
EPiC Series in Computing

Volume 46, 2017, Pages 212–226

LPAR-21. 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

On the Interaction of Inclusion Dependencies with

Independence Atoms∗

Miika Hannula1, Juha Kontinen2, and Sebastian Link3

1 University of Auckland, Auckland, New Zealand
m.hannula@auckland.ac.nz

2 University of Helsinki, Helsinki, Finland
juha.kontinen@helsinki.fi

3 University of Auckland, Auckland, New Zealand
m.hannula@auckland.ac.nz

Abstract

Inclusion dependencies are one of the most important database constraints. In isola-
tion their finite and unrestricted implication problems coincide, are finitely axiomatizable,
PSPACE-complete, and fixed-parameter tractable in their arity. In contrast, finite and
unrestricted implication problems for the combined class of functional and inclusion de-
pendencies deviate from one another and are each undecidable. The same holds true for the
class of embedded multivalued dependencies. An important embedded tractable fragment
of embedded multivalued dependencies are independence atoms. These stipulate indepen-
dence between two attribute sets in the sense that for every two tuples there is a third
tuple that agrees with the first tuple on the first attribute set and with the second tuple on
the second attribute set. For independence atoms, their finite and unrestricted implication
problems coincide, are finitely axiomatizable, and decidable in cubic time. In this arti-
cle, we study the implication problems of the combined class of independence atoms and
inclusion dependencies. We show that their finite and unrestricted implication problems
coincide, are finitely axiomatizable, PSPACE-complete, and fixed-parameter tractable in
their arity. Hence, significant expressivity is gained without sacrificing any of the desirable
properties that inclusion dependencies have in isolation. Finally, we establish an efficient
condition that is sufficient for independence atoms and inclusion dependencies not to inter-
act. The condition ensures that we can apply known algorithms for deciding implication
of the individual classes of independence atoms and inclusion dependencies, respectively,
to decide implication for an input that combines both individual classes.

1 Introduction

Databases represent information about some domain of the real world. For this purpose, data
dependencies provide the main mechanism for enforcing the semantics of the given application

∗This research is supported by a Marsden grant from Government funding, administered by the Royal Society
of New Zealand, and grant 292767 of the Academy of Finland.

T.Eiter and D.Sands (eds.), LPAR-21 (EPiC Series in Computing, vol. 46), pp. 212–226

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

domain within a database system. As such, data dependencies are essential for most data man-
agement tasks, including conceptual, logical and physical database design, query and update
processing, transaction management, as well as data cleaning, exchange, and integration. The
usability of a class C of data dependencies for these tasks depends critically on the computational
properties of its associated implication problem. The implication problem for C is to decide
whether for a given finite set Σ ∪ {ϕ} of data dependencies from C, Σ implies ϕ, i.e. whether
every database that satisfies all the elements of Σ also satisfies ϕ. If we require databases to
be finite, then we speak of the finite implication problem, and otherwise of the unrestricted
implication problem. While the importance of data dependencies continues to hold for new
data models, the focus of this article is on the implication problems for important classes of
data dependencies in the relational model of data. In this context, data dependency theory is
deep and rich [34].

Inclusion dependencies (INDs) constitute one of the most used classes of data dependencies
in practice. In particular, INDs are more expressive than foreign keys, thereby capturing Codd’s
principle of referential integrity on the logical level. An IND R[A1, . . . , An] ⊆ R′[B1, . . . , Bn],
with attribute sequences A1, . . . , An on R and B1, . . . , Bn on R′, expresses that for each tuple
t over R there is some tuple t′ over R′ such that for all i = 1, . . . , n, t(Ai) = t′(Bi) holds. If
n = 1 we call the IND unary (UIND). As a simple example consider the relation schemata

Heart={p id,p name,t id}, and
Disorder={p id,t id,confirmed}

in which basic information about patients and medical tests is stored. In particular, Heart
stores which medical tests (identified by t id) for a specific heart disorder were performed on
which patients (with ID p id and name p name), and Disorder stores all those tests (identified
by t id) performed on patients (identified by p id) which have been diagnosed with the disorder.
The UIND σ1 = Disorder[p id] ⊆ Heart[p id] expresses that each id of a patient who has
been diagnosed with a heart disease must also be the id of a patient who has been tested for
this heart disease. Similarly, the UIND σ2 = Disorder[t id] ⊆ Heart[t id] expresses that each
id of a test performed on a patient who has been diagnosed with a heart disease must also be
the id of a test used to diagnose this heart disease.

A fundamental result in dependency theory is that the unrestricted and finite implication
problems for the class of INDs coincide, are finitely axiomatizable, PSPACE-complete to decide
[8], and fixed-parameter tractable in their arity [22, 23]. Combining INDs with functional
dependencies (FDs) results in implication problems that differ in the finite and unrestricted
case and are both undecidable [9, 28, 29].

Another important expressive class of data dependencies are embedded multivalued depen-
dencies (EMVDs). An EMVDR : X → Y ⊥Z with attribute subsetsX,Y, Z of R expresses that
the projection r[XY Z] of a relation r over R on the set union XY Z is the join r[XY] ./ r[XZ]
of its projections on XY and XZ. Another fundamental result in dependency theory is that
the unrestricted and finite implication problems for EMVDs differ, each is not finitely axiomati-
zable [33] and each is undecidable [19, 20]. An important fragment of EMVDs are multivalued
dependencies (MVDs), which are a class of full dependencies in which XY Z covers the full
underlying set R of attributes. In fact, MVDs are the basis for Fagin’s fourth normal form
[13]. For the combined class of FDs, MVDs, and UINDs, finite implication is axiomatizable
and decidable in cubic time, while unrestricted implication is also axiomatizable and decidable
in almost linear time [10, 21].

213

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

Another expressive known fragment of EMVDs that is computationally friendly is the
class of independence atoms (IAs). IAs are EMVDs R : X → Y ⊥Z where X = ∅,
i.e. expressing that r[Y Z] = r[Y] ./ r[Z] holds. IAs are denoted by Y ⊥Z. In our ex-
ample, the IA σ3 = Heart : p id⊥ t id on schema Heart expresses that all patients
that are tested for a heart disorder undergo all tests for this disorder. Similarly, the IA
σ4 = Disorder : confirmed⊥ confirmed expresses that all tuples have the same value on
attribute confirmed. For the individual class of IAs, the finite and unrestricted implication
problems coincide, they are finitely axiomatizable and decidable in low-degree polynomial time
[24]. Besides their attractive computational features, IAs are interesting for a variety of other
reasons: (i) Database researchers studied them as early as 1976 [6], with continued interest over
the years [11, 18, 24, 31]. (ii) Geiger, Paz, and Pearl studied IAs in a probabilistic setting [15]
where they constitute an important fragment of conditional independencies, which form the
foundation for Markov and Bayesian networks. (iii) IAs occur naturally in database practice.
For example, the cross product between various tables is computed by the FROM clause in SQL.
Naturally, a variety of IAs hold on the resulting table. Recently, Olteanu and Zavodny [30]
studied succinct representations of relational data by employing algebraic factorizations using
distributivity of Cartesian products over unions. Not surprisingly, one of the core enabling
notions of the factorizations is that of independence. (iv) In fact, the concept of independence
is fundamental to areas as diverse as causality, bound variables in logic, random variables in
statistics, patterns in data, the theory of social choice, Mendelian genetics, and even some quan-
tum physics [2, 3]. In a recent response, the study of logics with IAs as atoms of the language
has been initiated [16].

Given the usefulness of EMVDs and INDs for data management, given their computational
barriers, and given the attractiveness of IAs as a tractable fragment of EMVDs, it is a natural
question to ask how IAs and INDs interact. We aim at helping address this current gap in
the existing rich theory of relational data dependencies. Adding further to the challenge it is
important to note that IAs still form an embedded fragment of EMVDs, in contrast to MVDs
which are a class of full dependencies. Somewhat surprisingly, already the interaction of IAs
with just keys is intricate [17, 18]. For example, unrestricted implication is finitely axiomatizable
but finite implication is not for keys and unary IAs (those with singleton attribute sets), while
the finite and unrestricted implication problems coincide and enjoy a finite axiomatization for
IAs and unary keys (those with a singleton attribute set).

1.1 Motivating Examples

We use a simplified example to illustrate the interaction between IAs and INDs. For this
purpose, consider again our two relation schemata Heart and Disorder. In addition, the
set Σ = {σ1, σ2, σ3, σ4} of INDs and IAs has been specified. Not all constraints need to be
enforced strictly, e.g., violations of σ3 may issue alerts about patients that still have to undergo
remaining tests. The INDs σ1 and σ2 and the IA σ3 together finitely imply the IND

σ = Disorder[p id,t id] ⊆ Heart[p id,t id] .

This interaction is very relevant in practice. While the two UINDs σ1 and σ2 do not together
imply the IND σ, knowing that the IA σ3 holds on the referenced schema, tells us that σ also
holds on the referencing schema. It may be more natural to specify σ in the first place, instead
of specifying σ1 and σ2, but enforcing these two UINDs and the IA σ3 is more efficient than
enforcing the binary IND σ and the IA σ3 [27].

Another area of impact for our results is query optimization. For illustration purposes,
suppose we would like to return the p id of people that have undergone all tests listed for the

214

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

class ui = fi complexity finite axiomatization

FD yes [4] linear time [5] yes (2-ary) [4]
IND yes [8] PSPACE-complete [8] yes (2-ary) [8]
IA yes [15, 24, 31] cubic time [15, 24] yes (2-ary) [15, 24, 31]
IND+IA yes PSPACE-complete yes (3-ary)

Table 1: Subclasses of IND+IA. We write “ui” and “fi” for unrestrited and finite implication,
respectively.

specific heart disorder we consider. We can express this query in SQL, using double-negation,
as follows:

SELECT H0.p id FROM Heart H0
WHERE NOT EXISTS

SELECT ∗ FROM Heart H1
WHERE NOT EXISTS

SELECT ∗ FROM Heart H2
WHERE H2.t id = H1.t id AND

H2.p id = H0.p id ;

However, if a query optimizer can notice that the IA σ3 is implied by the set Σ given above,
then the query can be rewritten into

SELECT p id
FROM Heart ;

While the set of our constraints is weakly acyclic [14], our query is not “path-conjunctive” and
the chase & backchase algorithm from [12] cannot be applied.

1.2 Contributions

In this article we investigate the implication problems for the combined class of IAs and INDs.
In particular, we make the following contributions.

1. We show that the finite and unrestricted implication problems coincide and we establish
a finite axiomatization.

2. We show that the implication problem is PSPACE-complete.

3. We further show that the implication problem is fixed-parameter tractable in the maxi-
mum arity of the given dependencies. As the results 1), 2), and 3) already hold for INDs
[7, 8, 22, 23], adding IAs to INDs adds significant expressivity without penalties in terms
of computational properties. Such gain without pain cannot be taken for granted as the
combined class of independence atoms and keys illustrates [17, 18].

4. For the combined class of IAs and INDs we establish a tractable condition sufficient for
their non-interaction. The condition ensures that we can apply known algorithms for
deciding implication of the individual classes of IAs and INDs, respectively, to decide
implication for an input that combines both individual classes.

Organization. In Section 2 we present all the necessary definitions for the article. Section
3 examines the axiomatic characterization of the combined class of INDs and IAs. Section
4 identifies polynomial-time criteria for the non-interaction between INDs and IAs. Finally,

215

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

in Section 5 we discuss the computational complexity of the implication problems considered.
Some of the proofs can be found in the appendix.

2 Preliminaries

We usually write A,B,C, ... for attributes, X,Y, Z, ... for either sets or sequences of attributes,
depending on the context. For two sets (sequences) X and Y , we write XY for their union
(concatenation). Similarly, we may write A instead of the single element set or sequence that
consists of A. The size of a set (or length of a sequence) X is denoted by |X|.

A relation schema is a set of attributes A, each with a domain Dom(A), and by a database
schema we denote a pairwise disjoint sequence of relation schemata. A tuple over a relation
schema R is a function that maps each A ∈ R to Dom(A). A relation r over R is a non-empty set
of tuples over R. To emphasize that r is a relation over R, we sometimes write r[R]. A database
over a database schema R1, . . . , Rn is a sequence of relations (r1[R1], . . . , rn[Rn]). A finite
relation over R is a non-empty, finite set of tuples over R, and a finite database is a sequence of
finite relations. For a tuple t and a relation r over R and X ⊆ R, t(X) is the restriction of t to
X, and r(X) is the set of all restrictions t(X) where t ∈ r. If X = (A1, . . . , An) is a sequence
of attributes, then we write t(X) for (t(A1), . . . , t(An)).

We exclude empty relations from our definition. This is a practical assumption with no
effect when single relation schemata are considered only. However, on multiple relations it has
an effect, e.g., the rule UI3 in Table 4 becomes unsound.

Syntax and semantics of FDs, INDs, and IAs are as follows. Let d = (r1[R1], . . . , rn[Rn])
be a database. For two sequences of distinct attributes A1, . . . , An ∈ Ri and B1, . . . , Bn ∈ Rj ,
Ri[A1 . . . An] ⊆ Rj [B1 . . . Bn] is an inclusion dependency with semantics defined by d |=
Ri[A1 . . . An] ⊆ Rj [B1 . . . Bn] if for all t ∈ ri there is some t′ ∈ rj such that t(A1) =
t′(B1), . . . , t(An) = t′(Bn). For two (not necessarily disjoint) sets of attributes X,Y ⊆ Ri,
Ri : X⊥Y is an independence atom with semantics: d |= Ri : X⊥Y if for all t, t′ ∈ ri there
exists t′′ ∈ ri such that t′′(X) = t(X) and t′′(Y) = t′(Y). For two sets of attributes X,Y ⊆ Ri,
Ri : X → Y is a functional dependency with semantics: d |= Ri : X → Y if for all t, t′ ∈ ri,
t(X) = t′(X) implies t(Y) = t′(Y). We may exclude relation schemata from the notation if they
are clear from the context (e.g. write X⊥Y instead of Ri : X⊥Y). A disjoint independence
atom (DIA) is an IA X⊥Y where X∩Y is empty. We say that an IND is k-ary if it is of the form
A1 . . . Ak ⊆ B1 . . . Bk. An IA X⊥Y and an FD X → Y are called k-ary if max{|X|, |Y |} = k.
A class of dependencies is called k-ary if it contains at most k-ary dependencies. We add “U”
to a class name to denote its unary subclass, e.g., UIND denotes the class of all unary INDs.
Similarly, for k ≥ 2 we add “k” to a class name to denote its k-ary subclass. We use “+”
to denote unions of classes, e.g., IND+IA denotes the class of all inclusion dependencies and
independence atoms. Note that the semantics of IAs implies:

* d |= Ri : X⊥X, if
for all s, s′ ∈ ri it holds that s(X) = s′(X).

Hence, unary FDs of the form ∅ → A and unary IAs of the form A⊥A are also called constancy
atoms (CAs).

The restriction of a dependency σ to a set of attributes R, written σ � R, is X ∩R→ Y ∩R
for an FD σ of the form X → Y , and X ∩R⊥Y ∩R for an IA σ of the form X⊥Y . If σ is an
IND of the form A1 . . . An ⊆ B1 . . . Bn and i1, . . . , ik lists {i = 1, . . . , n : Ai ∈ R and Bi ∈ R},
then σ � R = Ai1 . . . Aik ⊆ Bi1 . . . Bik . For a set of dependencies Σ, the restriction of Σ to R,
written Σ � R, is the set of all σ � R where σ ∈ Σ. Let A and B be attributes from R. By

216

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

σ(R : A 7→ B) we denote dependencies obtained from σ by replacing any number of occurrences
of A with B.

A set R of rules of the form σ1, . . . , σn ⇒ σ is called an axiomatization. A rule of the
previous form is called n-ary, and an axiomatization consisting of at most n-ary rules is called
n-ary. A deduction from a set of dependencies Σ by an axiomatization R is a sequence of
dependencies (σ1, . . . , σn) where each σi is either an element of Σ or follows from σ1, . . . , σi−1

by an application of a rule in R. In such an occasion we write Σ `R σ, or simply Σ ` σ if R is
known.

Given a finite set of database dependencies Σ ∪ {σ}, the (finite) unrestricted implication
problem is to decide whether all (finite) databases that satisfy Σ also satisfy σ, written Σ |= σ
(Σ |=fin σ). An axiomatization R is sound for the unrestricted implication problem of a class
of dependencies C if for all finite sets Σ ∪ {σ} of dependencies from C, Σ `R σ ⇒ Σ |= σ; it is
complete if Σ |= σ ⇒ Σ `R σ. Soundness and completeness for finite implication are defined
analogously.

We assume that all our axiomatizations are attribute-bounded. A sound and complete
axiomatization is said to be attribute-bounded if it does not introduce new attributes, i.e., any
implication of σ by Σ can be verified by a deduction in which only attributes from Σ or σ
appear [9]. It is easy to see that a finite (attribute-bounded) axiomatization gives rise to a
decision procedure for the associated implication problem. The converse is not necessarily true;
join dependencies constitute a class that is associated with a decidable implication problem, yet
they lack finite axiomatization [32]. Consider then the class FD+IND+IA. Clearly, both sets
{(Σ, σ) | Σ |= σ} and {(Σ, σ) | Σ 6|=fin σ} are recursively enumerable; the first via reduction to
the validity problem of first-order logic, and the second by checking through whether some finite
relation satisfies Σ∪ {¬σ}. Consequently, given a subclass C of FD+IND+IA, the unrestricted
and finite implication problems for C are decidable whenever these two problems coincide.

In our completeness proof we utilize the chase technique (see, e.g., [1]). The chase provides
a general tool for reasoning about various dependencies as well as for optimizing conjunctive
queries. Given an implication problem for σ by Σ, the starting point of the chase is a simple
database falsifying σ. For instance, the chase for independence atoms starts with a unirelational
database consisting of two rows that disagree on all attributes. Using some dedicated set of
chase rules, this initial database is then completed to another database satisfying Σ. If the
new database satisfies also σ, then one concludes that the implication holds. For some classes,
such as embedded multivalued dependencies, the chase does not necessarily terminate. In those
cases only a semi-decision procedure is obtained.

Axiomatizations. Tables 2, 3, and 4 present the axiomatizations considered in this article.
The axiomatization of Table 2 is sound and complete for independence atoms alone [18, 24].
Table 3 depicts the sound and complete axiomatization of inclusion dependencies introduced
in [7, 8]. Table 4 presents rules describing interaction between inclusion dependencies and
independence atoms.

We conclude this section by stating the soundness of the axioms in Tables 2, 3, and 4. The
proof is a straightforward exercise and left to the reader.

Theorem 1. The axiomatization A∪B∪C is sound for the unrestricted and finite implication
problems of IND+IA.

217

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

3 IAs+INDs

In this section we establish a set of inference rules that is proven sound and complete for the
unrestricted and finite implication problems of IND+IA. This axiomatization consists of rules C
describing interaction between the two classes (see Table 4) and two sets A and B of complete
rules for both classes in isolation (see Tables 2 and 3, resp.). Furthermore, as a consequence of
the completeness proof we obtain that the finite and unrestricted implication problems coincide
for IND+IA.

∅⊥X
X⊥Y
Y ⊥X

(trivial independence, I1) (symmetry, I2)

X⊥Y Z
X⊥Y

X⊥Y XY ⊥Z
X⊥Y Z

(decomposition, I3) (exchange, I4)

X⊥Y Z⊥Z
X⊥Y Z

(weak composition, I5)

Table 2: Axiomatization A for IAs .

We start with the following simplifying lemma which reduces one finite IND+IA-implication
problem to another that is not associated with any constancy atoms, i.e., IAs of the form X⊥X.

Lemma 2. Let Σ be a set of IAs and INDs over schema R1, . . . , Rn, and let C :=
⋃n
i=1{A ∈

Ri | Σ ` Ri : A⊥A}. Let Σ0 and σ0 be the restrictions of Σ and σ to the attributes not in C,

R[X] ⊆ R[X]
(reflexivity, U1)

R[X] ⊆ R′[Y] R′[Y] ⊆ R′′[Z]

R[X] ⊆ R′′[Z]
(transitivity, U2)

R[A1 . . . An] ⊆ R′[B1 . . . Bn]

R[Ai1 . . . Aim] ⊆ R′[Bi1 . . . Bim]
(∗)

(projection and permutation, U3)
(∗) ij are pairwise distinct and from {1, . . . , n}

Table 3: Axiomatization B for INDs

R[X] ⊆ R′[Z] R[Y] ⊆ R′[W] R′[Z⊥W]

R[XY] ⊆ R′[ZW]
(concatenation, UI1)

R[XY] ⊆ R′[ZW] R′[ZW] ⊆ R[XY] R′[Z⊥W]

R[X⊥Y]
(transfer, UI2)

R[X] ⊆ R′[Y] R′ : Y ⊥Y
R′[Y] ⊆ R[X]

(symmetry, UI3)

R[X] ⊆ R′[Y] R′ : Y ⊥Y
R : X⊥X

(constancy, UI4)

R[A] ⊆ R′[C] R[B] ⊆ R′[C] R′ : C⊥C σ

σ(R : A 7→ B)
(equality, UI5)

Table 4: Axiomatization C for IAs and INDs

218

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

and let Σ1 be obtained from Σ by

(1) replacing Ri : X⊥Y ∈ Σ with Ri : X \ C⊥Y \ C,

(2) adding Ri : A1 . . . Aj⊥Aj+1 . . . Am(Ri \ C), where A1, . . . , Am is some enumeration of
Ri ∩ C and j = 1, . . . ,m,

(3) adding Rj [B] ⊆ Ri[A] if Σ ` Ri[A] ⊆ Rj [B] ∧Rj : B⊥B.

Then Σ ` Σ0 ∪ Σ1 ∪ {Ri : Ri ∩ C⊥Ri ∩ C | i = 1, . . . , n} and

(i) σ is an IA: Σ |=fin σ ⇒ Σ0 |=fin σ0,

(ii) σ is an IND: Σ |=fin σ ⇒ Σ1 |=fin σ.

Proof. Clearly we have that Σ ` Σ0 ∪ Σ1 ∪ {Ri : Ri ∩ C⊥Ri ∩ C | i = 1, . . . , n}. For claim (i)
note that any finite database d = (r1, . . . , rn) satisfying Σ0 ∪ {¬σ0} can be extended to a one
satisfying Σ∪{¬σ} by replacing in each ri ∈ d each tuple t with all tuples t′ such that t′(A) = 0
for A ∈ Ri ∩ C and t′(A) ∈ {0, t(A)} for A ∈ Ri \ C, where 0 is a value not appearing d.

Next we show claim (ii). Assuming a finite database d′ = (r′1[R1], . . . , r′n[Rn]) satisfying Σ1∪
{¬σ} for σ of the form Rl[X] ⊆ Rl′ [Y], we construct a finite database d = (r1[R1], . . . , rn[Rn])
satisfying Σ∪{¬σ}. Let t ∈ r′l be such that t(X) 6= t′(Y) for all t′ ∈ r′l′ . Let t0 be an extension
of t(Rl ∩ C) to C such that, for A ∈ Ri ∩ C and B ∈ Rl ∩ C, t0(A) = t(B) if Σ ` Ri[A] ⊆ Rl[B],
and otherwise t0(A) is any value from r′i(A). Note that we may assume without losing generality
that t0 is well-defined, i.e., for no distinct B,B′ ∈ Rl ∩ C, Σ ` Rl[B] ⊆ Rl[B

′]. For this, define
an equivalence class ∼ on Rl ∩ C such that B ∼ B′ if Σ ` Rl[B] ⊆ Rl[B′]. Using UI5 it is then
straightforward to show that Σ |=fin σ ⇒ Σ∗ |=fin σ

∗ and Σ∗ ` σ∗ ⇒ Σ ` σ where Σ∗ ∪ {σ∗}
is the set of constraints obtained from Σ ∪ {σ} by replacing attributes in Rl ∩ C with their
equivalence classes.

Now, define ri := r′i(Ri \ C) × {t0(Ri ∩ C)}, for i = 1, . . . , n. Since t ∈ rl and rl′ ⊆ r′l′
by items (2,3) and the construction, we obtain that d′ 6|= Rl[X] ⊆ Rl′ [Y]. It also easy to see
by the construction that all IAs in Σ remain true in d. Assume then that Ri[X1 . . . Xm] ⊆
Rj [Y1 . . . Ym] ∈ Σ, and let t ∈ ri. Since Yi ∈ C implies Xi ∈ C and t0(Xi) = t0(Yi), we
can assume that Y1, . . . , Ym 6∈ C. Hence, rj(Y1 . . . Ym) = r′j(Y1 . . . Ym). Again, ri ⊆ r′i by
(2,3) and the construction, and d′ |= Ri[X1 . . . Xm] ⊆ Rj [Y1 . . . Ym]; hence we obtain that
d |= Ri[X1 . . . Xm] ⊆ Rj [Y1 . . . Ym]. This concludes case (ii) and the proof.

The following lemma will be also helpful in the sequel.

Lemma 3. XY ⊥UV can be deduced from XU⊥Y V , X⊥U , and Y ⊥V by rules I2, I3, I4.

Proof. The following deduction shows the claim:

Y ⊥V
XU⊥Y V
Y V ⊥XU

I2

Y ⊥XUV
I4

Y ⊥UV
I3

UV ⊥Y
I2

X⊥U XU⊥Y V
X⊥Y UV

I4

Y UV ⊥X
I2

UV ⊥XY
I4

XY ⊥UV
I2

Using the previous lemmata we can now state the completeness result. The proof is divided
into three subcases in which either CA, IND, or IA consequences are considered. By Lemma 2
we may consider only IND+DIA-implication in the latter two cases. These cases are proved by
a chase argument that generalizes the completeness proof of IND-axioms presented in [8].

219

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

Theorem 4. The axiomatization A ∪ B ∪ C is sound and complete for the unrestricted and
finite implication problems of IA+IND.

Proof. By Theorem 1 the axiomatization is sound. For completeness with respect to both
implication problems, it suffices to show that finite implication entails derivability. For this,
notice that unrestricted implication entails finite implication. Hence, assume that Σ |=FIN σ
for a finite set Σ ∪ {σ} of IAs and INDs over database schema R1, . . . , Rn. Let C :=

⋃n
i=1{A ∈

Ri | Σ ` Ri : A⊥A}. By I1 − I3 we may assume without losing generality that σ is either a
CA, a DIA, or an IND. Hence, we show that Σ ` σ in these three cases.
1) σ is a constancy atom. Assume that σ is of the formRl : A⊥A, and assume to the contrary
that Σ 6` σ. First let I be the set of attributes B for which there is i = 1, . . . , n such that
Σ ` Rl[A] ⊆ Ri[B]. Then let d = (r1, . . . , rn) be the database where ri := Ri∩I{0, 1}×Ri\I{0}.
We show that d |= Σ ∪ {¬σ} which contradicts the assumption that Σ |=FIN σ. It is easy to
see that d satisfies ¬σ, so assume that Ri[A1 . . . Am] ⊆ Rj [B1 . . . Bm] ∈ Σ. Since Ai = Aj ⇒
Bi = Bj by the assumption and Ai ∈ I ⇒ Bi ∈ I by U2, it follows by the construction that
d |= Ri[A1 . . . Am] ⊆ Rj [B1 . . . Bm].

Assume then that Ri : XZ⊥Y Z ∈ Σ. By the construction, d |= Ri : X⊥Y , so it suffices
to show that d |= Ri : ∅ → B, for B ∈ Z. If d 6|= Ri : B⊥B, then by the construction
Σ ` Rl[A] ⊆ Ri[B]. Moreover by UI3, Σ ` Ri[B] ⊆ Rl[A], and by UI4, Σ ` Rl : A⊥A,
contrary to the assumption. Hence d |= Ri : B⊥B which concludes the proof of d |= Σ ∪ {¬σ}
and the case of σ being a constancy atom.
2) σ is a disjoint independence atom. Assume that σ is a DIA of the form Rl :
A1 . . . Ah⊥Ah+1, . . . , Ah+k. By Lemma 2 we may assume that Σ is a set of DIAs and INDs.
Define first a database d = (r1[R1], . . . , rn[Rn]) such that

• rl = {s, s′} where s and s′ map all attributes in Rl to 0 except that s(Ai) = i for
i = 1, . . . , h and s′(Ai) = i for i = h+ 1, . . . , h+ k;

• ri = {t} where t maps all attributes in Ri to 0, for i 6= l.

The idea is to extend d to a database d′′ = (r′′1 , . . . , r
′′
n) such that d′′ |= Σ and

* if t ∈ r′′i is such that t(B1) = i1, . . . , t(Bm) = im and 0 < i1 < . . . < im, then Σ `
Rl[Ai1 . . . Aim] ⊆ Ri[B1 . . . Bm].

We let d′′ be the result of chasing d by Σ over the following two chase rules, i.e., d′′ is obtained
by applying rules (i-ii) to d repeatedly until this is no more possible.

(i) Assume that R[Y] ⊆ R′[Z] ∈ Σ and t ∈ r[R] is such that for no t′ ∈ r′[R′], t(Y) = t′(Z).
Then extend r′ with tnew that maps Z pointwise to t(Y) and otherwise maps attributes
in R′ to 0.

(ii) Assume that R : Y ⊥Z ∈ Σ and t0, t1 ∈ r[R] are such that for no t2 ∈ r[R], t2(Y) = t0(Y)
and t2(Z) = t1(Z). Then extend r with tnew that agrees with t0 on Y , with t1 on Z, and
maps every other attribute in R to 0.

Note that since the range of the assigned values is finite, the process terminates. Hence, d′′ is
a finite model of Σ, and therefore by the assumption it satisfies σ. It is also straightforward to
verify, using U1,U3 at the initial stage, U2,U3 in items (i,ii), and I2, I3,UI1 in item (ii), that
∗ is satisfied.

Since d′′ satisfies σ, we find a tuple t ∈ r′′l mapping Ai to i, for i = 1, . . . , n. Hence, it suffices

to show that, given any sequence ~d = (d1, . . . , dm), where d1 = d and di+1 is obtained from di
by applying (i) or (ii), and any X ⊆ {1, . . . , h+ k}, if there is t ∈ rl, for dm = (r1, . . . , rn), such
that t(Ai) = i if i ∈ X, then Σ ` Rl : X ∩ A1 . . . Ah⊥X ∩ Ah+1 . . . Ah+k. We show this claim

220

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

by induction on the number of applications of (ii) in ~d.
Assume first that no application of (ii) occurs. Then t cannot combine any values from both

s and s′ and hence S cannot intersect both {1, . . . , h} and {h + 1, . . . , h + k}. Consequently,
Rl : X ∩A1 . . . Ah⊥X ∩Ah+1 . . . Ah+k is derivable by I1, I2.

Let us then show the induction step. We prove the claim for S = {1, . . . , h+k}; the general

case is then analogous. Assume that the number of applications of (ii) in ~d = (d1, . . . , dm)
is greater than 0 and let dk be the database obtained by applying (ii) for the last time, say
with regards to some R : X⊥Y and tuples t0, t1, tnew. We start by defining tuples ti, t

′
i and

databases d′i, for i = k, . . . ,m. First let ti be the new tuple introduced in di. Note that then
tk is tnew from step k. In addition, for i = k, define t′k as t0 from step k, and d′k as dk−1. If
i = k + 1, . . . ,m, define d′i and t′i inductively as follows:

• If di is obtained by applying (i) to some tj listed in tk, . . . , ti−1 (or t not listed in
tk, . . . , ti−1), then let d′i be obtained by applying (i) to t′j (or t), and let t′i be the new
tuple added to d′i. If applying (i) above is not possible, due to the condition given in (i),
then define d′i as d′i−1, and t′i as any tuple t′ violating the condition.

We now let ~d′ := (d1, . . . dk−1, d
′
k, . . . , d

′
m). We may assume that t(A1 . . . Ah+k) 6∈ r′l(A1 . . . Ah+k),

for d′m = (r′1, . . . , r
′
n); otherwise the claim follows by the induction assumption. Since

dk−1 ⊆ d′m, an analogous claim holds for dk−1. Therefore, and since only (i) is applied af-
ter step k, (dk, . . . , dm) must include a (possibly empty) chain of applications of (i) copying
1, . . . , h + k from tk(B1), . . . , tk(Bh+k) to t(A1), . . . , t(Ah+k), for some B1, . . . , Bh+k ∈ XY .
Note that the values are are copied from tk because otherwise one finds t(A1 . . . Ah+k) from
r′l(A1 . . . Ah+k) contrary to the assumption. Now, using repeatedly U2,U3 we obtain that

Σ ` Ri[B1 . . . Bh+k] ⊆ Rl[A1 . . . Ah+k]. (1)

Moreover, since ∗ is satisfied with regards to dm, we conclude that

Σ ` Rl[A1 . . . Ah+k] ⊆ Ri[B1 . . . Bh+k]. (2)

Let Bi1 . . . BiaBia+1
. . . BibBib+1

. . . BicBic+1
, . . . Bid relist B1 . . . Bh+k so that

• Bi1 , . . . , , Bib ∈ X and Bib+1
, . . . , Bid ∈ Y

• {i1, . . . , ia, ib+1, . . . , ic} = {1, . . . , h} and
{ia+1, . . . , ib, ic+1, . . . , id} = {h+ 1, . . . , h+ k}.

Since Σ ` Ri : Bi1 . . . Bib⊥Bib+1
. . . Bid by I2, I3, we obtain using (1), (2) and U3,UI2 that

Σ ` Rl : Ai1 . . . Aib⊥Aib+1
. . . Aid . (3)

By construction, (d′k, . . . , d
′
m) copies i1, . . . , ib from the sequence t′k(Bi1), . . . , t′k(Bib) to

t′(Ai1), . . . , t′(Aib), for some t′ ∈ r′l. Since ~d′ contains less applications of (ii) than ~d, it follows
by the induction assumption that Σ ` Rl : Ai1 . . . Aia⊥Aia+1

. . . Aib . It follows by an analogous
argument that Σ ` Rl : Aib+1

. . . Aic⊥Aic+1
. . . Aid . By Lemma 3, these two and (3) imply that

Σ ` R : A1 . . . Ah⊥Ah+1 . . . Ah+k. This concludes the induction proof and the case of σ being
a disjoint IA.
3) σ is an inclusion dependency. Assume that σ is an IND of the form Rl[X] ⊆ Rl′ [Y].
By Lemma 2 we may assume that Σ is a set of IAs and disjoint INDs. We let d = (r1, . . . , rn)
where r1, . . . , rl−1, rl+1, . . . , rn are single rows of 0’s, and rl = {s} for a tuple s : Ai 7→ i, where
Rl = {A1, . . . , Am}. It suffices then to chase d by Σ with rules (i,ii), and show that the resulting
database d′′ satisfies *. Since this is analogous to the previous case, we omit the proof here.

221

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

We obtain the following corollaries. For the first corollary, note that in the last two cases of
the previous proof none of the rules I5,UI3,UI4,UI5 are applied. The second corollary follows
directly from the previous theorem which shows that the same axiomatization characterizes both
implication problems.

Corollary 5. The axiomatization {I1, I2, I3, I4}∪{UI1,UI2}∪B is sound and complete for
the unrestricted and finite implication problems of DIA+IND.

Corollary 6. The finite and unrestricted implication problems of IND+IA coincide.

One consequence of Theorem 4 is that the implication problem for UIND+CA by IND+IA
can be determined by considering only interaction between UINDs and CAs. For a set of
dependencies Σ, define ΣCA := {A⊥A | R : AX⊥AY ∈ Σ} and ΣUIND := {R[Ai] ⊆ R′[Bi] |
R[A1 . . . An] ⊆ R′[B1 . . . Bn] ∈ Σ, i = 1, . . . , n}. The following theorem now formulates this
idea.

Theorem 7. Let Σ be a set of INDs and IAs, and let σ be a UIND or a CA. The following
are equivalent:

(1) Σ |= σ,

(2) ΣUIND ∪ ΣCA |= σ,

(3) σ is derivable from ΣUIND ∪ ΣCA by U1,U2,UI3,UI4.

Proof. It is clear that (3) ⇒ (2) ⇒ (1). We show that (1) ⇒ (3). By Theorem 4, there is a
deduction (σ1, . . . , σm) from Σ by A∪B∪C such that σm = σ. It is a straightforward induction
to show that for all i = 1, . . . ,m:

• If σi is R : A⊥A, then σi satisfies (3).

• If σi is R[A1 . . . An] ⊆ R′[B1 . . . Bn], then σj := R[Aj] ⊆ R′[Bj] satisfies (3), for j =
1, . . . , n.

It is worth noting that every application of UI5, where σ(R : A 7→ B) is a UIND or CA, can be
simulated by U2,UI3,UI4. All the other cases are straightforward and left to the reader.

4 Polynomial-Time Conditions for Non-Interaction

The interaction-freeness between the class FD+IND has been well-studied in the literature [25,
26]. Here, we examine the frontiers for tractable reasoning about the class IND+IA. The idea
is to establish sufficient criteria for the non-interaction between IAs and INDs. We define
non-interaction between two classes as follows.

Definition 8. Let Σ0 and Σ1 be two sets of dependencies from classes C0 and C1, respectively.
We say that Σ0,Σ1 have no interaction with respect to unrestricted (finite) implication if

• for σ from C0, σ is (finitely) implied by Σ0 iff σ is (finitely) implied by Σ0 ∪ Σ1.

• for σ from C1, σ is (finitely) implied by Σ1 iff σ is (finitely) implied by Σ0 ∪ Σ1.

Let us now define two syntactic criteria for describing non-interaction. We say that an IA
X⊥Y splits an IND Z ⊆ W if both X ∩W and Y ∩W are non-empty. We show that lacking
splits implies non-interaction for IND+IA. The proof is rather straightforward by using the
complete axiomatization.

222

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

Theorem 9. Let ΣIND and ΣIA be respectively sets of INDs and IAs. If no IA in ΣIA splits
any IND in ΣIND, then ΣIND and ΣIA have no interaction with respect to unrestricted (finite)
implication.

Proof. Assume that σ is implied by ΣIND ∪ ΣIA (recall that here finite and unrestricted im-
plication coincide). By Theorem 4, σ can be deduced from ΣIND ∪ ΣIA by A ∪B ∪ C. Given
the condition, no rules from C can be applied in the deduction. Since only rules in B (in A)
produce fresh INDs (IAs), the claim follows.

5 Complexity Results

Next we examine the computational complexity of the discussed implication problems. We
show that adding IAs to the class of INDs involves no trade-off in terms of losing desirable
computational properties. Theorem 16 shows that, alike for INDs [8], the implication problem
for IND+IA is PSPACE-complete. First, however, we show that all unary INDs and constancy
atoms implied by a set of INDs and IAs can be recognized in linear time. This follows by
Theorem 12, presented in [10] for a more general class of embedded implicational dependencies
and UINDs.

Definition 10 ([10]). For any set ∆ of IAs and set Σ of UINDs, we define the set Y called
the singlevalued span of ∆ and Σ to be the minimum set of attributes Y that satisfies the two
conditions:

(1) if ∆ ∪ {Y ⊥Y } |= A⊥A, then add A to Y ,

(2) if attribute B is in Y and A ⊆ B is in Σ, then add A to Y .

Definition 11 ([10]). For any set A of IAs, any set Z of UINDs, and Y the singlevalued span
of ∆ and Σ, we define the sets ∆′′ and Σ′′, called the unrestricted extensions of ∆ and Σ, by
∆′′ = ∆ ∪ {Y ⊥Y } and Σ′′ = Σ ∪ {A ⊆ B : B ⊆ A in Σ, A in Y }.
Theorem 12 ([10]). Let ∆ be a set of IAs, Σ set of UINDs, Y the singlevalued span, and
∆′′,Σ′′ the unrestricted extensions of ∆,Σ. For any IA δ and any UIND σ, we have

• ∆ ∪ Σ |= σ ⇔ Σ′′ |= σ,

• ∆ ∪ Σ |= δ ⇔ ∆′′ |= δ.

We can now show that implication of unary INDs and constancy atoms by INDs and IAs is
linear-time decidable.

Theorem 13. The unrestricted and finite implication problems for CA+UIND by IND+IA is
linear-time decidable.

Proof. Let Σ be a set of INDs and IAs, and let σ be a UIND and τ a CA. By Theorem 7,
Σ |= ρ ⇔ ΣUIND ∪ ΣCA |= ρ, for ρ ∈ {σ, τ}. Let Y be the singlevalued span of ΣUIND ∪ ΣCA

described in Definition 10, and let Σ0 := ΣUIND ∪ {A ⊆ B : B ⊆ A ∈ ΣUIND, A ∈ Y } and
Σ1 := ΣCA ∪ {∅ → A : A ∈ Y }. By Theorem 12,

• ΣUIND ∪ ΣCA |= σ ⇔ Σ0 |= σ,

• ΣUIND ∪ ΣCA |= τ ⇔ Σ1 |= τ .

The singlevalued span Y and the deductive closure of Σ0 can be computed in linear time by
reducing to graph reachability. For the latter, note that U1,U2 form a complete axiomatization
for UINDs. Moreover, Σ1 |= ∅ → A iff A ∈ Y . We conclude that in both cases implication can
be tested in linear time.

223

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

Next we turn to the full class IND+IA and use graphs again to characterize the associated
implication problem. Recall by Corollary 6 that the unrestricted and finite implication problems
coincide for IND+IA.

Definition 14. Let Σ ∪ {σ} be a set of INDs and IAs, and assume that σ is of the form
R[X] ⊆ S[Y] (or R[X1⊥X2] where X = X1X2). Then we let HΣ,σ be a graph that has nodes
{τ1, . . . , τk}, for k ≤ |X|, where τi is an IND of the form R[Ai] ⊆ R′[Bi] and the concatenation
A1 . . . An is a permutation (without repetition) of X. Two nodes v, v′ are connected by a directed
edge v → v′ if one of the following holds:

• There exists τ0, τ1, τ such that v\{τ} = v′\{τ0, τ1} where τ is a permutation of R[U0U1] ⊆
R′[V0V1], τ0 = R[U0] ⊆ R′[V0], τ1 = R[U1] ⊆ R′[V1].

• There exists τ0, τ1, τ such that v \ {τ0, τ1} = v′ \ {τ} where τ0 = R[U0] ⊆ R′[V0],
τ1 = R[U1] ⊆ R′[V1], τ = R[U0U1] ⊆ R′[V0V1], and for some W0 ⊇ V0 and W1 ⊇ V1,
R′[W0⊥W1] ∈ Σ.

• There exists τ, τ ′ such that v\{τ} = v′\{τ ′} where τ = R[U] ⊆ R′[V], τ ′ = R[U] ⊆ R′′[W],
and R′[V] ⊆ R′′[W] is a projection and permutation of some IND in Σ.

If σ is R[X1⊥X2], then we define vstart := {R[X1] ⊆ R[X1], R[X2] ⊆ R[X2]} and vend :=
{R[X] ⊆ R[X]}. If σ is R[X] ⊆ S[Y], then vstart := {R[X] ⊆ R[X]} and vend := {R[X] ⊆
S[Y]}.

Lemma 15. Let Σ∪{σ} be a set of INDs and DIAs. Then Σ |= σ iff HΣ,σ contains a directed
path from vstart to vend.

Proof. Assuming Σ |= σ, the required path is found by backtracking a succesful chase of d by
Σ where the chase rules and d are defined as in cases 2) and 3) in the proof of Theorem 4.

For the other direction, let d be a database satisfying Σ. Assume first that σ is an IA of the
form R[X1⊥X2], and let t, t′ ∈ r[R]. Now X1 and X2 are disjoint, so we can define a mapping
t0 that agrees with t on X1 and with t′ on X2. It suffices to show, given a directed path in
HΣ,σ from vstart to {τ1, . . . , τk}, that for each τi of the form R[Ui] ⊆ R′[Vi] there is ti ∈ r′[R′]
such that t0(Ui) = ti(Vi). Since this is a straightforward induction, we leave the proof to the
reader. The case where σ is an IND is analogous.

PSPACE-completeness of the IND+IA-implication is now showed by reducing to graph reach-
ability in HΣ,σ.

Theorem 16. The unrestricted (finite) implication problem for IND+IA is complete for
PSPACE.

Proof. The lower bound follows by the fact that the implication problem for INDs alone is
PSPACE-complete [8]. For the upper bound, let Σ ∪ σ be a set of INDs and IAs where σ is an
IA (or an IND). Construct first Σ0 ∪ {σ0} (Σ1) as described in Lemma 2. By Theorem 13 this
can be done in polynomial time. Then non-deterministically check whether there is a directed
path in HΣ0,σ0

(HΣ1,σ) from vstart to vend. Since this requires only polynomial amount of space,
we conclude by Savitch’ theorem that the implication problem is in PSPACE.

Note that there are only polynomially many nodes in HΣ,σ, given that σ is of fixed arity.
Hence, by Lemma 2 and Theorem 13 we obtain the following corollary.

Corollary 17. The unrestricted (finite) implication problem for σ by Σ, where Σ ∪ σ is a set
of INDs and IAs, is fixed-parameter tractable in the arity of σ.

224

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

Actually, the choice of the parameter in the above corollary is not optimal. By Theorem
13, tractability is preserved if only the number of non-constant attributes in an IA σ is fixed.
Moreover, assume that σ is an IND of the form A1 . . . Ah+k ⊆ B1 . . . Bh+k where Bi is constant
for i ≤ h. Then the implication problem for σ is fixed-parameter tractable in k since by UI1 it
suffices to test whether Ah+1 . . . Ah+k ⊆ Bh+1 . . . Bh+k and Ai ⊆ Bi, for i ≤ h, are all implied.

6 Conclusion and Outlook

We have investigated the implication problem of the combined class of independence atoms
and inclusion dependencies. We have shown that the finite and unrestricted versions of this
problem coincide, are finitely axiomatizable, PSPACE-complete, and fixed-parameter tractable
in their arity. The results retain the computational properties of the individual class of inclusion
dependencies but add significant expressivity by the addition of independence atoms. This
cannot be taken for granted, as the combined class of independence atoms and keys exhibits
[17, 18], for example. We have further established an efficient condition that guarantees the non-
interaction of independence atoms with inclusion dependencies. The condition ensures that we
can apply known algorithms for deciding implication of the individual classes of independence
atoms and inclusion dependencies, respectively, to decide implication for an input that combines
both individual classes.

In future work we will investigate the same problems for the combined class of functional de-
pendencies, independence atoms, and inclusion dependencies. This will both be interesting and
challenging as the implication problems for the class of functional and inclusion dependencies
deviate in the finite and unrestricted case, and are each undecidable [9, 28, 29].

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[2] Samson Abramsky. Contextual semantics: From quantum mechanics to logic, databases, con-
straints, and complexity. Bulletin of the EATCS, 113, 2014.

[3] Samson Abramsky, Georg Gottlob, and Phokion G. Kolaitis. Robust constraint satisfaction and
local hidden variables in quantum mechanics. In IJCAI, 2013.

[4] William W. Armstrong. Dependency Structures of Data Base Relationships. In Proc. of IFIP
World Computer Congress, pages 580–583, 1974.

[5] Catriel Beeri and Philip A. Bernstein. Computational problems related to the design of normal
form relational schemas. ACM Trans. Database Syst., 4(1):30–59, 1979.

[6] Jean-Marc Cadiou. On semantic issues in the relational model of data. In MFCS, pages 23–38,
1976.

[7] Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion dependencies and
their interaction with functional dependencies. In PODS, pages 171–176, 1982.

[8] Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion dependencies and
their interaction with functional dependencies. J. Comput. Syst. Sci., 28(1):29–59, 1984.

[9] Ashok K. Chandra and Moshe Y. Vardi. The implication problem for functional and inclusion
dependencies is undecidable. SIAM Journal on Computing, 14(3):671–677, 1985.

[10] Stavros S. Cosmadakis, Paris C. Kanellakis, and Moshe Y. Vardi. Polynomial-time implication
problems for unary inclusion dependencies. J. ACM, 37(1):15–46, 1990.

[11] Claude Delobel. Normalization and hierarchical dependencies in the relational data model. ACM
Trans. Database Syst., 3(3):201–222, 1978.

225

On the Interaction of Inclusion Dependencies with Independence Atoms Hannula, Kontinen, and Link

[12] Alin Deutsch, Lucian Popa, and Val Tannen. Physical data independence, constraints, and opti-
mization with universal plans. In VLDB, pages 459–470, 1999.

[13] Ronald Fagin. Multivalued dependencies and a new normal form for relational databases. ACM
Transactions on Database Systems, 2:262–278, September 1977.

[14] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange: semantics
and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

[15] Dan Geiger, Azaria Paz, and Judea Pearl. Axioms and algorithms for inferences involving proba-
bilistic independence. Information and Computation, 91(1):128–141, 1991.

[16] Erich Grädel and Jouko A. Väänänen. Dependence and independence. Studia Logica, 101(2):399–
410, 2013.

[17] Miika Hannula, Juha Kontinen, and Sebastian Link. On independence atoms and keys. In CIKM,
pages 1229–1238, 2014.

[18] Miika Hannula, Juha Kontinen, and Sebastian Link. On the finite and general implication problems
of independence atoms and keys. J. Comput. Syst. Sci., 82(5):856–877, 2016.

[19] Christian Herrmann. On the undecidability of implications between embedded multivalued
database dependencies. Information and Computation, 122(2):221 – 235, 1995.

[20] Christian Herrmann. Corrigendum to ”On the undecidability of implications between embedded
multivalued database dependencies”. Inf. Comput., 204(12):1847–1851, 2006.

[21] Paris C. Kanellakis. Elements of relational database theory. In Handbook of Theoretical Computer
Science, pages 1073–1156. 1990.

[22] Henning Köhler and Sebastian Link. Inclusion dependencies reloaded. In CIKM, pages 1361–1370,
2015.

[23] Henning Köhler and Sebastian Link. Inclusion dependencies and their interaction with functional
dependencies in SQL. J. Comput. Syst. Sci., 85:104–131, 2017.

[24] Juha Kontinen, Sebastian Link, and Jouko A. Väänänen. Independence in database relations. In
WoLLIC, pages 179–193, 2013.

[25] Mark Levene and George Loizou. How to prevent interaction of functional and inclusion depen-
dencies. Inf. Process. Lett., 71(3-4):115–125, 1999.

[26] Mark Levene and George Loizou. Guaranteeing no interaction between functional dependencies
and tree-like inclusion dependencies. Theor. Comput. Sci., 254(1-2):683–690, 2001.

[27] Mozhgan Memari and Sebastian Link. Index design for enforcing partial referential integrity
efficiently. In EDBT, pages 217–228, 2015.

[28] John C. Mitchell. The implication problem for functional and inclusion dependencies. Information
and Control, 56(3):154–173, 1983.

[29] John C. Mitchell. Inference rules for functional and inclusion dependencies. In PODS, pages 58–69,
1983.

[30] Dan Olteanu and Jakub Závodný. Size bounds for factorised representations of query results.
ACM Trans. Database Syst., 40(1):2, 2015.

[31] Jan Paredaens. The interaction of integrity constraints in an information system. J. Comput.
Syst. Sci., 20(3):310–329, 1980.

[32] S. V. Petrov. Finite axiomatization of languages for representations of system properties: Axiom-
atization of dependencies. Inf. Sci., 47(3):339–372, April 1989.

[33] Douglas Stott Parker Jr. and Kamran Parsaye-Ghomi. Inferences involving embedded multivalued
dependencies and transitive dependencies. In SIGMOD, pages 52–57, 1980.

[34] B Thalheim. Dependencies in relational databases. Teubner, 1991.

226

	Introduction
	Motivating Examples
	Contributions

	Preliminaries
	IAs+INDs
	Polynomial-Time Conditions for Non-Interaction
	Complexity Results
	Conclusion and Outlook

