
Q is a rational polyhedron as in Lemma 3.2.

(ii) Let (V, u) be a finitely presented vector lattice with unit u. let T be a polyhedron such that

there is a unital isomorphism ϕ : (V, u) → (∇ (T ), 1T ) as in Lemma 3.2.

〈(v, 0)〉 ∈ K (V ) 7−→ ϕ(v)−1(0) ∈ Sub T (6)

yields a lattice isomorphism between K (V ) and (Sub T )op.

Remark 4.2. Observe that, as a consequence of the preceding lemma together with Stone
duality, if P is a rational polyhedron then Spec∇Q (P ) is homeomorphic to Spec∇Z (P ), while
Spec∇Q (P ) is not homeomorphic to Spec∇ (P ).

The proof of Theorem 1.1 can now be reduced to the following geometric lemma.

Lemma 4.3. Let A and B be two polyhedra in some Euclidean space R
n. Then the topological

closure of A\B is a polyhedron of Rn. Moreover, if A and B are rational polyhedra, then the

topological closure of A\B is a rational polyhedron, too.

The preceding lemma asserts that the lattice SubT of a polyhedron (or the lattice SubQ P of a
rational polyhedron) has the structure of a dual Heyting algebra.Via Lemma 4.1 this translates
to the fact that the lattice K (G) of principal congruences of a finitely presented ℓ-group (or
vector lattice, or Q-vector lattice) G is closed under the Heyting implication of ConG.
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5 Compactness of Spaces of Minimal Primes

We give two consequences of our main result that will be used in the second part of this abstract.
For L a distributive lattice, Speed [10] gave a necessary and sufficient condition for the subspace
of minimal primes of SpecDL L to be compact. It is elementary to verify that whenever SpecDL L
is such that its compact open subsets form a Heyting subalgebra of the Heyting algebra of open
sets O (SpecDL L), L satisfies Speed’s condition. The converse fails. Recalling that a compact
Hausdorff space is Boolean if its clopen sets form a basis for the topology, we have:

Corollary 5.1. Let G be a finitely presented unital ℓ-group (or unital vector lattice, or unital

Q-vector lattice). Then the subspace MinG ⊆ SpecG of minimal prime congruences of G is a

Boolean space.

Let G be a finitely presented unital ℓ-group (or unital vector lattice, or unital Q-vector
lattice), and let m be a maximal congruence of G. The germinal congruence at m is defined by

germm :=
⋂

p⊆m

p,

where p ranges over prime congruences of G. For each p ∈ SpecG, we denote by ↓p the lower

set {q ∈ SpecG | q � p}. Arguments similar to the ones proving the preceding corollary yield:

Corollary 5.2. Let G be a finitely presented unital ℓ-group (or unital vector lattice, or unital

Q-vector lattice). Let m be any maximal congruence of G. Then ↓m ⊆ SpecG equipped with

the subspace topology is homeomorphic to Spec (G/ germm), and is therefore a spectral space.

The subspace Min (↓m) of ↓m is a Boolean space.
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