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There is a growing interest in utilizing active back-support exoskeletons to address work-related 

musculoskeletal disorders in various industries, including construction. However, the unique 

characteristics of construction sites may impede the biomechanical advantages of active back-

support exoskeletons by increasing users' cognitive load. This research focuses on assessing the 

impact of active back-support exoskeletons on cognitive load during a construction framing task. 

An experimental study, involving sixteen participants performing a simulated carpentry framing 

task with and without active back-support exoskeletons across six subtasks, was conducted. 

Participants’ brain activities were captured using Electroencephalography for the two experimental 

conditions. The differences between the conditions were analyzed using paired t-tests. The findings 

indicate that the use of active back-support exoskeletons significantly heightens cognitive load 

during measuring, assembly, nailing, and installing subtasks. These results emphasize the 

importance of developing adaptive active back-support exoskeletons tailored to the construction 

industry's specific needs, considering the distinct challenges of construction environments. 

Additionally, this study contributes to construction stakeholders' understanding of the 

psychological risks associated with active back-support exoskeletons use on construction sites. 
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Introduction 
 

Musculoskeletal issues remain a concern in the construction industry due to the physically demanding 

nature of the work. The back bears the brunt of about 50% of these issues (BLS, 2020). Back-support 

exoskeletons have emerged as a potential solution to alleviate strain on the musculoskeletal system 

(Kim et al., 2019; Ogunseiju, Gonsalves, Akanmu, & Nnaji, 2021), garnering interest from 

construction industry stakeholders keen on enhancing safety and productivity (Kim et al., 2019). 

However, researchers have unearthed unexpected challenges associated with exoskeleton use, 

including perceived pressure, added weight, thermal discomfort, catch and snag risks, and movement 
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restrictions, all contributing to increased cognitive load (Giustetto et al., 2021; Kim et al., 2019; Liu et 

al., 2021; Ogunseiju et al., 2021; Picchiotti, Weston, Knapik, Dufour, & Marras, 2019).  

High cognitive load, characterized by intense mental effort, can lead to mental fatigue and a decline in 

situational awareness, elevating the risk of falls with potentially dire consequences (Marchand, De 

Graaf, & Jarrassé, 2021). Zhu, Johnson, Chang, and Mehta (2020) noted that sustained high cognitive 

load may negate the biomechanical benefits of exoskeletons and increase the likelihood of errors. 

Construction tasks, encompassing both physical and mental components, demand efficient cognitive 

functioning for activities like carpentry framing, involving measuring, assembly, and installation. An 

increase in cognitive load may impede overall work efficiency and productivity. 

 

While researchers have utilized wearable sensors, such as Electroencephalography (EEG), to evaluate 

cognitive load in various construction tasks like bolt and nut fastening and assembly tasks (Chen, 

Taylor, & Comu, 2017), research has predominantly focused on the benefits of exoskeletons rather 

than assessing the associated cognitive load risks. Considering the unstructured environment of 

construction sites that inherently increases cognitive load, deploying active back-support exoskeletons 

without empirical research on their cognitive effects poses a potential hazard. Thus, this study aims to 

assess the cognitive load effects of exoskeletons in carpentry framing tasks, shedding light on the 

psychological risks associated with their use in construction settings. 

 

Background 
 

Contributions of Exoskeleton to Cognitive Load 
 

Studies have highlighted the potential benefits of exoskeletons in mitigating work-related 

musculoskeletal disorders (WMSDs) by reducing muscle activation (Walter, Stutzig, & Siebert, 2023) 

and perceived discomfort (Huysamen et al., 2018). However, the use of exoskeletons has also 

revealed unintended consequences, including an increased cognitive load on users. These 

consequences manifest as perceived discomfort in various body parts (Giustetto et al., 2021), 

movement restrictions (Ogunseiju et al., 2021), catch and snag risks (Kim et al., 2019), thermal 

discomfort (Liu et al., 2021), and uneven load distribution (Picchiotti et al., 2019). For instance, 

Giustetto et al. (2021) investigated the effectiveness of passive back-support exoskeletons (Laevo) in 

manual material handling tasks, revealing discomfort in the chest region. Ogunseiju et al. (2021) 

assessed the suitability of passive back-support exoskeletons (Laevo) for construction flooring tasks, 

highlighting biomechanical advantages but also restrictions in movements. Kim et al. (2019) explored 

the potential and barriers to exoskeleton use in construction, with stakeholders expressing concerns 

about catch and snag risks on construction sites. Liu et al. (2021) studied thermal comfort with a 

passive back-support exoskeleton (Mile bot) during lifting tasks, indicating participants experienced 

thermal discomfort in hot conditions. Picchiotti et al. (2019) assessed spine biomechanical loading 

using passive exoskeletons (FLx and V22) in manual material handling tasks, revealing uneven load 

distribution. These studies highlight the need to examine cognitive load contributions of exoskeletons 

during construction work.  

 

Electroencephalography for Assessing Cognitive Load 
 

In addition to physical assessments, cognitive load has been studied using wearable sensors across 

various mental tasks (Castro-Meneses, Kruger, & Doherty, 2020; Cummins, Broughton, & Finnigan, 

2008; Keskin, Ooms, Dogru, & De Maeyer, 2020; Schapkin, Raggatz, Hillmert, & Böckelmann, 

2020). Theta band power in EEG power spectral density (PSD) has been identified as a sensitive 

indicator of cognitive load. For instance, Schapkin et al. (2020) evaluated cognitive load during 
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reaction tasks, showing a strong correlation between high cognitive load conditions and elevated theta 

band PSD. Keskin et al. (2020) assessed cognitive load in map reading tasks, revealing an increase in 

theta band PSD with higher difficulty levels. Cummins et al. (2008) studied cognitive load in word 

recognition tasks for amnestic mild cognitive impaired participants, showing lower theta band PSD 

compared to controls. Castro-Meneses et al. (2020) validated theta band power as a measure of 

cognitive load in a multimedia task. Researchers have also investigated the cognition of exoskeleton 

users (Swerdloff and Hargrove, 2022; Di Marco et al., 2023). For example, Swerdloff and Hargrove 

(2022) employed EEG to measure the cognitive load of exoskeleton users in various states, including 

sitting, standing, and walking on a treadmill. Their findings indicate a higher cognitive load while 

walking on the treadmill. Similarly, Di Marco et al. (2023) examined the cognitive load effects before 

and after training individuals to use a movement-aided exoskeleton using EEG. The study revealed an 

increase in the cognitive load for the exoskeleton users after the training. Despite evidence of 

cognitive load impact of exoskeletons and opportunities offered by EEG, there is a lack of studies 

examining the cognitive load of exoskeleton users, particularly in construction framing tasks. Given 

the potential cognitive load triggers and the weight of active back-support exoskeletons, this study 

aims to evaluate the cognitive load during a simulated construction carpentry task.  

 

Methods 

 
This section presents the method employed in the evaluation of cognitive load while using active 

back-support exoskeleton as shown in Figure 1. These include the participants, active back-support 

exoskeleton, experimental design and procedure, EEG, signal processing, and data analysis. 

 

 

Figure 1. Methodology overview 

 

Participants 

 
Sixteen male students with limited or no prior experience in constructing frames were recruited from 

Virginia Tech University to participate in this study in accordance with the approval of the institution 

review boards (IRB: 19-796). Although some of the participants had previous exposure to 

exoskeletons, their encounters were limited to experimental settings, and they did not have regular 

usage experience. The participants have no history of mental or musculoskeletal disorders in the past 

6 months that could affect the outcomes of the study’s results. The demographics of the participants in 

terms of means and standard deviation of age, weight, and height are as follows: 30 years ± 4 years, 

72 kg ± 7.5kg, and 173cm ± 5.5cm, respectively. 
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Active Back-Support Exoskeleton 

 
The active back-support exoskeleton adopted for this study is CrayX, obtained from German Bionic. 

The exoskeleton is designed to reduce the muscle activation of the back with three major modes of 

assistive operations, such as lifting, placing, and walking. The exoskeleton weighs approximately 8 

kg. The exoskeleton consists of two motors powered by a 40-volt battery that help supply the required 

torque to the body of the user. As indicated in Figure 2a, the exoskeleton consists of different straps, 

such as the chest strap, thigh strap, waist strap, and shoulder strap, all of which support the 

anthropometric fitness of the exoskeleton for the users. 

 

Experimental Design and Procedure 
 

The study employed a repeated measure design to assess how cognitive load influences the 

performance of individuals engaging in a construction carpentry framing task while using an active 

back support exoskeleton. In this design, the same group of participants carried out the framing task 

both with and without the active back-support exoskeleton, as illustrated in Figure 2a and 2b. The 

independent variables encompass the exoskeleton conditions (No-Exo and Active-Exo). The 

dependent variables consist of the PSD values, EEG channels, and subtasks. The framing task 

comprises of six distinct subtasks, representing the sequential steps of the experiment: measuring, 

assembly, nailing, lifting, moving, and installing. The experiment initiation involves briefing the 

participants on the details of the study, including explanations of the instruments used—such as the 

active back-support exoskeleton, EEG, timber planks, nail gun, and measuring tape. The measuring 

subtask begins with participants measuring the required timber log from the provided set of timber 

planks. Subsequently, they assembled the timber planks to create the frame, as depicted in Figure 2. 

The assembled frame was then fastened together using the provided nail gun, with the frame weighing 

20kg—within the recommended maximum manual material handling weight of 23kg according to the 

revised NIOSH lifting formula (Waters, Putz-Anderson, & Garg, 1994). Following assembly, the 

frame was lifted and manually moved to the upper floor through the staircase, where it was ultimately 

installed. Throughout the experiment, an EEG sensor captured the cognitive status of participants 

under the two experimental conditions. 

  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Simulated framing task: (a) No-Exo condition, (b) Active-Exo condition. 

 

Electroencephalography 
 

A non-invasive 32-channel EEG obtained from Emotiv was adopted in this study to capture the 

electrical activity in the brain (Figure 3b and 3c). The EEG records the electrical activity from the 

Wooden frame 

Active back-support 

exoskeleton (CrayX) 

 

(a) (b) 
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cerebral cortex part of the brain, which was used to evaluate the cognitive status of the exoskeleton 

users. The cerebral cortex comprises of four major parts: the frontal lobe, parietal lobe, occipital lobe, 

and temporal lobe. The frontal lobe houses the front EEG channels and captures cognition, memory, 

and decision-making. The parietal lobe, represented by parietal channels, specifically captures sensory 

information processing (Jawabri and Sharma 2019). The occipital lobe processes visual information, 

and the temporal lobe handles sensory input (Jawabri and Sharma 2019). EEG channels are laid out 

according to a 10-20 system to capture electrical activity in all the parts of the cerebral cortex. The 

EEG measures brain activity across five major frequency ranges, such as delta, alpha, theta, beta, and 

gamma, all of which represent different cognitive states (Chen et al., 2017). Specifically, the theta 

frequency range represents the state of drowsiness and resource allocation. This have been used to 

evaluate cognitive load during mentally demanding tasks. An increase in theta band power 

corresponds to a higher cognitive load (Castro-Meneses et al., 2020). Significantly, EEG channels 

around the frontal lobe (F3 and F4), central sulcus (C3 and C4), and parietal lobe (P3 and P7) have 

been used to assess cognitive load during mentally demanding activities within the theta frequency 

range (Puma, Matton, Paubel, Raufaste, & El-Yagoubi, 2018).  

 

 
Figure 3. Instrument and data collection: (a) CrayX (Source: German-Bionic, 2023) (b) 32- channel 

EEG sensor (c) EEG channel selection (Source: Emotiv, 2023).  
 

Signal Preprocessing 

 
EEG signals are prone to noise, which could be triggered by body movement and the presence of 

electromagnetic waves in the environment (Tandle, Jog, D’cunha, & Chheta, 2015). Given the 

dynamic nature of the experimental task in this study, which involved physical labor and body 

movement, it is important to denoise the EEG signal before proceeding with the analysis. The first 

stage of denoising the EEG signal involved using a bandpass filter between a frequency of 0.5 to 

60Hz to remove the frequency that could be affected by the noise from the environment 

(Murugappan, Murugappan, & Gerard, 2014). This was followed by the application of notch filter at 

the frequency of 60Hz to remove the wire noise from the channels. The last stage of denoising the 

signal involves the use of independent component analysis (ICA), which shows the heatmap of the 

brain of each component. At this stage, noises generated from the body, such as eye blinking and 

muscle movements, are removed using ICA label features. Following the denoising of the signal, the 

EEG data was sorted according to the subtasks using the recorded timestamped video captured during 

the experiment. The PSD of the considered channels were computed for the theta frequency range 

using Welch’s algorithm. This was done for each of the subtasks. All signal processing and 

computation was done using the EEGLAB toolbox and MATLAB 2023Ra. 

 

(a) (b) 

Battery 

Motor 

Leg strap 

Chest strap 

  

Leg support 

(c) 
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Data Analysis 

 
Considering the continuous nature of the EEG signal, a parametric statistical analysis was used to 

compute the significant differences between the two experimental conditions. Prior to the statistical 

analysis computation, the data was screened using Tukey’s range test, which uses interquartile range 

to define the lower limit (Q1 - 1.5 * IQR) and upper limit (Q3 + 1.5 * IQR) to remove any possible 

outliers. This was followed by computing a normality test using d'Agostino-Pearson test, before 

proceeding with paired t-test between the two experimental conditions for each of the subtasks. Also, 

the graphical representations of all the results are shown using bar graphs, while also indicating the 

statistical significance.  

 

Results 

 

Cognitive Load Evaluation 

 
Examining the cognitive load for both experimental conditions, namely the No-Exo and Active-Exo, 

across the six considered subtasks (measuring, assembly, nailing, lifting, moving, and installing), 

Figures 4a to 4f depict the PSD of theta frequency range. Starting with Figure 4a, which focuses on 

the measuring task, the results reveal an increased cognitive load when utilizing the aBSE across all 

considered channels. Notably, statistical significance (P < 0.05) is observed at channels F3, C3, and 

P7, with increases of 2.86, 1.93, and 2.51 times compared to the No-Exo condition. Figure 4b 

illustrates results for the assembly subtask. Channels P7 and C4 exhibit a significant (P < 0.05) 

increase of 2.79 and 2.39 times in the PSD value for the Active-Exo condition compared to the No-

Exo condition. In Figure 4c, representing the nailing subtask, channels F3 and P7 of the Active-Exo 

condition displays a significant (P < 0.05) elevation of 2.59 and 1.79 times in PSD values compared to 

the No-Exo condition. Figures 4d and 4e, evaluating cognitive load during lifting and moving 

subtasks, show no statistically significant differences (P > 0.05) across all channels. Finally, Figure 4f 

illustrates the results of the installation subtask, revealing significant differences between the two 

experimental conditions. Specifically, in channels C3 and P7, the Active-Exo condition exhibits 

higher PSD values of 0.77 and 0.80 compared to the No-Exo condition. 

 

 

 
 (a) (b) 
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Figure 4. Theta frequency mean PSD: (a) measuring subtask, (b) assembly subtask, (c) nailing 

subtask, (d) lifting subtask, (e) moving subtask, and (f) installation subtask. 

(“*” = significant at p-value < 0.05) 

 

 Discussion 

 
This study evaluates the cognitive load of individuals engaged in construction carpentry framing tasks 

using an augmented reality-based smart exoskeleton. The assessment involves computing the mean 

theta power spectral density from wearable EEG data in two experimental conditions. Across the six 

subtasks (measuring, assembly, nailing, installation, lifting, and moving), results indicate a significant 

increase in cognitive load when using aBSE during measuring, assembly, nailing, and installation 

subtasks. However, the lifting and moving subtasks show no statistical significance, despite being the 

most demanding stages where the frame is relocated for installation. This lack of difference may be 

attributed to the inherently attention-demanding nature of these tasks in both experimental conditions. 

While scarce studies have explored cognitive load in human-robot relationships using theta-band 

power, Castro-Meneses et al. (2020) employed theta-band power to assess cognitive load in 

participants undertaking multimedia tasks with varying complexities, revealing significant differences 

similar to those observed in measuring, assembly, nailing, and installation subtasks. 

 

Conclusion, Limitation, and Future Work 

 
The dynamic and challenging working conditions inherent in construction sites may undermine the 

biomechanical advantages of employing active back support exoskeletons by amplifying users' 

cognitive load. This study assessed the impact of active back support exoskeletons on cognitive load 

during construction carpentry framing tasks, comparing Electroencephalography power spectral 

density between two experimental conditions, with and without active back support exoskeletons 

across six subtasks. The results reveal statistically significant increase in cognitive load among active 

back support exoskeleton users during the measuring, assembly, nailing, and installing subtasks. 

(c) (d) 

(f) (e) 
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While other subtasks also exhibited increased cognitive load, the differences did not reach statistical 

significance. It's crucial to acknowledge the study's limitations, conducted as a simulation in a 

controlled laboratory environment, which may not fully mirror the complexities of an uncontrolled 

construction site. Moreover, the participants, being inexperienced students without day-to-day 

construction involvement, may have influenced the results. Future research endeavors should shift 

towards real construction sites, involving experienced workers over extended periods to obtain a more 

comprehensive understanding of how cognitive load manifests among active back support 

exoskeleton users. This study, offering a scientific perspective, underscores the imperative of tailored 

active back support exoskeleton solutions for the construction industry, considering the unique 

challenges of the construction environment. Manufacturers of active back support exoskeleton can 

glean valuable insights into the necessity for adaptive designs that align with the specific demands of 

construction sites. Additionally, this research This research enhances construction stakeholders' 

understanding of psychological risks linked to active back support exoskeletons, promoting informed 

decision-making in the industry. 
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